qfall_math/rational/q/arithmetic/
logarithm.rs

1// Copyright © 2023 Niklas Siemer
2//
3// This file is part of qFALL-math.
4//
5// qFALL-math is free software: you can redistribute it and/or modify it under
6// the terms of the Mozilla Public License Version 2.0 as published by the
7// Mozilla Foundation. See <https://mozilla.org/en-US/MPL/2.0/>.
8
9//! Implementations to call the logarithm on a [`Q`] integer.
10
11use crate::{error::MathError, integer::Z, rational::Q};
12use flint_sys::fmpz::fmpz_dlog;
13
14impl Q {
15    /// Computes the natural logarithm of a positive rational number
16    /// approximated as an [`f64`] and returned as a [`Q`].
17    ///
18    /// **Warning**: It assumes that the return value does not overflow an [`f64`].
19    ///
20    /// Returns the double precision approximation of the natural logarithm of `self`
21    /// as a [`Q`] instance or a [`MathError`], if `self` is smaller than `1`.
22    ///
23    /// # Examples
24    /// ```
25    /// use qfall_math::rational::Q;
26    ///
27    /// let value = Q::from(1);
28    /// let log = value.ln().unwrap();
29    ///
30    /// assert_eq!(Q::ZERO, log);
31    /// ```
32    ///
33    /// # Errors and Failures
34    /// - Returns a [`MathError`] of type
35    ///   [`NonPositive`](MathError::NonPositive) if `self` is not
36    ///   greater than `0`.
37    pub fn ln(&self) -> Result<Self, MathError> {
38        if self <= &Q::ZERO {
39            Err(MathError::NonPositive(self.to_string()))
40        } else {
41            Ok(Q::from(
42                unsafe { fmpz_dlog(&self.value.num) } - unsafe { fmpz_dlog(&self.value.den) },
43            ))
44        }
45    }
46
47    /// Computes the logarithm of a positive rational number
48    /// with an integer base greater than `1` approximated as an [`f64`]
49    /// and returned as a [`Q`].
50    ///
51    /// **Warning**: It assumes that the return value does not overflow an [`f64`].
52    ///
53    /// Parameters:
54    /// - `base`: the base of the logarithm
55    ///
56    /// Returns `log_base(self)` as a [`Q`] instance or a [`MathError`],
57    /// if at least one of the conditions `base > 1` and `self > 0` isn't met.
58    ///
59    /// # Examples
60    /// ```
61    /// use qfall_math::rational::Q;
62    ///
63    /// let value = Q::from(2);
64    /// let log = value.log(2).unwrap();
65    ///
66    /// assert_eq!(Q::ONE, log);
67    /// ```
68    ///
69    /// # Errors and Failures
70    /// - Returns a [`MathError`] of type [`InvalidIntegerInput`](MathError::InvalidIntegerInput)
71    ///   if the `base` is smaller than `2`.
72    /// - Returns a [`MathError`] of type
73    ///   [`NonPositive`](MathError::NonPositive) if `self` is not
74    ///   greater than `0`.
75    pub fn log(&self, base: impl Into<Z>) -> Result<Q, MathError> {
76        let base: Z = base.into();
77        if base <= Z::ONE {
78            return Err(MathError::InvalidIntegerInput(format!(
79                "The base must be greater than 1, but the provided is {base}"
80            )));
81        }
82
83        let ln_value = self.ln()?;
84        let ln_base = base.ln()?;
85        let log_b = ln_value / ln_base;
86
87        Ok(log_b)
88    }
89}
90
91#[cfg(test)]
92mod test_natural_ln {
93    use crate::rational::Q;
94    use std::f64::consts::{LN_2, LN_10};
95
96    /// Ensure that an error is returned if `self` is too small
97    #[test]
98    fn value_too_small() {
99        assert!(Q::ZERO.ln().is_err());
100        assert!(Q::MINUS_ONE.ln().is_err());
101        assert!(Q::from(i64::MIN).ln().is_err());
102    }
103
104    /// Ensure that the output of the function corresponds to the known
105    /// approximated value in [`f64`]
106    #[test]
107    fn static_known_values() {
108        assert_eq!(Q::ZERO, Q::ONE.ln().unwrap());
109        assert_eq!(Q::from(LN_2), Q::from(2).ln().unwrap());
110        assert_eq!(Q::from(LN_10), Q::from(10).ln().unwrap());
111        assert_eq!(Q::ONE, Q::E.ln().unwrap());
112    }
113}
114
115#[cfg(test)]
116mod test_log {
117    use crate::{integer::Z, rational::Q, traits::Distance};
118
119    /// Ensure that an error is returned if the base is too small
120    #[test]
121    fn base_too_small() {
122        let value = Q::from(17);
123
124        assert!(value.log(Z::ZERO).is_err());
125        assert!(value.log(Z::ONE).is_err());
126        assert!(value.log(Z::MINUS_ONE).is_err());
127        assert!(value.log(Z::from(i64::MIN)).is_err());
128    }
129
130    /// Ensure that an error is returned if `self` is too small
131    #[test]
132    fn value_too_small() {
133        let base = Z::from(2);
134
135        assert!(Q::ZERO.log(&base).is_err());
136        assert!(Q::MINUS_ONE.log(&base).is_err());
137        assert!(Q::from(i64::MIN).log(&base).is_err());
138    }
139
140    /// Checks whether the logarithm computation works correctly for small values
141    #[test]
142    fn small_values() {
143        let z_0 = Q::from(1);
144        let z_1 = Q::from(2);
145        let z_2 = Q::from(1.25f64);
146        let z_3 = Q::from(20.75f64);
147        let cmp_0 = Q::from(1.25_f64.log2());
148        let cmp_1 = Q::from(20.75f64.log(3f64));
149        let max_distance = Q::from((1, 1_000_000_000));
150
151        let res_0 = z_0.log(2).unwrap();
152        let res_1 = z_1.log(2).unwrap();
153        let res_2 = z_2.log(2).unwrap();
154        let res_3 = z_3.log(3).unwrap();
155
156        assert_eq!(Q::ZERO, res_0);
157        assert_eq!(Q::ONE, res_1);
158        assert!(cmp_0.distance(res_2) < max_distance);
159        assert!(cmp_1.distance(res_3) < max_distance);
160    }
161
162    /// Checks whether the logarithm computation works correctly for large values
163    #[test]
164    fn large_values() {
165        let z_0 = Q::from(i64::MAX as u64 + 1);
166        let z_1 = Q::from(f64::MAX);
167        let z_2 = Q::from(i32::MAX);
168        let cmp_0 = Q::from((&63, &1));
169        let cmp_1 = Q::from(f64::MAX.log2());
170        let max_distance = Q::from((&1, &1_000_000_000));
171
172        let res_0 = z_0.log(2).unwrap();
173        let res_1 = z_1.log(2).unwrap();
174        let res_2 = z_2.log(i32::MAX).unwrap();
175
176        assert!(cmp_0.distance(res_0) < max_distance);
177        assert!(cmp_1.distance(res_1) < max_distance);
178        assert_eq!(Q::ONE, res_2);
179    }
180
181    /// Ensures that the logarithm function is available for types
182    /// that can be casted to a [`Z`] instance like u8, u16, i32, i64, ...
183    #[test]
184    fn availability() {
185        let value = Z::from(5);
186
187        let _ = value.log(2u8).unwrap();
188        let _ = value.log(2u16).unwrap();
189        let _ = value.log(2u32).unwrap();
190        let _ = value.log(2u64).unwrap();
191        let _ = value.log(2i8).unwrap();
192        let _ = value.log(2i16).unwrap();
193        let _ = value.log(2i32).unwrap();
194        let _ = value.log(2i64).unwrap();
195        let _ = value.log(&value).unwrap();
196    }
197}