py32_hal/timer/simple_pwm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
//! Simple PWM driver.
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use super::low_level::{CountingMode, OutputCompareMode, OutputPolarity, Timer};
use super::{Channel, Channel1Pin, Channel2Pin, Channel3Pin, Channel4Pin, GeneralInstance4Channel};
use crate::gpio::{AfType, AnyPin, OutputType, Speed};
use crate::time::Hertz;
use crate::Peripheral;
/// Channel 1 marker type.
pub enum Ch1 {}
/// Channel 2 marker type.
pub enum Ch2 {}
/// Channel 3 marker type.
pub enum Ch3 {}
/// Channel 4 marker type.
pub enum Ch4 {}
/// PWM pin wrapper.
///
/// This wraps a pin to make it usable with PWM.
pub struct PwmPin<'d, T, C> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(T, C)>,
}
macro_rules! channel_impl {
($new_chx:ident, $channel:ident, $pin_trait:ident) => {
impl<'d, T: GeneralInstance4Channel> PwmPin<'d, T, $channel> {
#[doc = concat!("Create a new ", stringify!($channel), " PWM pin instance.")]
pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<T>> + 'd, output_type: OutputType) -> Self {
into_ref!(pin);
critical_section::with(|_| {
pin.set_low();
pin.set_as_af(pin.af_num(), AfType::output(output_type, Speed::VeryHigh));
});
PwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
};
}
channel_impl!(new_ch1, Ch1, Channel1Pin);
channel_impl!(new_ch2, Ch2, Channel2Pin);
channel_impl!(new_ch3, Ch3, Channel3Pin);
channel_impl!(new_ch4, Ch4, Channel4Pin);
/// A single channel of a pwm, obtained from [`SimplePwm::split`],
/// [`SimplePwm::channel`], [`SimplePwm::ch1`], etc.
///
/// It is not possible to change the pwm frequency because
/// the frequency configuration is shared with all four channels.
pub struct SimplePwmChannel<'d, T: GeneralInstance4Channel> {
timer: ManuallyDrop<Timer<'d, T>>,
channel: Channel,
}
// TODO: check for RMW races
impl<'d, T: GeneralInstance4Channel> SimplePwmChannel<'d, T> {
/// Enable the given channel.
pub fn enable(&mut self) {
self.timer.enable_channel(self.channel, true);
}
/// Disable the given channel.
pub fn disable(&mut self) {
self.timer.enable_channel(self.channel, false);
}
/// Check whether given channel is enabled
pub fn is_enabled(&self) -> bool {
self.timer.get_channel_enable_state(self.channel)
}
/// Get max duty value.
///
/// This value depends on the configured frequency and the timer's clock rate from RCC.
pub fn max_duty_cycle(&self) -> u16 {
let max = self.timer.get_max_compare_value();
assert!(max < u16::MAX as u32);
max as u16 + 1
}
/// Set the duty for a given channel.
///
/// The value ranges from 0 for 0% duty, to [`max_duty_cycle`](Self::max_duty_cycle) for 100% duty, both included.
pub fn set_duty_cycle(&mut self, duty: u16) {
assert!(duty <= (*self).max_duty_cycle());
self.timer.set_compare_value(self.channel, duty.into())
}
/// Set the duty cycle to 0%, or always inactive.
pub fn set_duty_cycle_fully_off(&mut self) {
self.set_duty_cycle(0);
}
/// Set the duty cycle to 100%, or always active.
pub fn set_duty_cycle_fully_on(&mut self) {
self.set_duty_cycle((*self).max_duty_cycle());
}
/// Set the duty cycle to `num / denom`.
///
/// The caller is responsible for ensuring that `num` is less than or equal to `denom`,
/// and that `denom` is not zero.
pub fn set_duty_cycle_fraction(&mut self, num: u16, denom: u16) {
assert!(denom != 0);
assert!(num <= denom);
let duty = u32::from(num) * u32::from(self.max_duty_cycle()) / u32::from(denom);
// This is safe because we know that `num <= denom`, so `duty <= self.max_duty_cycle()` (u16)
#[allow(clippy::cast_possible_truncation)]
self.set_duty_cycle(duty as u16);
}
/// Set the duty cycle to `percent / 100`
///
/// The caller is responsible for ensuring that `percent` is less than or equal to 100.
pub fn set_duty_cycle_percent(&mut self, percent: u8) {
self.set_duty_cycle_fraction(u16::from(percent), 100)
}
/// Get the duty for a given channel.
///
/// The value ranges from 0 for 0% duty, to [`max_duty_cycle`](Self::max_duty_cycle) for 100% duty, both included.
pub fn current_duty_cycle(&self) -> u16 {
unwrap!(self.timer.get_compare_value(self.channel).try_into())
}
/// Set the output polarity for a given channel.
pub fn set_polarity(&mut self, polarity: OutputPolarity) {
self.timer.set_output_polarity(self.channel, polarity);
}
/// Set the output compare mode for a given channel.
pub fn set_output_compare_mode(&mut self, mode: OutputCompareMode) {
self.timer.set_output_compare_mode(self.channel, mode);
}
}
/// A group of four [`SimplePwmChannel`]s, obtained from [`SimplePwm::split`].
pub struct SimplePwmChannels<'d, T: GeneralInstance4Channel> {
/// Channel 1
pub ch1: SimplePwmChannel<'d, T>,
/// Channel 2
pub ch2: SimplePwmChannel<'d, T>,
/// Channel 3
pub ch3: SimplePwmChannel<'d, T>,
/// Channel 4
pub ch4: SimplePwmChannel<'d, T>,
}
/// Simple PWM driver.
pub struct SimplePwm<'d, T: GeneralInstance4Channel> {
inner: Timer<'d, T>,
}
impl<'d, T: GeneralInstance4Channel> SimplePwm<'d, T> {
/// Create a new simple PWM driver.
pub fn new(
tim: impl Peripheral<P = T> + 'd,
_ch1: Option<PwmPin<'d, T, Ch1>>,
_ch2: Option<PwmPin<'d, T, Ch2>>,
_ch3: Option<PwmPin<'d, T, Ch3>>,
_ch4: Option<PwmPin<'d, T, Ch4>>,
freq: Hertz,
counting_mode: CountingMode,
) -> Self {
Self::new_inner(tim, freq, counting_mode)
}
fn new_inner(tim: impl Peripheral<P = T> + 'd, freq: Hertz, counting_mode: CountingMode) -> Self {
let mut this = Self { inner: Timer::new(tim) };
this.inner.set_counting_mode(counting_mode);
this.set_frequency(freq);
this.inner.enable_outputs(); // Required for advanced timers, see GeneralInstance4Channel for details
this.inner.start();
[Channel::Ch1, Channel::Ch2, Channel::Ch3, Channel::Ch4]
.iter()
.for_each(|&channel| {
this.inner.set_output_compare_mode(channel, OutputCompareMode::PwmMode1);
this.inner.set_output_compare_preload(channel, true);
});
this
}
/// Get a single channel
///
/// If you need to use multiple channels, use [`Self::split`].
pub fn channel(&mut self, channel: Channel) -> SimplePwmChannel<'_, T> {
SimplePwmChannel {
timer: unsafe { self.inner.clone_unchecked() },
channel,
}
}
/// Channel 1
///
/// This is just a convenience wrapper around [`Self::channel`].
///
/// If you need to use multiple channels, use [`Self::split`].
pub fn ch1(&mut self) -> SimplePwmChannel<'_, T> {
self.channel(Channel::Ch1)
}
/// Channel 2
///
/// This is just a convenience wrapper around [`Self::channel`].
///
/// If you need to use multiple channels, use [`Self::split`].
pub fn ch2(&mut self) -> SimplePwmChannel<'_, T> {
self.channel(Channel::Ch2)
}
/// Channel 3
///
/// This is just a convenience wrapper around [`Self::channel`].
///
/// If you need to use multiple channels, use [`Self::split`].
pub fn ch3(&mut self) -> SimplePwmChannel<'_, T> {
self.channel(Channel::Ch3)
}
/// Channel 4
///
/// This is just a convenience wrapper around [`Self::channel`].
///
/// If you need to use multiple channels, use [`Self::split`].
pub fn ch4(&mut self) -> SimplePwmChannel<'_, T> {
self.channel(Channel::Ch4)
}
/// Splits a [`SimplePwm`] into four pwm channels.
///
/// This returns all four channels, including channels that
/// aren't configured with a [`PwmPin`].
// TODO: I hate the name "split"
pub fn split(self) -> SimplePwmChannels<'static, T>
where
// must be static because the timer will never be dropped/disabled
'd: 'static,
{
// without this, the timer would be disabled at the end of this function
let timer = ManuallyDrop::new(self.inner);
let ch = |channel| SimplePwmChannel {
timer: unsafe { timer.clone_unchecked() },
channel,
};
SimplePwmChannels {
ch1: ch(Channel::Ch1),
ch2: ch(Channel::Ch2),
ch3: ch(Channel::Ch3),
ch4: ch(Channel::Ch4),
}
}
/// Set PWM frequency.
///
/// Note: when you call this, the max duty value changes, so you will have to
/// call `set_duty` on all channels with the duty calculated based on the new max duty.
pub fn set_frequency(&mut self, freq: Hertz) {
// TODO: prevent ARR = u16::MAX?
let multiplier = if self.inner.get_counting_mode().is_center_aligned() {
2u8
} else {
1u8
};
self.inner.set_frequency(freq * multiplier);
}
/// Get max duty value.
///
/// This value depends on the configured frequency and the timer's clock rate from RCC.
pub fn max_duty_cycle(&self) -> u16 {
let max = self.inner.get_max_compare_value();
assert!(max < u16::MAX as u32);
max as u16 + 1
}
// /// Generate a sequence of PWM waveform
// ///
// /// Note:
// /// you will need to provide corresponding TIMx_UP DMA channel to use this method.
// pub async fn waveform_up(
// &mut self,
// dma: impl Peripheral<P = impl super::UpDma<T>>,
// channel: Channel,
// duty: &[u16],
// ) {
// into_ref!(dma);
// #[allow(clippy::let_unit_value)] // eg. stm32f334
// let req = dma.request();
// let original_duty_state = self.channel(channel).current_duty_cycle();
// let original_enable_state = self.channel(channel).is_enabled();
// let original_update_dma_state = self.inner.get_update_dma_state();
// if !original_update_dma_state {
// self.inner.enable_update_dma(true);
// }
// if !original_enable_state {
// self.channel(channel).enable();
// }
// unsafe {
// #[cfg(not(any(bdma, gpdma)))]
// use crate::dma::{Burst, FifoThreshold};
// use crate::dma::{Transfer, TransferOptions};
// let dma_transfer_option = TransferOptions {
// #[cfg(not(any(bdma, gpdma)))]
// fifo_threshold: Some(FifoThreshold::Full),
// #[cfg(not(any(bdma, gpdma)))]
// mburst: Burst::Incr8,
// ..Default::default()
// };
// Transfer::new_write(
// &mut dma,
// req,
// duty,
// self.inner.regs_1ch().ccr(channel.index()).as_ptr() as *mut _,
// dma_transfer_option,
// )
// .await
// };
// // restore output compare state
// if !original_enable_state {
// self.channel(channel).disable();
// }
// self.channel(channel).set_duty_cycle(original_duty_state);
// // Since DMA is closed before timer update event trigger DMA is turn off,
// // this can almost always trigger a DMA FIFO error.
// //
// // optional TODO:
// // clean FEIF after disable UDE
// if !original_update_dma_state {
// self.inner.enable_update_dma(false);
// }
// }
}
// macro_rules! impl_waveform_chx {
// ($fn_name:ident, $dma_ch:ident, $cc_ch:ident) => {
// impl<'d, T: GeneralInstance4Channel> SimplePwm<'d, T> {
// /// Generate a sequence of PWM waveform
// ///
// /// Note:
// /// you will need to provide corresponding TIMx_CHy DMA channel to use this method.
// pub async fn $fn_name(&mut self, dma: impl Peripheral<P = impl super::$dma_ch<T>>, duty: &[u16]) {
// use crate::pac::timer::vals::Ccds;
// into_ref!(dma);
// #[allow(clippy::let_unit_value)] // eg. stm32f334
// let req = dma.request();
// let cc_channel = Channel::$cc_ch;
// let original_duty_state = self.channel(cc_channel).current_duty_cycle();
// let original_enable_state = self.channel(cc_channel).is_enabled();
// let original_cc_dma_on_update = self.inner.get_cc_dma_selection() == Ccds::ONUPDATE;
// let original_cc_dma_enabled = self.inner.get_cc_dma_enable_state(cc_channel);
// // redirect CC DMA request onto Update Event
// if !original_cc_dma_on_update {
// self.inner.set_cc_dma_selection(Ccds::ONUPDATE)
// }
// if !original_cc_dma_enabled {
// self.inner.set_cc_dma_enable_state(cc_channel, true);
// }
// if !original_enable_state {
// self.channel(cc_channel).enable();
// }
// unsafe {
// #[cfg(not(any(bdma, gpdma)))]
// use crate::dma::{Burst, FifoThreshold};
// use crate::dma::{Transfer, TransferOptions};
// let dma_transfer_option = TransferOptions {
// #[cfg(not(any(bdma, gpdma)))]
// fifo_threshold: Some(FifoThreshold::Full),
// #[cfg(not(any(bdma, gpdma)))]
// mburst: Burst::Incr8,
// ..Default::default()
// };
// Transfer::new_write(
// &mut dma,
// req,
// duty,
// self.inner.regs_gp16().ccr(cc_channel.index()).as_ptr() as *mut _,
// dma_transfer_option,
// )
// .await
// };
// // restore output compare state
// if !original_enable_state {
// self.channel(cc_channel).disable();
// }
// self.channel(cc_channel).set_duty_cycle(original_duty_state);
// // Since DMA is closed before timer Capture Compare Event trigger DMA is turn off,
// // this can almost always trigger a DMA FIFO error.
// //
// // optional TODO:
// // clean FEIF after disable UDE
// if !original_cc_dma_enabled {
// self.inner.set_cc_dma_enable_state(cc_channel, false);
// }
// if !original_cc_dma_on_update {
// self.inner.set_cc_dma_selection(Ccds::ONCOMPARE)
// }
// }
// }
// };
// }
// impl_waveform_chx!(waveform_ch1, Ch1Dma, Ch1);
// impl_waveform_chx!(waveform_ch2, Ch2Dma, Ch2);
// impl_waveform_chx!(waveform_ch3, Ch3Dma, Ch3);
// impl_waveform_chx!(waveform_ch4, Ch4Dma, Ch4);
impl<'d, T: GeneralInstance4Channel> embedded_hal_1::pwm::ErrorType for SimplePwmChannel<'d, T> {
type Error = core::convert::Infallible;
}
impl<'d, T: GeneralInstance4Channel> embedded_hal_1::pwm::SetDutyCycle for SimplePwmChannel<'d, T> {
fn max_duty_cycle(&self) -> u16 {
self.max_duty_cycle()
}
fn set_duty_cycle(&mut self, duty: u16) -> Result<(), Self::Error> {
self.set_duty_cycle(duty);
Ok(())
}
fn set_duty_cycle_fully_off(&mut self) -> Result<(), Self::Error> {
self.set_duty_cycle_fully_off();
Ok(())
}
fn set_duty_cycle_fully_on(&mut self) -> Result<(), Self::Error> {
self.set_duty_cycle_fully_on();
Ok(())
}
fn set_duty_cycle_fraction(&mut self, num: u16, denom: u16) -> Result<(), Self::Error> {
self.set_duty_cycle_fraction(num, denom);
Ok(())
}
fn set_duty_cycle_percent(&mut self, percent: u8) -> Result<(), Self::Error> {
self.set_duty_cycle_percent(percent);
Ok(())
}
}
impl<'d, T: GeneralInstance4Channel> embedded_hal_02::Pwm for SimplePwm<'d, T> {
type Channel = Channel;
type Time = Hertz;
type Duty = u32;
fn disable(&mut self, channel: Self::Channel) {
self.inner.enable_channel(channel, false);
}
fn enable(&mut self, channel: Self::Channel) {
self.inner.enable_channel(channel, true);
}
fn get_period(&self) -> Self::Time {
self.inner.get_frequency()
}
fn get_duty(&self, channel: Self::Channel) -> Self::Duty {
self.inner.get_compare_value(channel)
}
fn get_max_duty(&self) -> Self::Duty {
self.inner.get_max_compare_value() + 1
}
fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty) {
assert!(duty <= self.max_duty_cycle() as u32);
self.inner.set_compare_value(channel, duty)
}
fn set_period<P>(&mut self, period: P)
where
P: Into<Self::Time>,
{
self.inner.set_frequency(period.into());
}
}