py32_hal/rcc/
f030.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// use crate::pac::flash::vals::Latency;
use crate::pac::rcc::vals::Pllsrc;
// pub use crate::pac::rcc::vals::Prediv as PllPreDiv;
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler, Sw as Sysclk, HsiFs};
use crate::pac::{/* FLASH , */RCC};
use crate::time::Hertz;

// /// HSI speed
// pub const HSI_FREQ: Hertz = Hertz(8_000_000);

#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
    /// crystal/ceramic oscillator (HSEBYP=0)
    Oscillator,
    /// external analog clock (low swing) (HSEBYP=1)
    Bypass,
}

#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
    /// HSE frequency.
    pub freq: Hertz,
    /// HSE mode.
    pub mode: HseMode,
}

#[derive(Clone, Copy, Eq, PartialEq)]
pub enum PllSource {
    HSE,
    HSI,
}

#[derive(Clone, Copy)]
pub struct Pll {
    pub src: PllSource,

    // /// PLL pre-divider.
    // ///
    // /// On some chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
    // pub prediv: PllPreDiv,

    // /// PLL multiplication factor.
    // pub mul: PllMul,
}

/// Clocks configutation
#[non_exhaustive]
#[derive(Clone, Copy)]
pub struct Config {
    pub hsi: Option<Hertz>,
    pub hse: Option<Hse>,
    pub sys: Sysclk,

    pub pll: Option<Pll>,

    pub ahb_pre: AHBPrescaler,
    pub apb1_pre: APBPrescaler,
    /// Per-peripheral kernel clock selection muxes
    pub mux: super::mux::ClockMux,

    // pub ls: super::LsConfig,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            hsi: Some(Hertz::mhz(8)),
            hse: None,
            sys: Sysclk::HSI,
            pll: None,
            ahb_pre: AHBPrescaler::DIV1,
            apb1_pre: APBPrescaler::DIV1,
            // ls: Default::default(),
            mux: Default::default(),
        }
    }
}

/// Initialize and Set the clock frequencies
pub(crate) unsafe fn init(config: Config) {
    // Turn on the HSI
    RCC.cr().modify(|w| w.set_hsion(true));
    if let Some(value) = config.hsi {
        let val = value.0;
        let (fs_val, trim_addr): (HsiFs, usize) = match val {
            4_000_000u32 => (HsiFs::HSI_4MHZ, 0x1FFF_0F00),
            8_000_000u32 => (HsiFs::HSI_8MHZ, 0x1FFF_0F04),
            16_000_000u32 => (HsiFs::HSI_16MHZ, 0x1FFF_0F08),
            22_120_000u32 => (HsiFs::HSI_22_12MHZ, 0x1FFF_0F0C),
            24_000_000u32 => (HsiFs::HSI_24MHZ, 0x1FFF_0F10),
            _ => panic!("Unsupported HSI frequency"),
        };
        let trim_val = (unsafe { *(trim_addr as *const u32) } & 0x1FFF ) as u16;
        RCC.icscr().modify(|w| {w.set_hsi_fs(fs_val); w.set_hsi_trim(trim_val);});
    };
    while !RCC.cr().read().hsirdy() {}

    // Use the HSI clock as system clock during the actual clock setup
    RCC.cfgr().modify(|w| w.set_sw(Sysclk::HSI));
    while RCC.cfgr().read().sws() != Sysclk::HSI {}

    // Configure HSI
    let hsi = config.hsi;

    // Configure HSE
    let hse = match config.hse {
        None => {
            RCC.cr().modify(|w| w.set_hseon(false));
            None
        }
        Some(hse) => {
            match hse.mode {
                HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)),
                HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)),
            }

            RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
            RCC.cr().modify(|w| w.set_hseon(true));
            while !RCC.cr().read().hserdy() {}
            Some(hse.freq)
        }
    };
    // Configure PLL
    let pll = match config.pll {
        None => None,
        Some(pll) => {  
        let (src_val, src_freq) = match pll.src {
            PllSource::HSE => (Pllsrc::HSE, unwrap!(hse)),
            PllSource::HSI => (Pllsrc::HSI, unwrap!(hsi)),
        };
        let out_freq = src_freq * 2u8;
        assert!(max::PLL_IN.contains(&src_freq));
        // assert!(max::PLL_OUT.contains(&pll.src.out_freq(pll.mul)));

        RCC.cr().modify(|w| w.set_pllon(false));
        while RCC.cr().read().pllrdy() {}

        RCC.pllcfgr().modify(|w| w.set_pllsrc(src_val));
        RCC.cr().modify(|w| w.set_pllon(true));
        cortex_m::asm::delay(1_000);
        while !RCC.cr().read().pllrdy() {}
        Some(out_freq)
        }
    };

    // let usb = match pll {
    //     Some(Hertz(72_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1_5),
    //     Some(Hertz(48_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1),
    //     _ => None,
    // }
    // .map(|usbpre| {
    //     RCC.cfgr().modify(|w| w.set_usbpre(usbpre));
    //     Hertz(48_000_000)
    // });

    // Configure sysclk
    let sys = match config.sys {
        Sysclk::HSI => unwrap!(hsi),
        Sysclk::HSE => unwrap!(hse),
        Sysclk::PLL => unwrap!(pll),
        _ => unreachable!(),
    };

    let hclk1 = sys / config.ahb_pre;
    let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk1, config.apb1_pre);

    // assert!(max::HCLK.contains(&hclk));
    // assert!(max::PCLK.contains(&pclk));

    // // Set latency based on HCLK frquency
    // let latency = match hclk.0 {
    //     ..=24_000_000 => Latency::WS0,
    //     ..=48_000_000 => Latency::WS1,
    //     _ => Latency::WS2,
    // };

    // FLASH.acr().modify(|w| {
    //     w.set_latency(latency);
    //     // RM0316: "The prefetch buffer must be kept on when using a prescaler
    //     // different from 1 on the AHB clock.", "Half-cycle access cannot be
    //     // used when there is a prescaler different from 1 on the AHB clock"
    //     if config.ahb_pre != AHBPrescaler::DIV1 {
    //         w.set_hlfcya(false);
    //         w.set_prftbe(true);
    //     }
    // });

    // Temporarily: set flash latency
    if hclk1.0 > 24_000_000 {
        unsafe {
            let acr_reg = 0x4002_2000 as *mut u32;
            let value = acr_reg.read_volatile() | 0x1;
            acr_reg.write_volatile(value);
        }
    }

    // Set prescalers
    // CFGR has been written before (PLL, PLL48) don't overwrite these settings
    RCC.cfgr().modify(|w| {
        w.set_ppre(config.apb1_pre);
        w.set_hpre(config.ahb_pre);
    });

    // Wait for the new prescalers to kick in
    // "The clocks are divided with the new prescaler factor from
    //  1 to 16 AHB cycles after write"
    cortex_m::asm::delay(16);

    // CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings
    RCC.cfgr().modify(|w| w.set_sw(config.sys));
    while RCC.cfgr().read().sws() != config.sys {}

    // Disable HSI if not used
    if hsi == None {
        RCC.cr().modify(|w| w.set_hsion(false));
    }

    // let rtc = config.ls.init();

    /*
    TODO: Maybe add something like this to clock_mux? How can we autogenerate the data for this?
    let hrtim = match config.hrtim {
        // Must be configured after the bus is ready, otherwise it won't work
        HrtimClockSource::BusClk => None,
        HrtimClockSource::PllClk => {
            use crate::pac::rcc::vals::Timsw;

            // Make sure that we're using the PLL
            let pll = unwrap!(pll);
            assert!((pclk2 == pll) || (pclk2 * 2u32 == pll));

            RCC.cfgr3().modify(|w| w.set_hrtim1sw(Timsw::PLL1_P));

            Some(pll * 2u32)
        }
    };
     */

    config.mux.init();

    // set_clocks!(
    //     hsi: hsi,
    //     hse: hse,
    //     pll: pll,
    //     sys: Some(sys),
    //     pclk1: Some(pclk1),
    //     pclk1_tim: Some(pclk1_tim),
    //     hclk1: Some(hclk1),
    //     rtc: rtc,
    //     // usb: usb,
    //     lse: None,
    // );

    let clocks = crate::rcc::Clocks {
        hclk1: Some(hclk1).into(),
        pclk1: Some(pclk1).into(),
        pclk1_tim: Some(pclk1_tim).into(),
        sys: Some(sys).into(),
        hsi: hsi.into(),
        lse: None.into(),
    };
    crate::rcc::set_freqs(clocks);
}

mod max {
    use core::ops::RangeInclusive;

    use crate::time::Hertz;

    pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000);
    pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000);

    // pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
    // pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);

    // py32f030
    pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(24_000_000);
    // pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(48_000_000);
}