py32_hal/i2c/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
//! Inter-Integrated-Circuit (I2C)
#![macro_use]
mod v1;
use core::future::Future;
use core::iter;
use core::marker::PhantomData;
use embassy_hal_internal::{Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
// use crate::dma::ChannelAndRequest;
use crate::gpio::{AfType, AnyPin, OutputType, SealedPin as _, Speed};
use crate::interrupt::typelevel::Interrupt;
use crate::mode::{Async, Blocking, Mode};
use crate::rcc::{RccInfo, SealedRccPeripheral};
use crate::time::Hertz;
use crate::{interrupt, peripherals};
/// I2C error.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Bus error
Bus,
/// Arbitration lost
Arbitration,
/// ACK not received (either to the address or to a data byte)
Nack,
/// Timeout
Timeout,
/// CRC error
Crc,
/// Overrun error
Overrun,
/// Zero-length transfers are not allowed.
ZeroLengthTransfer,
}
/// I2C config
#[non_exhaustive]
#[derive(Copy, Clone)]
pub struct Config {
// /// Enable internal pullup on SDA.
// ///
// /// Using external pullup resistors is recommended for I2C. If you do
// /// have external pullups you should not enable this.
// pub sda_pullup: bool,
// /// Enable internal pullup on SCL.
// ///
// /// Using external pullup resistors is recommended for I2C. If you do
// /// have external pullups you should not enable this.
// pub scl_pullup: bool,
/// Timeout.
#[cfg(feature = "time")]
pub timeout: embassy_time::Duration,
}
impl Default for Config {
fn default() -> Self {
Self {
// sda_pullup: false,
// scl_pullup: false,
#[cfg(feature = "time")]
timeout: embassy_time::Duration::from_millis(1000),
}
}
}
impl Config {
fn scl_af(&self) -> AfType {
return AfType::output(OutputType::OpenDrain, Speed::Medium);
// return AfType::output_pull(
// OutputType::OpenDrain,
// Speed::Medium,
// match self.scl_pullup {
// true => Pull::Up,
// false => Pull::None,
// },
// );
}
fn sda_af(&self) -> AfType {
return AfType::output(OutputType::OpenDrain, Speed::Medium);
// return AfType::output_pull(
// OutputType::OpenDrain,
// Speed::Medium,
// match self.sda_pullup {
// true => Pull::Up,
// false => Pull::None,
// },
// );
}
}
/// I2C driver.
pub struct I2c<'d, M: Mode> {
info: &'static Info,
_state: &'static State,
kernel_clock: Hertz,
scl: Option<PeripheralRef<'d, AnyPin>>,
sda: Option<PeripheralRef<'d, AnyPin>>,
// tx_dma: Option<ChannelAndRequest<'d>>,
// rx_dma: Option<ChannelAndRequest<'d>>,
#[cfg(feature = "time")]
timeout: Duration,
_phantom: PhantomData<M>,
}
impl<'d> I2c<'d, Async> {
/// Create a new I2C driver.
pub fn new<T: Instance>(
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::GlobalInterrupt, GlobalInterruptHandler<T>>
+ 'd,
// tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
// rx_dma: impl Peripheral<P = impl RxDma<T>> + 'd,
freq: Hertz,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(scl, config.scl_af()),
new_pin!(sda, config.sda_af()),
// new_dma!(tx_dma),
// new_dma!(rx_dma),
freq,
config,
)
}
}
impl<'d> I2c<'d, Blocking> {
/// Create a new blocking I2C driver.
pub fn new_blocking<T: Instance>(
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
freq: Hertz,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(scl, config.scl_af()),
new_pin!(sda, config.sda_af()),
// None,
// None,
freq,
config,
)
}
}
impl<'d, M: Mode> I2c<'d, M> {
/// Create a new I2C driver.
fn new_inner<T: Instance>(
_peri: impl Peripheral<P = T> + 'd,
scl: Option<PeripheralRef<'d, AnyPin>>,
sda: Option<PeripheralRef<'d, AnyPin>>,
// tx_dma: Option<ChannelAndRequest<'d>>,
// rx_dma: Option<ChannelAndRequest<'d>>,
freq: Hertz,
config: Config,
) -> Self {
unsafe { T::GlobalInterrupt::enable() };
let mut this = Self {
info: T::info(),
_state: T::state(),
kernel_clock: T::frequency(),
scl,
sda,
// tx_dma,
// rx_dma,
#[cfg(feature = "time")]
timeout: config.timeout,
_phantom: PhantomData,
};
this.enable_and_init(freq, config);
this
}
fn enable_and_init(&mut self, freq: Hertz, config: Config) {
self.info.rcc.enable_and_reset();
self.init(freq, config);
}
fn timeout(&self) -> Timeout {
Timeout {
#[cfg(feature = "time")]
deadline: Instant::now() + self.timeout,
}
}
}
impl<'d, M: Mode> Drop for I2c<'d, M> {
fn drop(&mut self) {
self.scl.as_ref().map(|x| x.set_as_disconnected());
self.sda.as_ref().map(|x| x.set_as_disconnected());
self.info.rcc.disable()
}
}
#[derive(Copy, Clone)]
struct Timeout {
#[cfg(feature = "time")]
deadline: Instant,
}
#[allow(dead_code)]
impl Timeout {
#[inline]
fn check(self) -> Result<(), Error> {
#[cfg(feature = "time")]
if Instant::now() > self.deadline {
return Err(Error::Timeout);
}
Ok(())
}
#[inline]
fn with<R>(self, fut: impl Future<Output = Result<R, Error>>) -> impl Future<Output = Result<R, Error>> {
#[cfg(feature = "time")]
{
use futures_util::FutureExt;
embassy_futures::select::select(embassy_time::Timer::at(self.deadline), fut).map(|r| match r {
embassy_futures::select::Either::First(_) => Err(Error::Timeout),
embassy_futures::select::Either::Second(r) => r,
})
}
#[cfg(not(feature = "time"))]
fut
}
}
struct State {
#[allow(unused)]
waker: AtomicWaker,
}
impl State {
const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
struct Info {
regs: crate::pac::i2c::I2c,
rcc: RccInfo,
}
peri_trait!(
irqs: [GlobalInterrupt],
);
pin_trait!(SclPin, Instance);
pin_trait!(SdaPin, Instance);
// dma_trait!(RxDma, Instance);
// dma_trait!(TxDma, Instance);
/// Global interrupt handler.
pub struct GlobalInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::GlobalInterrupt> for GlobalInterruptHandler<T> {
unsafe fn on_interrupt() {
v1::on_interrupt::<T>()
}
}
foreach_peripheral!(
(i2c, $inst:ident) => {
#[allow(private_interfaces)]
impl SealedInstance for peripherals::$inst {
fn info() -> &'static Info {
static INFO: Info = Info{
regs: crate::pac::$inst,
rcc: crate::peripherals::$inst::RCC_INFO,
};
&INFO
}
fn state() -> &'static State {
static STATE: State = State::new();
&STATE
}
}
impl Instance for peripherals::$inst {
type GlobalInterrupt = crate::_generated::peripheral_interrupts::$inst::GLOBAL;
}
};
);
impl<'d, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, M> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, M> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, M> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, M> {
type Error = Error;
}
impl<'d, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, M> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
self.blocking_transaction(address, operations)
}
}
// impl<'d> embedded_hal_async::i2c::I2c for I2c<'d, Async> {
// async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
// self.read(address, read).await
// }
// async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
// self.write(address, write).await
// }
// async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
// self.write_read(address, write, read).await
// }
// async fn transaction(
// &mut self,
// address: u8,
// operations: &mut [embedded_hal_1::i2c::Operation<'_>],
// ) -> Result<(), Self::Error> {
// self.transaction(address, operations).await
// }
// }
/// Frame type in I2C transaction.
///
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
/// ACK or NACK after the last byte received.
///
/// For write operations, the following options are identical because they differ only in the (N)ACK
/// treatment relevant for read operations:
///
/// - `FirstFrame` and `FirstAndNextFrame`
/// - `NextFrame` and `LastFrameNoStop`
///
/// Abbreviations used below:
///
/// - `ST` = start condition
/// - `SR` = repeated start condition
/// - `SP` = stop condition
/// - `ACK`/`NACK` = last byte in read operation
#[derive(Copy, Clone)]
#[allow(dead_code)]
enum FrameOptions {
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in transaction and also last frame overall.
FirstAndLastFrame,
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
/// not the last frame overall.
FirstFrame,
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
/// frame in a read operation.
FirstAndNextFrame,
/// `[ACK]` Middle frame in a read operation (neither first nor last).
NextFrame,
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
LastFrame,
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
LastFrameNoStop,
}
#[allow(dead_code)]
impl FrameOptions {
/// Sends start or repeated start condition before transfer.
fn send_start(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
}
}
/// Sends stop condition after transfer.
fn send_stop(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::LastFrame => true,
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
}
}
/// Sends NACK after last byte received, indicating end of read operation.
fn send_nack(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
Self::FirstAndNextFrame | Self::NextFrame => false,
}
}
}
/// Iterates over operations in transaction.
///
/// Returns necessary frame options for each operation to uphold the [transaction contract] and have
/// the right start/stop/(N)ACK conditions on the wire.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
#[allow(dead_code)]
fn operation_frames<'a, 'b: 'a>(
operations: &'a mut [embedded_hal_1::i2c::Operation<'b>],
) -> Result<impl IntoIterator<Item = (&'a mut embedded_hal_1::i2c::Operation<'b>, FrameOptions)>, Error> {
use embedded_hal_1::i2c::Operation::{Read, Write};
// Check empty read buffer before starting transaction. Otherwise, we would risk halting with an
// error in the middle of the transaction.
//
// In principle, we could allow empty read frames within consecutive read operations, as long as
// at least one byte remains in the final (merged) read operation, but that makes the logic more
// complicated and error-prone.
if operations.iter().any(|op| match op {
Read(read) => read.is_empty(),
Write(_) => false,
}) {
return Err(Error::Overrun);
}
let mut operations = operations.iter_mut().peekable();
let mut next_first_frame = true;
Ok(iter::from_fn(move || {
let Some(op) = operations.next() else {
return None;
};
// Is `op` first frame of its type?
let first_frame = next_first_frame;
let next_op = operations.peek();
// Get appropriate frame options as combination of the following properties:
//
// - For each first operation of its type, generate a (repeated) start condition.
// - For the last operation overall in the entire transaction, generate a stop condition.
// - For read operations, check the next operation: if it is also a read operation, we merge
// these and send ACK for all bytes in the current operation; send NACK only for the final
// read operation's last byte (before write or end of entire transaction) to indicate last
// byte read and release the bus for transmission of the bus master's next byte (or stop).
//
// We check the third property unconditionally, i.e. even for write opeartions. This is okay
// because the resulting frame options are identical for write operations.
let frame = match (first_frame, next_op) {
(true, None) => FrameOptions::FirstAndLastFrame,
(true, Some(Read(_))) => FrameOptions::FirstAndNextFrame,
(true, Some(Write(_))) => FrameOptions::FirstFrame,
//
(false, None) => FrameOptions::LastFrame,
(false, Some(Read(_))) => FrameOptions::NextFrame,
(false, Some(Write(_))) => FrameOptions::LastFrameNoStop,
};
// Pre-calculate if `next_op` is the first operation of its type. We do this here and not at
// the beginning of the loop because we hand out `op` as iterator value and cannot access it
// anymore in the next iteration.
next_first_frame = match (&op, next_op) {
(_, None) => false,
(Read(_), Some(Write(_))) | (Write(_), Some(Read(_))) => true,
(Read(_), Some(Read(_))) | (Write(_), Some(Write(_))) => false,
};
Some((op, frame))
}))
}