1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
use rand::prelude::*;
use std::fmt::{Debug, Error, Formatter};

/// A graph definition for use in classical monte carlo.
pub struct GraphState {
    pub(crate) edges: Vec<(Edge, f64)>,
    pub(crate) binding_mat: Vec<Vec<(usize, f64)>>,
    pub(crate) biases: Vec<f64>,
    pub(crate) state: Option<Vec<bool>>,
}

impl Debug for GraphState {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        if let Some(state) = &self.state {
            let s = state
                .iter()
                .map(|b| if *b { "1" } else { "0" })
                .collect::<Vec<_>>()
                .join("");
            let e = self.get_energy();
            f.write_str(&format!("{}\t{}", s, e))
        } else {
            f.write_str("Error")
        }
    }
}

/// An edge between two variables.
pub type Edge = (usize, usize);
impl GraphState {
    /// Make a new Graph from a list of edges `[((vara, varb), j), ...]` and longitudinal fields.
    pub fn new(edges: &[(Edge, f64)], biases: &[f64]) -> Self {
        let state = Self::make_random_spin_state(biases.len());
        Self::new_with_state(state, edges, biases)
    }

    /// Make a new graph with an initial state, edges, and longitudinal fields.
    pub fn new_with_state(state: Vec<bool>, edges: &[(Edge, f64)], biases: &[f64]) -> Self {
        // Matrix of all bonds.
        let mut binding_mat: Vec<Vec<(usize, f64)>> = vec![vec![]; biases.len() * biases.len()];

        edges.iter().for_each(|((va, vb), j)| {
            binding_mat[*va].push((*vb, *j));
            binding_mat[*vb].push((*va, *j));
        });
        // Sort just in case
        binding_mat.iter_mut().for_each(|vs| {
            vs.sort_by_key(|(i, _)| *i);
        });

        GraphState {
            edges: edges.to_vec(),
            binding_mat,
            biases: biases.to_vec(),
            state: Some(state),
        }
    }

    /// Perform a random single spin flip.
    pub fn do_spin_flip(
        rng: &mut ThreadRng,
        beta: f64,
        binding_mat: &[Vec<(usize, f64)>],
        biases: &[f64],
        state: &mut [bool],
    ) {
        let random_index = rng.gen_range(0, state.len());
        let curr_value = state[random_index];
        // new - old
        let binding_slice = &binding_mat[random_index];
        let delta_e: f64 = binding_slice
            .iter()
            .cloned()
            .map(|(indx, j)| {
                let old_coupling = if !(curr_value ^ state[indx]) {
                    1.0
                } else {
                    -1.0
                };
                // j*new - j*old = j*(-old) - j*(old) = -2j*(old)
                -2.0 * j * old_coupling
            })
            .sum();
        let delta_e = delta_e + (2.0 * biases[random_index] * if curr_value { 1.0 } else { -1.0 });
        if Self::should_flip(rng, beta, delta_e) {
            state[random_index] = !state[random_index]
        }
    }

    /// Randomly flip two spins attached by an edge.
    fn do_edge_flip(
        rng: &mut ThreadRng,
        beta: f64,
        edges: &[(Edge, f64)],
        binding_mat: &[Vec<(usize, f64)>],
        biases: &[f64],
        state: &mut [bool],
    ) {
        let indx_edge = rng.gen_range(0, edges.len());
        let ((va, vb), _) = edges[indx_edge];

        let delta_e = |va: usize, vb: usize| -> f64 {
            let curr_value = state[va];
            let binding_slice = &binding_mat[va];
            let delta_e: f64 = binding_slice
                .iter()
                .cloned()
                .map(|(indx, j)| {
                    // Skip vb since it will also flip.
                    if indx == vb {
                        0.0
                    } else {
                        let old_coupling = if !(curr_value ^ state[indx]) {
                            1.0
                        } else {
                            -1.0
                        };
                        // j*new - j*old = j*(-old) - j*(old) = -2j*(old)
                        -2.0 * j * old_coupling
                    }
                })
                .sum();
            delta_e + (2.0 * biases[va] * if curr_value { 1.0 } else { -1.0 })
        };
        let delta_e = delta_e(va, vb) + delta_e(vb, va);
        if Self::should_flip(rng, beta, delta_e) {
            state[va] = !state[va];
            state[vb] = !state[vb];
        }
    }

    /// Randomly choose if a step should be made based on temperature and energy change.
    pub fn should_flip(rng: &mut ThreadRng, beta: f64, delta_e: f64) -> bool {
        // If dE < 0 then it will always flip, don't bother calculating odds.
        if delta_e > 0.0 {
            let chance = (-beta * delta_e).exp();
            rng.gen::<f64>() < chance
        } else {
            true
        }
    }

    /// Perform a monte carlo time step.
    pub fn do_time_step(&mut self, beta: f64, only_basic_moves: bool) -> Result<(), String> {
        let mut rng = thread_rng();
        // Energy cost of this flip
        if let Some(mut spin_state) = self.state.take() {
            let choice = if only_basic_moves {
                0
            } else {
                rng.gen_range(0, 2)
            };
            match choice {
                0 => Self::do_spin_flip(
                    &mut rng,
                    beta,
                    &self.binding_mat,
                    &self.biases,
                    &mut spin_state,
                ),
                1 => Self::do_edge_flip(
                    &mut rng,
                    beta,
                    &self.edges,
                    &self.binding_mat,
                    &self.biases,
                    &mut spin_state,
                ),
                _ => unreachable!(),
            }
            self.state = Some(spin_state);
            Ok(())
        } else {
            Err("No state to edit".to_string())
        }
    }

    /// Get the spin state.
    pub fn get_state(self) -> Vec<bool> {
        self.state.unwrap()
    }

    /// Clone the spin state.
    pub fn clone_state(&self) -> Vec<bool> {
        self.state.clone().unwrap()
    }

    /// Get a refof the spin state.
    pub fn state_ref(&self) -> &[bool] {
        self.state.as_ref().unwrap()
    }

    /// Overwrite the spin state.
    pub fn set_state(&mut self, state: Vec<bool>) {
        assert_eq!(self.state.as_ref().unwrap().len(), state.len());
        self.state = Some(state)
    }

    /// Get the energy of the system.
    pub fn get_energy(&self) -> f64 {
        if let Some(state) = &self.state {
            state.iter().enumerate().fold(0.0, |acc, (i, si)| {
                let binding_slice = &self.binding_mat[i];
                let total_e: f64 = binding_slice
                    .iter()
                    .map(|(indx, j)| -> f64 {
                        let old_coupling = if !(si ^ state[*indx]) { 1.0 } else { -1.0 };
                        j * old_coupling / 2.0
                    })
                    .sum();
                acc + total_e
            })
        } else {
            std::f64::NAN
        }
    }

    /// Randomly build a spin state.
    pub fn make_random_spin_state(n: usize) -> Vec<bool> {
        let mut rng = thread_rng();
        (0..n).map(|_| -> bool { rng.gen() }).collect()
    }
}