qfall_math/rational/q/
to_string.rs

1// Copyright © 2023 Marcel Luca Schmidt, Marvin Beckmann
2//
3// This file is part of qFALL-math.
4//
5// qFALL-math is free software: you can redistribute it and/or modify it under
6// the terms of the Mozilla Public License Version 2.0 as published by the
7// Mozilla Foundation. See <https://mozilla.org/en-US/MPL/2.0/>.
8
9//! This module contains all options to convert a rational of type
10//! [`Q`] into a [`String`].
11//!
12//! This includes the [`Display`](std::fmt::Display) trait.
13
14use super::Q;
15use crate::macros::for_others::implement_for_owned;
16use core::fmt;
17use flint_sys::fmpq::fmpq_get_str;
18use std::{ffi::CStr, ptr::null_mut};
19
20impl From<&Q> for String {
21    /// Converts a [`Q`] into its [`String`] representation.
22    ///
23    /// Parameters:
24    /// - `value`: specifies the rational that will be represented as a [`String`]
25    ///
26    /// Returns a [`String`] of the form `"x/y"`.
27    ///
28    /// # Examples
29    /// ```
30    /// use qfall_math::rational::Q;
31    /// use std::str::FromStr;
32    /// let rational = Q::from_str("6/7").unwrap();
33    ///
34    /// let string: String = rational.into();
35    /// ```
36    fn from(value: &Q) -> Self {
37        value.to_string()
38    }
39}
40
41implement_for_owned!(Q, String, From);
42
43impl fmt::Display for Q {
44    /// Allows to convert a rational of type [`Q`] into a [`String`].
45    ///
46    /// Returns the rational in form of a [`String`]. For rational `1/2`
47    /// the String looks like this `1/2`.
48    ///
49    /// # Examples
50    /// ```
51    /// use std::str::FromStr;
52    /// use qfall_math::rational::Q;
53    /// use core::fmt;
54    ///
55    /// let rational = Q::from((-1, 235));
56    /// println!("{rational}");
57    /// ```
58    ///
59    /// ```
60    /// use std::str::FromStr;
61    /// use qfall_math::rational::Q;
62    /// use core::fmt;
63    ///
64    /// let rational = Q::from((-1, 235));
65    /// let integer_string = rational.to_string();
66    /// ```
67    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
68        let c_str_ptr = unsafe { fmpq_get_str(null_mut(), 10, &self.value) };
69
70        // we expect c_str_ptr to be reference a real value, hence get_str returns an
71        // actual value, hence a simple unwrap should be sufficient and we do not have
72        // to consider an exception
73        //
74        // c_string should not be null either, since we call this method on an
75        // instantiated object
76        let msg = "We expect the pointer to point to a real value and the c_string 
77        not to be null. This error occurs if the provided string does not have UTF-8 format.";
78        let return_str = unsafe { CStr::from_ptr(c_str_ptr).to_str().expect(msg).to_owned() };
79
80        unsafe { libc::free(c_str_ptr as *mut libc::c_void) };
81
82        write!(f, "{return_str}")
83    }
84}
85
86impl Q {
87    /// Outputs the decimal representation of a [`Q`] with
88    /// the specified number of decimal digits.
89    /// If `self` can't be represented exactly, it provides the
90    /// closest value representable with `nr_decimal_digits` rounded
91    /// towards the next representable number.
92    ///
93    /// Notice that, e.g., `0.5` is represented as `0.499...` as [`f64`].
94    /// Therefore, rounding with `nr_decimal_digits = 0` will output `0`.
95    ///
96    /// **WARNING:** This function converts the [`Q`] value into an [`f64`] before
97    /// outputting the decimal representation. Thus, values that can't be represented exactly
98    /// by an [`f64`] will lose some precision. For large values, e.g. of size `2^64`
99    /// the deviation to the original value might be within the size of `1_000`.
100    ///
101    /// Parameters:
102    /// - `nr_decimal_digits`: specifies the number of decimal digits
103    ///   that will be a part of the output [`String`]
104    ///
105    /// Returns a [`String`] of the form `"10.25"` if `nr_decimal_digits = 2`.
106    ///
107    /// # Examples
108    /// ```
109    /// use qfall_math::rational::Q;
110    /// use std::str::FromStr;
111    /// let rational = Q::from_str("6/7").unwrap();
112    ///
113    /// let decimal_repr = rational.to_string_decimal(3);
114    /// ```
115    pub fn to_string_decimal(&self, nr_decimal_digits: usize) -> String {
116        let value = f64::from(self);
117        format!("{value:.nr_decimal_digits$}")
118    }
119}
120
121#[cfg(test)]
122mod test_to_string_decimal {
123    use super::Q;
124
125    /// Ensures that [`Q::to_string_decimal`] works for integer values as intended.
126    #[test]
127    fn integer() {
128        let a = Q::from((5, 1));
129        let b = Q::from((256, 8));
130        let c = Q::from((-1, 1));
131
132        let a_0 = a.to_string_decimal(0);
133        let a_1 = a.to_string_decimal(1);
134        let a_2 = a.to_string_decimal(2);
135        let b_0 = b.to_string_decimal(0);
136        let b_1 = b.to_string_decimal(1);
137        let b_5 = b.to_string_decimal(5);
138        let c_0 = c.to_string_decimal(0);
139        let c_1 = c.to_string_decimal(1);
140        let c_2 = c.to_string_decimal(2);
141
142        assert_eq!("5", a_0);
143        assert_eq!("5.0", a_1);
144        assert_eq!("5.00", a_2);
145        assert_eq!("32", b_0);
146        assert_eq!("32.0", b_1);
147        assert_eq!("32.00000", b_5);
148        assert_eq!("-1", c_0);
149        assert_eq!("-1.0", c_1);
150        assert_eq!("-1.00", c_2);
151    }
152
153    /// Ensures that [`Q::to_string_decimal`] works for rational / non-integer values as intended.
154    #[test]
155    fn non_integer() {
156        let a = Q::from((2, 3));
157        let b = Q::from((21, 2));
158        let c = Q::from((-1, 3));
159
160        let a_0 = a.to_string_decimal(0);
161        let a_1 = a.to_string_decimal(1);
162        let a_2 = a.to_string_decimal(2);
163        let b_0 = b.to_string_decimal(0);
164        let b_1 = b.to_string_decimal(1);
165        let b_2 = b.to_string_decimal(2);
166        let c_0 = c.to_string_decimal(0);
167        let c_1 = c.to_string_decimal(1);
168        let c_2 = c.to_string_decimal(2);
169
170        assert_eq!("1", a_0);
171        assert_eq!("0.7", a_1);
172        assert_eq!("0.67", a_2);
173        assert_eq!("10", b_0);
174        assert_eq!("10.5", b_1);
175        assert_eq!("10.50", b_2);
176        assert_eq!("-0", c_0);
177        assert_eq!("-0.3", c_1);
178        assert_eq!("-0.33", c_2);
179    }
180
181    /// Ensures that [`Q::to_string_decimal`] works for large numbers.
182    #[test]
183    fn large_number() {
184        let a = Q::from((i64::MAX, 1));
185
186        let a_0 = a.to_string_decimal(0);
187        let a_1 = a.to_string_decimal(1);
188
189        assert_eq!("9223372036854774784", a_0); // deviation of 1023 from original value
190        assert_eq!("9223372036854774784.0", a_1);
191    }
192}
193
194#[cfg(test)]
195mod test_to_string {
196    use crate::rational::Q;
197    use std::str::FromStr;
198
199    /// Tests whether a large positive rational works in a roundtrip
200    #[test]
201    fn working_large_positive_nom() {
202        let cmp = Q::from(u64::MAX);
203
204        assert_eq!(u64::MAX.to_string(), cmp.to_string());
205    }
206
207    /// Tests whether a large negative rational works in a roundtrip
208    #[test]
209    fn working_large_negative_nom() {
210        let cmp = Q::from_str(&format!("-{}", u64::MAX)).unwrap();
211
212        assert_eq!(format!("-{}", u64::MAX), cmp.to_string());
213    }
214
215    /// Tests whether a large denominator works in a roundtrip
216    #[test]
217    fn working_large_positive_den() {
218        let cmp = Q::from_str(&format!("1/{}", u64::MAX)).unwrap();
219
220        assert_eq!(format!("1/{}", u64::MAX), cmp.to_string());
221    }
222
223    /// Tests whether a large negative denominator works in a roundtrip
224    #[test]
225    fn working_large_negative_den() {
226        let cmp = Q::from_str(&format!("1/-{}", u64::MAX)).unwrap();
227
228        assert_eq!(format!("-1/{}", u64::MAX), cmp.to_string());
229    }
230
231    /// Tests whether a positive rational works in a roundtrip
232    #[test]
233    fn working_positive() {
234        let cmp = Q::from((42, 235));
235
236        assert_eq!("42/235", cmp.to_string());
237    }
238
239    /// Tests whether a negative rational works in a roundtrip
240    #[test]
241    fn working_negative() {
242        let cmp = Q::from((-42, 235));
243
244        assert_eq!("-42/235", cmp.to_string());
245    }
246
247    /// Tests whether a rational that is created using a string, returns a
248    /// string that can be used to create a [`Q`]
249    #[test]
250    fn working_use_result_of_to_string_as_input() {
251        let cmp = Q::from((42, 235));
252
253        let cmp_str_2 = cmp.to_string();
254
255        assert!(Q::from_str(&cmp_str_2).is_ok());
256    }
257
258    /// Ensures that the `Into<String>` trait works properly
259    #[test]
260    fn into_works_properly() {
261        let cmp = "6/7";
262        let rational = Q::from_str(cmp).unwrap();
263
264        let string: String = rational.clone().into();
265        let borrowed_string: String = (&rational).into();
266
267        assert_eq!(cmp, string);
268        assert_eq!(cmp, borrowed_string);
269    }
270}