py32_hal/rcc/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
use core::mem::MaybeUninit;
use critical_section::CriticalSection;
use crate::pac::RCC;
// pub use crate::_generated::{mux, Clocks};
pub use crate::_generated::mux;
use crate::time::Hertz;
mod f030;
pub use f030::*;
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Clocks {
pub hclk1: crate::time::MaybeHertz,
pub pclk1: crate::time::MaybeHertz,
pub pclk1_tim: crate::time::MaybeHertz,
// pub pclk2: crate::time::MaybeHertz,
// pub pclk2_tim: crate::time::MaybeHertz,
pub sys: crate::time::MaybeHertz,
pub hsi: crate::time::MaybeHertz,
pub lse: crate::time::MaybeHertz,
// pub rtc: crate::time::MaybeHertz,
// pub sys: Option<crate::time::Hertz>,
// pub usb: Option<crate::time::Hertz>,
}
// #[cfg(feature = "low-power")]
// /// Must be written within a critical section
// ///
// /// May be read without a critical section
// pub(crate) static mut REFCOUNT_STOP1: u32 = 0;
// #[cfg(feature = "low-power")]
// /// Must be written within a critical section
// ///
// /// May be read without a critical section
// pub(crate) static mut REFCOUNT_STOP2: u32 = 0;
/// Frozen clock frequencies
///
/// The existence of this value indicates that the clock configuration can no longer be changed
static mut CLOCK_FREQS: MaybeUninit<Clocks> = MaybeUninit::uninit();
/// Sets the clock frequencies
///
/// Safety: Sets a mutable global.
pub(crate) unsafe fn set_freqs(freqs: Clocks) {
debug!("rcc: {:?}", freqs);
CLOCK_FREQS = MaybeUninit::new(freqs);
}
/// Safety: Reads a mutable global.
pub(crate) unsafe fn get_freqs() -> &'static Clocks {
(*core::ptr::addr_of_mut!(CLOCK_FREQS)).assume_init_ref()
}
pub(crate) trait SealedRccPeripheral {
fn frequency() -> Hertz;
const RCC_INFO: RccInfo;
}
#[allow(private_bounds)]
pub trait RccPeripheral: SealedRccPeripheral + 'static {}
/// Runtime information necessary to reset, enable and disable a peripheral.
pub(crate) struct RccInfo {
/// Offset in 32-bit words of the xxxRSTR register into the RCC register block, or 0xff if the
/// peripheral has no reset bit (we don't use an `Option` to save one byte of storage).
reset_offset_or_0xff: u8,
/// Position of the xxxRST bit within the xxxRSTR register (0..=31).
reset_bit: u8,
/// Offset in 32-bit words of the xxxENR register into the RCC register block.
enable_offset: u8,
/// Position of the xxxEN bit within the xxxENR register (0..=31).
enable_bit: u8,
/// If this peripheral shares the same xxxRSTR bit and xxxEN bit with other peripherals, we
/// maintain a refcount in `crate::_generated::REFCOUNTS` at this index. If the bit is not
/// shared, this is 0xff (we don't use an `Option` to save one byte of storage).
refcount_idx_or_0xff: u8,
// /// Stop mode of the peripheral, used to maintain `REFCOUNT_STOP1` and `REFCOUNT_STOP2`.
// #[cfg(feature = "low-power")]
// stop_mode: StopMode,
}
// #[cfg(feature = "low-power")]
// #[allow(dead_code)]
// pub(crate) enum StopMode {
// Standby,
// Stop2,
// Stop1,
// }
impl RccInfo {
/// Safety:
/// - `reset_offset_and_bit`, if set, must correspond to valid xxxRST bit
/// - `enable_offset_and_bit` must correspond to valid xxxEN bit
/// - `refcount_idx`, if set, must correspond to valid refcount in `_generated::REFCOUNTS`
/// - `stop_mode` must be valid
pub(crate) const unsafe fn new(
reset_offset_and_bit: Option<(u8, u8)>,
enable_offset_and_bit: (u8, u8),
refcount_idx: Option<u8>,
// #[cfg(feature = "low-power")] stop_mode: StopMode,
) -> Self {
let (reset_offset_or_0xff, reset_bit) = match reset_offset_and_bit {
Some((offset, bit)) => (offset, bit),
None => (0xff, 0xff),
};
let (enable_offset, enable_bit) = enable_offset_and_bit;
let refcount_idx_or_0xff = match refcount_idx {
Some(idx) => idx,
None => 0xff,
};
Self {
reset_offset_or_0xff,
reset_bit,
enable_offset,
enable_bit,
refcount_idx_or_0xff,
// #[cfg(feature = "low-power")]
// stop_mode,
}
}
// TODO: should this be `unsafe`?
pub(crate) fn enable_and_reset_with_cs(&self, _cs: CriticalSection) {
if self.refcount_idx_or_0xff != 0xff {
let refcount_idx = self.refcount_idx_or_0xff as usize;
// Use .get_mut instead of []-operator so that we control how bounds checks happen.
// Otherwise, core::fmt will be pulled in here in order to format the integer in the
// out-of-bounds error.
if let Some(refcount) =
unsafe { (*core::ptr::addr_of_mut!(crate::_generated::REFCOUNTS)).get_mut(refcount_idx) }
{
*refcount += 1;
if *refcount > 1 {
return;
}
} else {
panic!("refcount_idx out of bounds: {}", refcount_idx)
}
}
// #[cfg(feature = "low-power")]
// match self.stop_mode {
// StopMode::Standby => {}
// StopMode::Stop2 => unsafe {
// REFCOUNT_STOP2 += 1;
// },
// StopMode::Stop1 => unsafe {
// REFCOUNT_STOP1 += 1;
// },
// }
// set the xxxRST bit
let reset_ptr = self.reset_ptr();
if let Some(reset_ptr) = reset_ptr {
unsafe {
let val = reset_ptr.read_volatile();
reset_ptr.write_volatile(val | 1u32 << self.reset_bit);
}
}
// set the xxxEN bit
let enable_ptr = self.enable_ptr();
unsafe {
let val = enable_ptr.read_volatile();
enable_ptr.write_volatile(val | 1u32 << self.enable_bit);
}
// we must wait two peripheral clock cycles before the clock is active
// this seems to work, but might be incorrect
// see http://efton.sk/STM32/gotcha/g183.html
// dummy read (like in the ST HALs)
let _ = unsafe { enable_ptr.read_volatile() };
// DSB for good measure
cortex_m::asm::dsb();
// clear the xxxRST bit
if let Some(reset_ptr) = reset_ptr {
unsafe {
let val = reset_ptr.read_volatile();
reset_ptr.write_volatile(val & !(1u32 << self.reset_bit));
}
}
}
// TODO: should this be `unsafe`?
pub(crate) fn disable_with_cs(&self, _cs: CriticalSection) {
if self.refcount_idx_or_0xff != 0xff {
let refcount_idx = self.refcount_idx_or_0xff as usize;
// Use .get_mut instead of []-operator so that we control how bounds checks happen.
// Otherwise, core::fmt will be pulled in here in order to format the integer in the
// out-of-bounds error.
if let Some(refcount) =
unsafe { (*core::ptr::addr_of_mut!(crate::_generated::REFCOUNTS)).get_mut(refcount_idx) }
{
*refcount -= 1;
if *refcount > 0 {
return;
}
} else {
panic!("refcount_idx out of bounds: {}", refcount_idx)
}
}
// #[cfg(feature = "low-power")]
// match self.stop_mode {
// StopMode::Standby => {}
// StopMode::Stop2 => unsafe {
// REFCOUNT_STOP2 -= 1;
// },
// StopMode::Stop1 => unsafe {
// REFCOUNT_STOP1 -= 1;
// },
// }
// clear the xxxEN bit
let enable_ptr = self.enable_ptr();
unsafe {
let val = enable_ptr.read_volatile();
enable_ptr.write_volatile(val & !(1u32 << self.enable_bit));
}
}
// TODO: should this be `unsafe`?
pub(crate) fn enable_and_reset(&self) {
critical_section::with(|cs| self.enable_and_reset_with_cs(cs))
}
// TODO: should this be `unsafe`?
pub(crate) fn disable(&self) {
critical_section::with(|cs| self.disable_with_cs(cs))
}
fn reset_ptr(&self) -> Option<*mut u32> {
if self.reset_offset_or_0xff != 0xff {
Some(unsafe { (RCC.as_ptr() as *mut u32).add(self.reset_offset_or_0xff as _) })
} else {
None
}
}
fn enable_ptr(&self) -> *mut u32 {
unsafe { (RCC.as_ptr() as *mut u32).add(self.enable_offset as _) }
}
}
#[allow(unused)]
mod util {
use crate::time::Hertz;
pub fn calc_pclk<D>(hclk: Hertz, ppre: D) -> (Hertz, Hertz)
where
Hertz: core::ops::Div<D, Output = Hertz>,
{
let pclk = hclk / ppre;
let pclk_tim = if hclk == pclk { pclk } else { pclk * 2u32 };
(pclk, pclk_tim)
}
pub fn all_equal<T: Eq>(mut iter: impl Iterator<Item = T>) -> bool {
let Some(x) = iter.next() else { return true };
if !iter.all(|y| y == x) {
return false;
}
true
}
pub fn get_equal<T: Eq>(mut iter: impl Iterator<Item = T>) -> Result<Option<T>, ()> {
let Some(x) = iter.next() else { return Ok(None) };
if !iter.all(|y| y == x) {
return Err(());
}
Ok(Some(x))
}
}
/// Get the kernel clock frequency of the peripheral `T`.
///
/// # Panics
///
/// Panics if the clock is not active.
pub fn frequency<T: RccPeripheral>() -> Hertz {
T::frequency()
}
/// Enables and resets peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn enable_and_reset_with_cs<T: RccPeripheral>(cs: CriticalSection) {
T::RCC_INFO.enable_and_reset_with_cs(cs);
}
/// Disables peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn disable_with_cs<T: RccPeripheral>(cs: CriticalSection) {
T::RCC_INFO.disable_with_cs(cs);
}
/// Enables and resets peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn enable_and_reset<T: RccPeripheral>() {
T::RCC_INFO.enable_and_reset();
}
/// Disables peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn disable<T: RccPeripheral>() {
T::RCC_INFO.disable();
}