Skip to main content

Crate qlora_rs

Crate qlora_rs 

Source
Expand description

§qlora-rs

4-bit quantized LoRA (QLoRA) implementation for Rust.

This crate provides:

  • NF4 (4-bit NormalFloat) quantization
  • Double quantization for memory efficiency
  • QLoRA training with frozen quantized base weights
  • GGUF model export for inference deployment

§Quick Start

use qlora_rs::{QLoraConfig, QuantizedLinear, quantize_nf4};
use candle_core::Device;

// Quantize a weight tensor to 4-bit
let quantized = quantize_nf4(&weights, 64)?;

// Create QLoRA layer
let config = QLoraConfig::default();
let layer = QuantizedLinear::new(768, 768, config, &Device::Cpu)?;

§Architecture

QLoRA keeps base model weights frozen in 4-bit precision while training LoRA adapters in full precision. This enables fine-tuning large models on consumer hardware.

Re-exports§

pub use error::QLoraError;
pub use error::Result;
pub use formats::export_model;
pub use formats::export_native_format;
pub use formats::ExportConfig;
pub use formats::ExportFormat;
pub use qlora::QLoraConfig;
pub use qlora::QLoraLayer;
pub use qlora::QuantizedLinear;
pub use quantization::dequantize_nf4;
pub use quantization::dequantize_nf4_with_dtype;
pub use quantization::pad_for_quantization;
pub use quantization::pad_for_quantization_with_info;
pub use quantization::quantize_nf4;
pub use quantization::unpad_tensor;
pub use quantization::ComputeDType;
pub use quantization::PaddingInfo;
pub use quantization::QuantizationConfig;
pub use quantization::QuantizationStrategy;
pub use quantization::QuantizedTensor;
pub use training::cross_entropy_loss;
pub use training::PagedAdamW;
pub use training::PagedAdamWState;
pub use training::QLoraTrainer;
pub use training::QLoraTrainingConfig;
pub use training::TrainingMetrics;

Modules§

error
Error types for qlora-rs.
export
GGUF export functionality.
formats
Export format selection and unified interface.
native
Candle native quantized format.
qlora
QLoRA layer implementation.
quantization
4-bit NormalFloat (NF4) quantization.
training
Training utilities for QLoRA fine-tuning.