qfall_math/integer_mod_q/z_q/sample/discrete_gauss.rs
1// Copyright © 2023 Niklas Siemer
2//
3// This file is part of qFALL-math.
4//
5// qFALL-math is free software: you can redistribute it and/or modify it under
6// the terms of the Mozilla Public License Version 2.0 as published by the
7// Mozilla Foundation. See <https://mozilla.org/en-US/MPL/2.0/>.
8
9//! This module contains algorithms for sampling according to the discrete Gaussian distribution.
10
11use crate::{
12 error::MathError,
13 integer_mod_q::{Modulus, Zq},
14 rational::Q,
15 utils::sample::discrete_gauss::{DiscreteGaussianIntegerSampler, LookupTableSetting, TAILCUT},
16};
17
18impl Zq {
19 /// Chooses a [`Zq`] instance chosen according to the discrete Gaussian distribution
20 /// in `[center - ⌈6 * s⌉ , center + ⌊ 6 * s⌋ ]`.
21 ///
22 /// This function samples discrete Gaussians according to the definition of
23 /// SampleZ in [GPV08](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d9f54077d568784c786f7b1d030b00493eb3ae35).
24 ///
25 /// Parameters:
26 /// - `modulus`: specifies the modulus of the new [`Zq`] element
27 /// - `center`: specifies the position of the center with peak probability
28 /// - `s`: specifies the Gaussian parameter, which is proportional
29 /// to the standard deviation `sigma * sqrt(2 * pi) = s`
30 ///
31 /// Returns new [`Zq`] sample chosen according to the specified discrete Gaussian
32 /// distribution or a [`MathError`] if the specified parameters were not chosen
33 /// appropriately, i.e. `s < 0`.
34 ///
35 /// # Examples
36 /// ```
37 /// use qfall_math::integer_mod_q::Zq;
38 ///
39 /// let sample = Zq::sample_discrete_gauss(17, 0, 1).unwrap();
40 /// ```
41 ///
42 /// # Errors and Failures
43 /// - Returns a [`MathError`] of type [`InvalidIntegerInput`](MathError::InvalidIntegerInput)
44 /// if `s < 0`.
45 ///
46 /// # Panics ...
47 /// - if `modulus` is smaller than `2`.
48 ///
49 /// This function implements SampleZ according to:
50 /// - \[1\] Gentry, Craig and Peikert, Chris and Vaikuntanathan, Vinod (2008).
51 /// Trapdoors for hard lattices and new cryptographic constructions.
52 /// In: Proceedings of the fortieth annual ACM symposium on Theory of computing.
53 /// <https://dl.acm.org/doi/pdf/10.1145/1374376.1374407>
54 pub fn sample_discrete_gauss(
55 modulus: impl Into<Modulus>,
56 center: impl Into<Q>,
57 s: impl Into<Q>,
58 ) -> Result<Self, MathError> {
59 let modulus: Modulus = modulus.into();
60 let center: Q = center.into();
61 let s: Q = s.into();
62
63 let mut dgis = DiscreteGaussianIntegerSampler::init(
64 ¢er,
65 &s,
66 unsafe { TAILCUT },
67 LookupTableSetting::NoLookup,
68 )?;
69
70 let sample = dgis.sample_z();
71 Ok(Zq::from((&sample, &modulus)))
72 }
73}
74
75#[cfg(test)]
76mod test_sample_discrete_gauss {
77 use crate::{integer::Z, integer_mod_q::Zq, rational::Q};
78
79 // Appropriate interval and invalid inputs were tested in
80 // utils::sample::discrete_gauss::test_sample_z and are thus omitted here.
81
82 /// Checks whether `sample_discrete_gauss` is available for all types
83 /// implementing [`Into<Z>`], i.e. u8, u16, u32, u64, i8, ...
84 /// or [`Into<Q>`], i.e. u8, i16, f32, Z, Q, ...
85 #[test]
86 fn availability() {
87 let z = Z::from(2);
88 let q = Q::from(2);
89
90 let _ = Zq::sample_discrete_gauss(17u64, 7u8, 1u16);
91 let _ = Zq::sample_discrete_gauss(17u16, 7u16, 1u8);
92 let _ = Zq::sample_discrete_gauss(17u8, 7u32, 1u32);
93 let _ = Zq::sample_discrete_gauss(17u32, 7u64, 1u64);
94 let _ = Zq::sample_discrete_gauss(17i16, 7i8, 1i64);
95 let _ = Zq::sample_discrete_gauss(17i8, 7i16, 1i32);
96 let _ = Zq::sample_discrete_gauss(17i64, 7i32, 1i16);
97 let _ = Zq::sample_discrete_gauss(17i32, 7i64, 1i8);
98 let _ = Zq::sample_discrete_gauss(17, q.clone(), 1i64);
99 let _ = Zq::sample_discrete_gauss(z.clone(), 0i8, z.clone());
100 let _ = Zq::sample_discrete_gauss(17, z.clone(), q.clone());
101 let _ = Zq::sample_discrete_gauss(17, 1f32, 1f64);
102 let _ = Zq::sample_discrete_gauss(17, 1f64, 1f32);
103
104 // With references
105 let _ = Zq::sample_discrete_gauss(17i64, 7i32, 1i16);
106 let _ = Zq::sample_discrete_gauss(17i32, 7i64, 1i8);
107 let _ = Zq::sample_discrete_gauss(17, &q, 1i64);
108 let _ = Zq::sample_discrete_gauss(&z, 0i8, &z);
109 let _ = Zq::sample_discrete_gauss(17, &z, &q);
110 }
111
112 /// Roughly checks the collected samples are distributed
113 /// according to the discrete Gaussian distribution.
114 ///
115 /// This test could possibly fail for a truly uniform distribution
116 /// with probability smaller than 1/1000.
117 #[test]
118 fn distribution() {
119 let mut counts = [0; 20];
120 // count sampled instances
121 for _ in 0..200 {
122 let sample = Zq::sample_discrete_gauss(20, 0, 2).unwrap();
123 let sample_int = i64::try_from(&sample.get_representative_least_nonnegative_residue())
124 .unwrap() as usize;
125 counts[sample_int] += 1;
126 }
127
128 let expl_text = String::from("This test can fail with probability close to 0.
129 It fails if the sampled occurrences do not look like a typical discrete Gaussian random distribution.
130 If this happens, rerun the tests several times and check whether this issue comes up again.");
131
132 // Check that the sampled occurrences roughly look
133 // like a discrete Gaussian distribution
134 assert!(counts[0] > 70, "{expl_text}");
135 assert!(counts[0] < 130, "{expl_text}");
136 assert!(counts[19] > 20, "{expl_text}");
137 assert!(counts[19] < 70, "{expl_text}");
138 assert!(counts[1] > 20, "{expl_text}");
139 assert!(counts[1] < 70, "{expl_text}");
140 assert!(counts[18] < 20, "{expl_text}");
141 assert!(counts[2] < 20, "{expl_text}");
142 for count in counts.iter().take(18).skip(3) {
143 assert!(count < &10, "{expl_text}");
144 }
145 }
146}