qfall_math/rational/poly_over_q/norm.rs
1// Copyright © 2023 Phil Milewski
2//
3// This file is part of qFALL-math.
4//
5// qFALL-math is free software: you can redistribute it and/or modify it under
6// the terms of the Mozilla Public License Version 2.0 as published by the
7// Mozilla Foundation. See <https://mozilla.org/en-US/MPL/2.0/>.
8
9//! This module includes functionality to compute several norms
10//! defined on polynomials.
11
12use crate::{
13 rational::{PolyOverQ, Q},
14 traits::{GetCoefficient, Pow},
15};
16use std::cmp::max;
17
18impl PolyOverQ {
19 /// Returns the squared Euclidean norm or squared 2-norm of the given polynomial.
20 /// The squared Euclidean norm for a polynomial is obtained by treating the coefficients
21 /// of the polynomial as a vector and then applying the standard squared Euclidean norm.
22 ///
23 /// # Examples
24 /// ```
25 /// use qfall_math::rational::{PolyOverQ, Q};
26 /// use std::str::FromStr;
27 ///
28 /// let poly = PolyOverQ::from_str("3 1/7 2/7 3/7").unwrap();
29 ///
30 /// let sqrd_2_norm = poly.norm_eucl_sqrd();
31 ///
32 /// // (1*1 + 2*2 + 3*3)/49 = 14/49 = 2/7
33 /// assert_eq!(Q::from((2, 7)), sqrd_2_norm);
34 /// ```
35 pub fn norm_eucl_sqrd(&self) -> Q {
36 let mut res = Q::ZERO;
37
38 for i in 0..=self.get_degree() {
39 let coeff = unsafe { self.get_coeff_unchecked(i) };
40 res += coeff.pow(2).unwrap();
41 }
42 res
43 }
44}
45
46impl PolyOverQ {
47 /// Returns the infinity norm or the maximal absolute value of a
48 /// coefficient of the given polynomial.
49 /// The infinity norm for a polynomial is obtained by treating the coefficients
50 /// of the polynomial as a vector and then applying the standard infinity norm.
51 ///
52 /// # Examples
53 /// ```
54 /// use qfall_math::rational::{PolyOverQ, Q};
55 /// use std::str::FromStr;
56 ///
57 /// let poly = PolyOverQ::from_str("3 1/7 2/7 3/7").unwrap();
58 ///
59 /// let infty_norm = poly.norm_infty();
60 ///
61 /// // max coefficient is 3/7
62 /// assert_eq!(Q::from((3, 7)), infty_norm);
63 /// ```
64 pub fn norm_infty(&self) -> Q {
65 let mut res = Q::ZERO;
66 for i in 0..=self.get_degree() {
67 res = max(res, unsafe { self.get_coeff_unchecked(i).abs() });
68 }
69 res
70 }
71}
72
73#[cfg(test)]
74mod test_norm_eucl_sqrd {
75 use super::{PolyOverQ, Q};
76 use std::str::FromStr;
77
78 /// Check whether the squared euclidean norm for polynomials
79 /// with small coefficients is calculated correctly
80 #[test]
81 fn poly_small_coefficient() {
82 let poly_1 = PolyOverQ::default();
83 let poly_2 = PolyOverQ::from_str("3 1/7 2/7 3/7").unwrap();
84 let poly_3 = PolyOverQ::from_str("3 1/8 2010/19 90/29").unwrap();
85
86 assert_eq!(poly_1.norm_eucl_sqrd(), Q::ZERO);
87 assert_eq!(poly_2.norm_eucl_sqrd(), Q::from((2, 7)));
88 assert_eq!(
89 poly_3.norm_eucl_sqrd(),
90 Q::from((1, 64)) + Q::from((2010, 19)) * Q::from((2010, 19)) + Q::from((8100, 841))
91 );
92 }
93
94 /// Check whether the squared euclidean norm for polynomials
95 /// with small coefficients is calculated correctly
96 #[test]
97 fn poly_large_coefficient() {
98 let poly_1 = PolyOverQ::from_str(&format!("1 {}", u64::MAX)).unwrap();
99 let poly_2 =
100 PolyOverQ::from_str(&format!("3 {} {} 1/{}", u64::MAX, i64::MIN, i64::MAX)).unwrap();
101
102 assert_eq!(
103 poly_1.norm_eucl_sqrd(),
104 Q::from(u64::MAX) * Q::from(u64::MAX)
105 );
106 assert_eq!(
107 poly_2.norm_eucl_sqrd(),
108 Q::from(u64::MAX) * Q::from(u64::MAX)
109 + Q::from(i64::MIN) * Q::from(i64::MIN)
110 + Q::from((1, i64::MAX)) * Q::from((1, i64::MAX))
111 );
112 }
113}
114
115#[cfg(test)]
116mod test_norm_infty {
117 use super::{PolyOverQ, Q};
118 use std::str::FromStr;
119
120 /// Check whether the infinity norm for polynomials
121 /// with small coefficients is calculated correctly
122 #[test]
123 fn poly_small_coefficient() {
124 let poly_1 = PolyOverQ::default();
125 let poly_2 = PolyOverQ::from_str("3 1/7 2/7 3/7").unwrap();
126 let poly_3 = PolyOverQ::from_str("3 1/8 2010/19 90/29").unwrap();
127
128 assert_eq!(poly_1.norm_infty(), Q::ZERO);
129 assert_eq!(poly_2.norm_infty(), Q::from((3, 7)));
130 assert_eq!(poly_3.norm_infty(), Q::from((2010, 19)));
131 }
132
133 /// Check whether the infinity norm for polynomials
134 /// with small coefficients is calculated correctly
135 #[test]
136 fn poly_large_coefficient() {
137 let poly_1 = PolyOverQ::from_str(&format!("1 {}", u64::MAX)).unwrap();
138 let poly_2 =
139 PolyOverQ::from_str(&format!("3 1/{} {}/7 {}", u64::MAX, i64::MIN, i64::MAX)).unwrap();
140
141 assert_eq!(poly_1.norm_infty(), Q::from(u64::MAX));
142 assert_eq!(poly_2.norm_infty(), Q::from(i64::MAX));
143 }
144}