qfall_math/integer/poly_over_z/sample/discrete_gauss.rs
1// Copyright © 2023 Niklas Siemer
2//
3// This file is part of qFALL-math.
4//
5// qFALL-math is free software: you can redistribute it and/or modify it under
6// the terms of the Mozilla Public License Version 2.0 as published by the
7// Mozilla Foundation. See <https://mozilla.org/en-US/MPL/2.0/>.
8
9//! This module contains algorithms for sampling according
10//! to the discrete Gaussian distribution.
11
12use crate::{
13 error::MathError,
14 integer::PolyOverZ,
15 rational::Q,
16 traits::SetCoefficient,
17 utils::{
18 index::evaluate_index,
19 sample::discrete_gauss::{DiscreteGaussianIntegerSampler, LookupTableSetting, TAILCUT},
20 },
21};
22use std::fmt::Display;
23
24impl PolyOverZ {
25 /// Initializes a new [`PolyOverZ`] with maximum degree `max_degree`
26 /// and with each entry sampled independently according to the
27 /// discrete Gaussian distribution, using [`Z::sample_discrete_gauss`](crate::integer::Z::sample_discrete_gauss).
28 ///
29 /// Parameters:
30 /// - `max_degree`: specifies the included maximal degree the created [`PolyOverZ`] should have
31 /// - `center`: specifies the positions of the center with peak probability
32 /// - `s`: specifies the Gaussian parameter, which is proportional
33 /// to the standard deviation `sigma * sqrt(2 * pi) = s`
34 ///
35 /// Returns a fresh [`PolyOverZ`] instance of maximum degree `max_degree`
36 /// with coefficients chosen independently according the discrete Gaussian distribution or
37 /// a [`MathError`] if `s < 0`.
38 ///
39 /// # Examples
40 /// ```
41 /// use qfall_math::integer::PolyOverZ;
42 ///
43 /// let sample = PolyOverZ::sample_discrete_gauss(2, 0, 1).unwrap();
44 /// ```
45 ///
46 /// # Errors and Failures
47 /// - Returns a [`MathError`] of type [`InvalidIntegerInput`](MathError::InvalidIntegerInput)
48 /// if `s < 0`.
49 ///
50 /// # Panics ...
51 /// - if `max_degree` is negative, or does not fit into an [`i64`].
52 pub fn sample_discrete_gauss(
53 max_degree: impl TryInto<i64> + Display,
54 center: impl Into<Q>,
55 s: impl Into<Q>,
56 ) -> Result<Self, MathError> {
57 let max_degree = evaluate_index(max_degree).unwrap();
58
59 let center = center.into();
60 let s = s.into();
61 let mut poly = PolyOverZ::default();
62
63 let mut dgis = DiscreteGaussianIntegerSampler::init(
64 ¢er,
65 &s,
66 unsafe { TAILCUT },
67 LookupTableSetting::FillOnTheFly,
68 )?;
69
70 for index in 0..=max_degree {
71 let sample = dgis.sample_z();
72 unsafe { poly.set_coeff_unchecked(index, &sample) };
73 }
74 Ok(poly)
75 }
76}
77
78#[cfg(test)]
79mod test_sample_discrete_gauss {
80 use crate::{integer::PolyOverZ, rational::Q};
81
82 /// Checks whether `sample_discrete_gauss` is available for all types
83 /// implementing [`Into<Z>`], i.e. u8, u16, u32, u64, i8, ...
84 /// or [`Into<Q>`], i.e. u8, i16, f32, Z, Q, ...
85 #[test]
86 fn availability() {
87 let center = Q::ZERO;
88 let s = Q::ONE;
89
90 let _ = PolyOverZ::sample_discrete_gauss(1u8, 0f32, 1u8);
91 let _ = PolyOverZ::sample_discrete_gauss(1u16, 0f64, 1u16);
92 let _ = PolyOverZ::sample_discrete_gauss(1u32, 0f32, 1u32);
93 let _ = PolyOverZ::sample_discrete_gauss(1u64, 0f64, 1u64);
94 let _ = PolyOverZ::sample_discrete_gauss(1i8, 0f32, 1i8);
95 let _ = PolyOverZ::sample_discrete_gauss(1i8, 0f32, 1i16);
96 let _ = PolyOverZ::sample_discrete_gauss(1i16, 0f32, 1i32);
97 let _ = PolyOverZ::sample_discrete_gauss(1i32, 0f64, 1i64);
98 let _ = PolyOverZ::sample_discrete_gauss(1i64, center, s);
99 let _ = PolyOverZ::sample_discrete_gauss(1u8, 0f32, 1f64);
100 }
101
102 /// Checks whether the number of coefficients is correct.
103 #[test]
104 fn nr_coeffs() {
105 let degrees = [1, 3, 7, 15, 32, 120];
106 for degree in degrees {
107 let res = PolyOverZ::sample_discrete_gauss(degree, i64::MAX, 1).unwrap();
108
109 assert_eq!(
110 res.get_degree(),
111 degree,
112 "Could fail with negligible probability."
113 );
114 }
115 }
116
117 /// Checks whether the maximum degree needs to be at least 0.
118 #[test]
119 #[should_panic]
120 fn invalid_max_degree() {
121 let _ = PolyOverZ::sample_discrete_gauss(-1, 0, 1).unwrap();
122 }
123}