qfall_math/integer_mod_q/modulus_polynomial_ring_zq/norm.rs
1// Copyright © 2024 Marcel Luca Schmidt
2//
3// This file is part of qFALL-math.
4//
5// qFALL-math is free software: you can redistribute it and/or modify it under
6// the terms of the Mozilla Public License Version 2.0 as published by the
7// Mozilla Foundation. See <https://mozilla.org/en-US/MPL/2.0/>.
8
9//! This module includes functionality to compute several norms
10//! defined on polynomials.
11
12use super::ModulusPolynomialRingZq;
13use crate::{integer::Z, integer_mod_q::PolyOverZq};
14
15impl ModulusPolynomialRingZq {
16 /// Returns the squared Euclidean norm or 2-norm of the given polynomial.
17 /// The squared Euclidean norm for a polynomial is obtained by treating the coefficients
18 /// of the polynomial as a vector and then applying the standard squared Euclidean norm.
19 ///
20 /// # Examples
21 /// ```
22 /// use qfall_math::{integer::Z, integer_mod_q::ModulusPolynomialRingZq};
23 /// use std::str::FromStr;
24 ///
25 /// let poly = ModulusPolynomialRingZq::from_str("3 1 2 3 mod 11").unwrap();
26 ///
27 /// let sqrd_2_norm = poly.norm_eucl_sqrd();
28 ///
29 /// // 1*1 + 2*2 + 3*3 = 14
30 /// assert_eq!(Z::from(14), sqrd_2_norm);
31 /// ```
32 pub fn norm_eucl_sqrd(&self) -> Z {
33 PolyOverZq::from(self).norm_eucl_sqrd()
34 }
35
36 /// Returns the infinity norm or the maximal absolute value of a
37 /// coefficient of the given polynomial.
38 /// The infinity norm for a polynomial is obtained by treating the coefficients
39 /// of the polynomial as a vector and then applying the standard infinity norm.
40 ///
41 /// # Examples
42 /// ```
43 /// use qfall_math::{integer::Z, integer_mod_q::ModulusPolynomialRingZq};
44 /// use std::str::FromStr;
45 ///
46 /// let poly = ModulusPolynomialRingZq::from_str("3 1 2 4 mod 7").unwrap();
47 ///
48 /// let infty_norm = poly.norm_infty();
49 ///
50 /// // max coefficient is 4 = -3
51 /// assert_eq!(Z::from(3), infty_norm);
52 /// ```
53 pub fn norm_infty(&self) -> Z {
54 PolyOverZq::from(self).norm_infty()
55 }
56}
57
58#[cfg(test)]
59mod test_norms {
60 use super::Z;
61 use crate::integer_mod_q::ModulusPolynomialRingZq;
62 use std::str::FromStr;
63
64 /// Check whether the norms can be computed for [`ModulusPolynomialRingZq`].
65 /// Correctness is already checked for [`PolyOverZq`](crate::integer_mod_q::PolyOverZq).
66 #[test]
67 fn availability() {
68 let poly = ModulusPolynomialRingZq::from_str("3 1 2 3 mod 11").unwrap();
69
70 let norm_es = poly.norm_eucl_sqrd();
71 let norm_i = poly.norm_infty();
72
73 assert_eq!(Z::from(14), norm_es);
74 assert_eq!(Z::from(3), norm_i);
75 }
76}