py32_hal/rcc/f030.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
// use crate::pac::flash::vals::Latency;
use crate::pac::rcc::vals::Pllsrc;
// pub use crate::pac::rcc::vals::Prediv as PllPreDiv;
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler, Sw as Sysclk, HsiFs};
use crate::pac::{/* FLASH , */RCC};
use crate::time::Hertz;
// /// HSI speed
// pub const HSI_FREQ: Hertz = Hertz(8_000_000);
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum PllSource {
HSE,
HSI,
}
#[derive(Clone, Copy)]
pub struct Pll {
pub src: PllSource,
// /// PLL pre-divider.
// ///
// /// On some chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
// pub prediv: PllPreDiv,
// /// PLL multiplication factor.
// pub mul: PllMul,
}
/// Clocks configutation
#[non_exhaustive]
#[derive(Clone, Copy)]
pub struct Config {
pub hsi: Option<Hertz>,
pub hse: Option<Hse>,
pub sys: Sysclk,
pub pll: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
/// Per-peripheral kernel clock selection muxes
pub mux: super::mux::ClockMux,
// pub ls: super::LsConfig,
}
impl Default for Config {
fn default() -> Self {
Self {
hsi: Some(Hertz::mhz(8)),
hse: None,
sys: Sysclk::HSI,
pll: None,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
// ls: Default::default(),
mux: Default::default(),
}
}
}
/// Initialize and Set the clock frequencies
pub(crate) unsafe fn init(config: Config) {
// Turn on the HSI
RCC.cr().modify(|w| w.set_hsion(true));
if let Some(value) = config.hsi {
let val = value.0;
let (fs_val, trim_addr): (HsiFs, usize) = match val {
4_000_000u32 => (HsiFs::HSI_4MHZ, 0x1FFF_0F00),
8_000_000u32 => (HsiFs::HSI_8MHZ, 0x1FFF_0F04),
16_000_000u32 => (HsiFs::HSI_16MHZ, 0x1FFF_0F08),
22_120_000u32 => (HsiFs::HSI_22_12MHZ, 0x1FFF_0F0C),
24_000_000u32 => (HsiFs::HSI_24MHZ, 0x1FFF_0F10),
_ => panic!("Unsupported HSI frequency"),
};
let trim_val = (unsafe { *(trim_addr as *const u32) } & 0x1FFF ) as u16;
RCC.icscr().modify(|w| {w.set_hsi_fs(fs_val); w.set_hsi_trim(trim_val);});
};
while !RCC.cr().read().hsirdy() {}
// Use the HSI clock as system clock during the actual clock setup
RCC.cfgr().modify(|w| w.set_sw(Sysclk::HSI));
while RCC.cfgr().read().sws() != Sysclk::HSI {}
// Configure HSI
let hsi = config.hsi;
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
match hse.mode {
HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)),
HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)),
}
RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
// Configure PLL
let pll = match config.pll {
None => None,
Some(pll) => {
let (src_val, src_freq) = match pll.src {
PllSource::HSE => (Pllsrc::HSE, unwrap!(hse)),
PllSource::HSI => (Pllsrc::HSI, unwrap!(hsi)),
};
let out_freq = src_freq * 2u8;
assert!(max::PLL_IN.contains(&src_freq));
// assert!(max::PLL_OUT.contains(&pll.src.out_freq(pll.mul)));
RCC.cr().modify(|w| w.set_pllon(false));
while RCC.cr().read().pllrdy() {}
RCC.pllcfgr().modify(|w| w.set_pllsrc(src_val));
RCC.cr().modify(|w| w.set_pllon(true));
cortex_m::asm::delay(1_000);
while !RCC.cr().read().pllrdy() {}
Some(out_freq)
}
};
// let usb = match pll {
// Some(Hertz(72_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1_5),
// Some(Hertz(48_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1),
// _ => None,
// }
// .map(|usbpre| {
// RCC.cfgr().modify(|w| w.set_usbpre(usbpre));
// Hertz(48_000_000)
// });
// Configure sysclk
let sys = match config.sys {
Sysclk::HSI => unwrap!(hsi),
Sysclk::HSE => unwrap!(hse),
Sysclk::PLL => unwrap!(pll),
_ => unreachable!(),
};
let hclk1 = sys / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk1, config.apb1_pre);
// assert!(max::HCLK.contains(&hclk));
// assert!(max::PCLK.contains(&pclk));
// // Set latency based on HCLK frquency
// let latency = match hclk.0 {
// ..=24_000_000 => Latency::WS0,
// ..=48_000_000 => Latency::WS1,
// _ => Latency::WS2,
// };
// FLASH.acr().modify(|w| {
// w.set_latency(latency);
// // RM0316: "The prefetch buffer must be kept on when using a prescaler
// // different from 1 on the AHB clock.", "Half-cycle access cannot be
// // used when there is a prescaler different from 1 on the AHB clock"
// if config.ahb_pre != AHBPrescaler::DIV1 {
// w.set_hlfcya(false);
// w.set_prftbe(true);
// }
// });
// Temporarily: set flash latency
if hclk1.0 > 24_000_000 {
unsafe {
let acr_reg = 0x4002_2000 as *mut u32;
let value = acr_reg.read_volatile() | 0x1;
acr_reg.write_volatile(value);
}
}
// Set prescalers
// CFGR has been written before (PLL, PLL48) don't overwrite these settings
RCC.cfgr().modify(|w| {
w.set_ppre(config.apb1_pre);
w.set_hpre(config.ahb_pre);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from
// 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
// CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings
RCC.cfgr().modify(|w| w.set_sw(config.sys));
while RCC.cfgr().read().sws() != config.sys {}
// Disable HSI if not used
if hsi == None {
RCC.cr().modify(|w| w.set_hsion(false));
}
// let rtc = config.ls.init();
/*
TODO: Maybe add something like this to clock_mux? How can we autogenerate the data for this?
let hrtim = match config.hrtim {
// Must be configured after the bus is ready, otherwise it won't work
HrtimClockSource::BusClk => None,
HrtimClockSource::PllClk => {
use crate::pac::rcc::vals::Timsw;
// Make sure that we're using the PLL
let pll = unwrap!(pll);
assert!((pclk2 == pll) || (pclk2 * 2u32 == pll));
RCC.cfgr3().modify(|w| w.set_hrtim1sw(Timsw::PLL1_P));
Some(pll * 2u32)
}
};
*/
config.mux.init();
// set_clocks!(
// hsi: hsi,
// hse: hse,
// pll: pll,
// sys: Some(sys),
// pclk1: Some(pclk1),
// pclk1_tim: Some(pclk1_tim),
// hclk1: Some(hclk1),
// rtc: rtc,
// // usb: usb,
// lse: None,
// );
let clocks = crate::rcc::Clocks {
hclk1: Some(hclk1).into(),
pclk1: Some(pclk1).into(),
pclk1_tim: Some(pclk1_tim).into(),
sys: Some(sys).into(),
hsi: hsi.into(),
lse: None.into(),
};
crate::rcc::set_freqs(clocks);
}
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000);
// pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
// pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
// py32f030
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(24_000_000);
// pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(48_000_000);
}