1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
//! This macro implements a syntax that emulates Pythons
//! [`generator-expression`] syntax in a form more compatible with rusts
//! usual syntax.
//!
//! This means that there a few small differences between the python syntax
//! and the syntax provided in this macro:
//!
//! * The pattern between the `for` and `in` tokens is a fully-fledged
//!   rust pattern, which can be as simple as a simple token and as complex
//!   as struct destructuring.
//! * The expression defining the iterator after the `in` token
//!   must  evaluate to either an `Iterator` or an `impl IntoIterator`.
//! * The conditional expression after the `if` token must evaluate to
//!   a boolean.
//! * The expression in the beginning of the generator expression,
//!   the expression following the `in` token, and the expression following
//!   the `if` token, must all end with a semicolon (;). The only exception
//!   to this is the last expression following `in` or `if` in the macro,
//!   which may omit the trailing semicolon.
//!
//! The expression replaced by the `comp!()` macro invocation is a lazy
//! iterator whose lifetime is bound by any references it needs to capture.
//! This means that it can be `.collect()`ed into any container you like.
//!
//! This is a BNF description of the syntax used by this macro:
//!
//! ```bnf
//! comprehension ::=  expression ";" comp_for [";"]
//! comp_for      ::=  "for" pattern "in" expression [";" comp_iter]
//! comp_iter     ::=  comp_for | comp_if
//! comp_if       ::=  "if" expression [";" comp_iter]
//! ```
//!
//! Just like in Python, you can nest as many `for` and `if`
//! clauses as you like.
//!
//! # Examples
//!
//! Simple generator expression with a conditional:
//! ```
//! use py_comp::comp;
//!
//! #[derive(Debug, PartialEq, Eq)]
//! struct Foo(i32);
//!
//! let arr = &[Foo(11), Foo(12)];
//!
//! // Notice the semicolons
//! let comp_vector = comp!(item; for item in arr; if item.0 % 10 == 2)
//!     .collect::<Vec<&Foo>>();
//!
//! assert_eq!(comp_vector, vec![&Foo(12)])
//! ```
//!
//! Triple cartesian product with conditions and patterns:
//! ```
//! use py_comp::comp;
//!
//! #[derive(Debug, PartialEq, Eq)]
//! struct Foo(i32);
//!
//! // These need to be references to arrays because of how the closures
//! // that the macro expands to capture their environment.
//! let x = &[(Foo(11), "foo"), (Foo(12), "bar")];
//! let y = &[Foo(21), Foo(22)];
//! let z = &[Foo(31), Foo(32)];
//!
//! let xyz = comp!(
//!     (a, b, c);
//!     for (a, _text) in x;  // You can use any function parameter pattern.
//!     if a.0 % 10 == 2;
//!     for b in y;           // Obviously not every level requires a conditional.
//!     for c in z;
//!     if c.0 % 10 == 2;
//! )
//! .collect::<Vec<(&Foo, &Foo, &Foo)>>();
//!
//! // The result vector here is short for illustration purposes
//! // but can be as long as long as you need it to be.
//! assert_eq!(xyz, vec![(&Foo(12), &Foo(21), &Foo(32)), (&Foo(12), &Foo(22), &Foo(32))])
//! ```
//! Flatten a triple-nested structure + complex expression:
//! ```rust
//! use py_comp::comp;
//!
//! #[derive(Debug, PartialEq, Eq)]
//! struct Foo(i32);
//!
//! let nested_3 = &[
//!     [
//!         [Foo(0), Foo(1), Foo(2)],
//!         [Foo(3), Foo(4), Foo(5)],
//!         [Foo(6), Foo(7), Foo(8)],
//!     ],
//!     [
//!         [Foo(9), Foo(10), Foo(11)],
//!         [Foo(12), Foo(13), Foo(14)],
//!         [Foo(15), Foo(16), Foo(17)],
//!     ],
//!     [
//!         [Foo(18), Foo(19), Foo(20)],
//!         [Foo(21), Foo(22), Foo(23)],
//!         [Foo(24), Foo(25), Foo(26)],
//!     ],
//! ];
//!
//! let nested_objects = comp!(
//!     {
//!         let inner = nested.0;
//!         Foo(inner + 1)
//!     };
//!     for nested_2 in nested_3;
//!     for nested_1 in nested_2;
//!     for nested in nested_1;
//! )
//! .collect::<Vec<Foo>>();
//!
//! let expected_values = (1..28).map(Foo).collect::<Vec<Foo>>();
//!
//! assert_eq!(expected_values, nested_objects);
//! ```
//!
//! [`generator-expression`]: https://docs.python.org/3/reference/expressions.html#generator-expressions
//!

#![warn(clippy::all)]

use doc_comment::doctest;

doctest!("../Readme.md");

// Check that the type of the expression passed here implements IntoIterator.
// Hopefully this optimizes away in release builds.
#[doc(hidden)]
#[macro_export]
macro_rules! assert_impl_into_iter {
    ($x: expr) => {
        let _ = || {
            fn assert_impl_into_iter<T>(_: T)
            where
                T: IntoIterator,
            {
            }
            assert_impl_into_iter($x);
        };
    };
}

/// A Python-like lazy generator-expression
///
/// For details see [module level documentation][super]
///
/// [super]: ../py_comp/index.html
#[macro_export(local_inner_macros)]
macro_rules! comp {
    (
        $item_expr: expr;
        for $name: pat in $iterator: expr;
        if $condition: expr $(;)?
    ) => {{
        let iter = $iterator;
        $crate::assert_impl_into_iter!(iter);
        iter
            .into_iter()
            .filter_map(move |$name|
                if $condition {
                    Some($item_expr)
                } else {
                    None
                }
            )
    }};

    (
        $item_expr: expr;
        for $name: pat in $iterator: expr $(;)?
    ) => {{
        let iter = $iterator;
        $crate::assert_impl_into_iter!(iter);
        iter
            .into_iter()
            .map(move |$name| $item_expr)
    }};

    (
        $item_expr: expr;
        for $name: pat in $iterator: expr;
        if $condition: expr;
        for $($rest: tt)*
    ) => {{
        let iter = $iterator;
        $crate::assert_impl_into_iter!(iter);
        iter
            .into_iter()
            .filter_map(move |$name|
                if $condition {
                    Some(comp!($item_expr; for $($rest)*))
                } else {
                    None
                }
            )
            .flatten()
    }};

    (
        $item_expr: expr;
        for $name: pat in $iterator: expr;
        for $($rest: tt)*
    ) => {{
        let iter = $iterator;
        $crate::assert_impl_into_iter!(iter);
        iter
            .into_iter()
            .flat_map(move |$name|
                comp!($item_expr; for $($rest)*)
            )
    }};
}