1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
//! Defines the `Graph` struct, which represents a raphtory graph in memory.
//!
//! This is the base class used to create a temporal graph, add vertices and edges,
//! create windows, and query the graph with a variety of algorithms.
//! It is a wrapper around a set of shards, which are the actual graph data structures.
//! In Python, this class wraps around the rust graph.
use crate::graph_view::PyGraphView;
use crate::utils::{adapt_result, extract_input_vertex, extract_into_time, InputVertexBox};
use crate::wrappers::prop::Prop;
use itertools::Itertools;
use pyo3::exceptions::PyException;
use pyo3::prelude::*;
use raphtory::core as dbc;
use raphtory::db::graph::Graph;
use std::collections::HashMap;
use std::fmt::{Debug, Formatter};
use std::path::{Display, Path, PathBuf};
/// A temporal graph.
#[derive(Clone)]
#[pyclass(name="Graph", extends=PyGraphView)]
pub struct PyGraph {
pub(crate) graph: Graph,
}
impl Debug for PyGraph {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.graph)
}
}
impl From<Graph> for PyGraph {
fn from(value: Graph) -> Self {
Self { graph: value }
}
}
impl PyGraph {
pub fn py_from_db_graph(db_graph: Graph) -> PyResult<Py<PyGraph>> {
Python::with_gil(|py| {
Py::new(
py,
(PyGraph::from(db_graph.clone()), PyGraphView::from(db_graph)),
)
})
}
}
/// A temporal graph.
#[pymethods]
impl PyGraph {
#[new]
#[pyo3(signature = (nr_shards=1))]
pub fn py_new(nr_shards: usize) -> (Self, PyGraphView) {
let graph = Graph::new(nr_shards);
(
Self {
graph: graph.clone(),
},
PyGraphView::from(graph),
)
}
/// Adds a new vertex with the given id and properties to the graph.
///
/// Arguments:
/// timestamp (int): The timestamp of the vertex.
/// id (str or int): The id of the vertex.
/// properties (dict): The properties of the vertex.
///
/// Returns:
/// None
#[pyo3(signature = (timestamp, id, properties=None))]
pub fn add_vertex(
&self,
timestamp: i64,
id: &PyAny,
properties: Option<HashMap<String, Prop>>,
) -> PyResult<()> {
let v = Self::extract_id(id)?;
let result = self
.graph
.add_vertex(timestamp, v, &Self::transform_props(properties));
adapt_result(result)
}
/// Adds properties to an existing vertex.
///
/// Arguments:
/// id (str or int): The id of the vertex.
/// properties (dict): The properties of the vertex.
///
/// Returns:
/// None
pub fn add_vertex_properties(
&self,
id: &PyAny,
properties: HashMap<String, Prop>,
) -> PyResult<()> {
let v = Self::extract_id(id)?;
let result = self
.graph
.add_vertex_properties(v, &Self::transform_props(Some(properties)));
adapt_result(result)
}
/// Adds a new edge with the given source and destination vertices and properties to the graph.
///
/// Arguments:
/// timestamp (int): The timestamp of the edge.
/// src (str or int): The id of the source vertex.
/// dst (str or int): The id of the destination vertex.
/// properties (dict): The properties of the edge, as a dict of string and properties
/// layer (str): The layer of the edge.
///
/// Returns:
/// None
#[pyo3(signature = (timestamp, src, dst, properties=None, layer=None))]
pub fn add_edge(
&self,
timestamp: &PyAny,
src: &PyAny,
dst: &PyAny,
properties: Option<HashMap<String, Prop>>,
layer: Option<&str>,
) -> PyResult<()> {
let time = extract_into_time(timestamp)?;
let src = Self::extract_id(src)?;
let dst = Self::extract_id(dst)?;
adapt_result(
self.graph
.add_edge(time, src, dst, &Self::transform_props(properties), layer),
)
}
/// Adds properties to an existing edge.
///
/// Arguments:
/// src (str or int): The id of the source vertex.
/// dst (str or int): The id of the destination vertex.
/// properties (dict): The properties of the edge, as a dict of string and properties
/// layer (str): The layer of the edge.
///
/// Returns:
/// None
#[pyo3(signature = (src, dst, properties, layer=None))]
pub fn add_edge_properties(
&self,
src: &PyAny,
dst: &PyAny,
properties: HashMap<String, Prop>,
layer: Option<&str>,
) -> PyResult<()> {
let src = Self::extract_id(src)?;
let dst = Self::extract_id(dst)?;
let result = self.graph.add_edge_properties(
src,
dst,
&Self::transform_props(Some(properties)),
layer,
);
adapt_result(result)
}
//****** Saving And Loading ******//
// Alternative constructors are tricky, see: https://gist.github.com/redshiftzero/648e4feeff3843ffd9924f13625f839c
/// Loads a graph from the given path.
///
/// Arguments:
/// path (str): The path to the graph.
///
/// Returns:
/// Graph: The loaded graph.
#[staticmethod]
pub fn load_from_file(path: String) -> PyResult<Py<PyGraph>> {
let file_path: PathBuf = [env!("CARGO_MANIFEST_DIR"), &path].iter().collect();
match Graph::load_from_file(file_path) {
Ok(g) => Self::py_from_db_graph(g),
Err(e) => Err(PyException::new_err(format!(
"Failed to load graph from the files. Reason: {}",
e
))),
}
}
/// Saves the graph to the given path.
///
/// Arguments:
/// path (str): The path to the graph.
///
/// Returns:
/// None
pub fn save_to_file(&self, path: String) -> PyResult<()> {
match self.graph.save_to_file(Path::new(&path)) {
Ok(()) => Ok(()),
Err(e) => Err(PyException::new_err(format!(
"Failed to save graph to the files. Reason: {}",
e
))),
}
}
}
impl PyGraph {
fn transform_props(props: Option<HashMap<String, Prop>>) -> Vec<(String, dbc::Prop)> {
props
.unwrap_or_default()
.into_iter()
.map(|(key, value)| (key, value.into()))
.collect_vec()
}
/// Extracts the id from the given python vertex
///
/// Arguments:
/// id (str or int): The id of the vertex.
pub(crate) fn extract_id(id: &PyAny) -> PyResult<InputVertexBox> {
extract_input_vertex(id)
}
}