1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
use crate::pipeline::{get_owned_opfns, StateModifierType};
use crate::state_ops::{invert_op, UnitaryOp};
use crate::{CircuitError, OpBuilder, Register, UnitaryBuilder};

/// Wrap a function to create a version compatible with `program!` as well as an inverse which is
/// also compatible.
/// # Example
/// ```
/// use qip::*;
/// # fn main() -> Result<(), CircuitError> {
///
/// let n = 3;
/// let mut b = OpBuilder::new();
/// let ra = b.register(n)?;
/// let rb = b.register(n)?;
///
/// wrap_and_invert!(wrap_cy, inv_cy, UnitaryBuilder::cy, ra, rb);
///
/// let (ra, rb) = program!(&mut b, ra, rb;
///     wrap_cy ra, rb[2];
///     inv_cy ra, rb[2];
/// )?;
/// let r = b.merge(vec![ra, rb])?;
///
/// # Ok(())
/// # }
/// ```
#[macro_export]
macro_rules! wrap_and_invert {
    (pub $newfunc:ident, pub $newinvert:ident, $($tail:tt)*) => {
        wrap_fn!(pub $newfunc, $($tail)*);
        invert_fn!(pub $newinvert, $newfunc);
    };
    ($newfunc:ident, pub $newinvert:ident, $($tail:tt)*) => {
        wrap_fn!($newfunc, $($tail)*);
        invert_fn!(pub $newinvert, $newfunc);
    };
    (pub $newfunc:ident, $newinvert:ident, $($tail:tt)*) => {
        wrap_fn!(pub $newfunc, $($tail)*);
        invert_fn!($newinvert, $newfunc);
    };
    ($newfunc:ident, $newinvert:ident, $($tail:tt)*) => {
        wrap_fn!($newfunc, $($tail)*);
        invert_fn!($newinvert, $newfunc);
    }
}

/// Wrap a function to create a version compatible with `program!` as well as an inverse which is
/// also compatible.
/// # Example
/// ```
/// use qip::*;
/// # fn main() -> Result<(), CircuitError> {
///
/// let n = 3;
/// let mut b = OpBuilder::new();
/// let ra = b.register(n)?;
/// let rb = b.register(n)?;
///
/// wrap_fn!(wrap_cy, UnitaryBuilder::cy, ra, rb);
/// invert_fn!(inv_cy, wrap_cy);
///
/// let (ra, rb) = program!(&mut b, ra, rb;
///     wrap_cy ra, rb[2];
///     inv_cy ra, rb[2];
/// )?;
/// let r = b.merge(vec![ra, rb])?;
///
/// # Ok(())
/// # }
/// ```
#[macro_export]
macro_rules! invert_fn {
    (pub $newinvert:ident, $func:expr) => {
        /// Invert the given function.
        pub fn $newinvert(
            b: &mut dyn $crate::UnitaryBuilder,
            rs: Vec<Register>,
        ) -> Result<Vec<Register>, $crate::CircuitError> {
            $crate::inverter(b, rs, $func)
        }
    };
    ($newinvert:ident, $func:expr) => {
        fn $newinvert(
            b: &mut dyn $crate::UnitaryBuilder,
            rs: Vec<Register>,
        ) -> Result<Vec<Register>, $crate::CircuitError> {
            $crate::inverter(b, rs, $func)
        }
    };
}

/// Invert a circuit applied via the function f.
pub fn inverter<
    F: Fn(&mut dyn UnitaryBuilder, Vec<Register>) -> Result<Vec<Register>, CircuitError>,
>(
    b: &mut dyn UnitaryBuilder,
    mut rs: Vec<Register>,
    f: F,
) -> Result<Vec<Register>, CircuitError> {
    let original_indices: Vec<_> = rs.iter().map(|r| r.indices.clone()).collect();
    let mut inv_builder = OpBuilder::new();
    let new_rs: Vec<_> = original_indices
        .iter()
        .map(|indices| {
            let n = indices.len() as u64;
            inv_builder.register(n).unwrap()
        })
        .collect();
    let flat_indices: Vec<_> = original_indices.iter().flatten().cloned().collect();

    // Call the function and count any qubits allocated inside.
    let before_n = inv_builder.get_qubit_count();
    let new_rs = f(&mut inv_builder, new_rs)?;
    let end_reg = inv_builder.merge(new_rs)?;
    let after_n = inv_builder.get_qubit_count();

    // Now make any temporary qubits that may be necessary. We can start them as false since the
    // inv_builder had no starting trues and will therefore negate falses whenever needed, though
    // this will be slightly inefficient compared to an optimal strategy of reusing trues if around.
    let temps = after_n - before_n;
    let temp_indices = if temps > 0 {
        let temp_reg = b.get_temp_register(temps, false);
        let temp_indices = temp_reg.indices.clone();
        rs.push(temp_reg);
        temp_indices
    } else {
        vec![]
    };

    let reg = b.merge(rs)?;
    let reg: Register = get_owned_opfns(end_reg)
        .into_iter()
        .fold(vec![], |mut acc, modifier| {
            let name = format!("Inverse({})", modifier.name);
            let op = match modifier.modifier {
                StateModifierType::UnitaryOp(op) => remap_indices(invert_op(op), &flat_indices),
                StateModifierType::Debug(_, _) => unimplemented!(),
                StateModifierType::SideChannelModifiers(_, _) => unimplemented!(),
                StateModifierType::MeasureState(_, _, _) => unimplemented!(),
                StateModifierType::StochasticMeasureState(_, _, _) => unimplemented!(),
            };
            acc.push((name, op));
            acc
        })
        .into_iter()
        .rev()
        .try_fold(reg, |reg, (name, op)| {
            let indices = match &op {
                UnitaryOp::Matrix(indices, _) => indices.clone(),
                UnitaryOp::SparseMatrix(indices, _) => indices.clone(),
                UnitaryOp::Swap(a_indices, b_indices) => {
                    let vecs = [a_indices.clone(), b_indices.clone()];
                    vecs.iter().flatten().cloned().collect()
                }
                UnitaryOp::Control(c_indices, op_indices, _) => {
                    let vecs = [c_indices.clone(), op_indices.clone()];
                    vecs.iter().flatten().cloned().collect()
                }
                UnitaryOp::Function(x_indices, y_indices, _) => {
                    let vecs = [x_indices.clone(), y_indices.clone()];
                    vecs.iter().flatten().cloned().collect()
                }
            };

            let (sel_reg, reg) = b.split_absolute(reg, &indices)?;
            if let Some(reg) = reg {
                let sel_reg = b.merge_with_op(vec![sel_reg], Some((name, op)))?;
                b.merge(vec![sel_reg, reg])
            } else {
                b.merge_with_op(vec![sel_reg], Some((name, op)))
            }
        })?;

    // Any temps which were returned, add them to the returned bucket with the correct value.
    let (zero_temps, one_temps) = inv_builder.get_temp_indices();
    let temp_vecs = vec![(zero_temps, false), (one_temps, true)];
    let reg = temp_vecs.into_iter().try_fold(reg, |reg, (temps, value)| {
        if temps.is_empty() {
            Ok(reg)
        } else {
            let temps: Vec<_> = temps
                .into_iter()
                .map(|indx| temp_indices[(indx - before_n) as usize])
                .collect();
            let (ts, reg) = b.split_absolute(reg, &temps)?;
            b.return_temp_register(ts, value);
            Ok(reg.unwrap())
        }
    })?;

    let (rs, _) = b.split_absolute_many(reg, &original_indices)?;
    Ok(rs)
}

fn remap_indices(op: UnitaryOp, new_indices: &[u64]) -> UnitaryOp {
    let remap = |indices: Vec<u64>| -> Vec<u64> {
        indices
            .into_iter()
            .map(|indx| new_indices[indx as usize])
            .collect()
    };
    match op {
        UnitaryOp::Matrix(indices, mat) => UnitaryOp::Matrix(remap(indices), mat),
        UnitaryOp::SparseMatrix(indices, mat) => UnitaryOp::SparseMatrix(remap(indices), mat),
        UnitaryOp::Swap(a_indices, b_indices) => {
            UnitaryOp::Swap(remap(a_indices), remap(b_indices))
        }
        UnitaryOp::Control(c_indices, op_indices, op) => {
            let op = Box::new(remap_indices(*op, new_indices));
            UnitaryOp::Control(remap(c_indices), remap(op_indices), op)
        }
        UnitaryOp::Function(x_indices, y_indices, f) => {
            UnitaryOp::Function(remap(x_indices), remap(y_indices), f)
        }
    }
}

#[cfg(test)]
mod inverter_test {
    use super::*;
    use crate::boolean_circuits::arithmetic::{add, add_op};
    use crate::pipeline::{get_required_state_size_from_frontier, InitialState, Representation};
    use crate::utils::flip_bits;
    use crate::{run_debug, run_local_with_init, Complex, QuantumState};
    use num::One;

    fn test_inversion<
        F: Fn(&mut dyn UnitaryBuilder, Vec<Register>) -> Result<Vec<Register>, CircuitError>,
    >(
        b: &mut OpBuilder,
        rs: Vec<Register>,
        f: F,
    ) -> Result<(), CircuitError> {
        let rs = f(b, rs)?;
        let rs = inverter(b, rs, f)?;
        let r = b.merge(rs)?;
        run_debug(&r)?;

        let n = get_required_state_size_from_frontier(&[&r]);
        let indices: Vec<_> = (0..n).collect();
        (0..1 << n).for_each(|indx| {
            let (state, _) =
                run_local_with_init::<f64>(&r, &[(indices.clone(), InitialState::Index(indx))])
                    .unwrap();
            let pos = state
                .into_state(Representation::BigEndian)
                .into_iter()
                .position(|v| v == Complex::one())
                .map(|pos| flip_bits(n as usize, pos as u64));
            assert!(pos.is_some());
            assert_eq!(pos.unwrap(), indx);
        });
        Ok(())
    }

    #[test]
    fn test_invert_x() -> Result<(), CircuitError> {
        wrap_fn!(x_op, UnitaryBuilder::x, r);
        let mut b = OpBuilder::new();
        let r = b.qubit();
        test_inversion(&mut b, vec![r], x_op)
    }

    #[test]
    fn test_invert_y() -> Result<(), CircuitError> {
        wrap_fn!(x_op, UnitaryBuilder::y, r);
        let mut b = OpBuilder::new();
        let r = b.qubit();
        test_inversion(&mut b, vec![r], x_op)
    }

    #[test]
    fn test_invert_multi() -> Result<(), CircuitError> {
        fn gamma(
            b: &mut dyn UnitaryBuilder,
            ra: Register,
            rb: Register,
        ) -> Result<(Register, Register), CircuitError> {
            let (ra, rb) = b.cy(ra, rb);
            b.swap(ra, rb)
        }
        wrap_fn!(wrap_gamma, (gamma), ra, rb);
        let mut b = OpBuilder::new();
        let ra = b.qubit();
        let rb = b.qubit();
        test_inversion(&mut b, vec![ra, rb], wrap_gamma)
    }

    #[test]
    fn test_invert_add() -> Result<(), CircuitError> {
        let mut b = OpBuilder::new();
        let rc = b.qubit();
        let ra = b.qubit();
        let rb = b.register(2)?;
        test_inversion(&mut b, vec![rc, ra, rb], add_op)
    }

    #[test]
    fn test_invert_add_larger() -> Result<(), CircuitError> {
        let mut b = OpBuilder::new();
        let rc = b.register(2)?;
        let ra = b.register(2)?;
        let rb = b.register(3)?;
        test_inversion(&mut b, vec![rc, ra, rb], add_op)
    }

    #[test]
    fn test_invert_and_wrap_add() -> Result<(), CircuitError> {
        wrap_and_invert!(add_op, inv_add, (add), rc, ra, rb);
        let mut b = OpBuilder::new();
        let rc = b.register(2)?;
        let ra = b.register(2)?;
        let rb = b.register(3)?;
        let rs = add_op(&mut b, vec![rc, ra, rb])?;
        let rs = inv_add(&mut b, rs)?;
        let _r = b.merge(rs)?;
        Ok(())
    }

    #[test]
    fn test_invert_add_larger_macro() -> Result<(), CircuitError> {
        invert_fn!(inv_add, add_op);
        let mut b = OpBuilder::new();
        let rc = b.register(2)?;
        let ra = b.register(2)?;
        let rb = b.register(3)?;
        let rs = inv_add(&mut b, vec![rc, ra, rb])?;
        let _r = b.merge(rs)?;
        Ok(())
    }
}