pumpkin_solver/engine/constraint_satisfaction_solver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
//! Houses the solver which attempts to find a solution to a Constraint Satisfaction Problem (CSP)
//! using a Lazy Clause Generation approach.
use std::cmp::min;
use std::collections::VecDeque;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::num::NonZero;
use std::time::Instant;
use drcp_format::steps::StepId;
use rand::rngs::SmallRng;
use rand::SeedableRng;
use super::clause_allocators::ClauseAllocatorInterface;
use super::clause_allocators::ClauseInterface;
use super::conflict_analysis::AnalysisStep;
use super::conflict_analysis::ConflictAnalysisResult;
use super::conflict_analysis::ResolutionConflictAnalyser;
use super::propagation::store::PropagatorStore;
use super::solver_statistics::SolverStatistics;
use super::termination::TerminationCondition;
use super::variables::IntegerVariable;
use crate::basic_types::moving_averages::MovingAverage;
use crate::basic_types::CSPSolverExecutionFlag;
use crate::basic_types::ClauseReference;
use crate::basic_types::ConflictInfo;
use crate::basic_types::ConstraintOperationError;
use crate::basic_types::ConstraintReference;
use crate::basic_types::HashMap;
use crate::basic_types::Inconsistency;
use crate::basic_types::KeyedVec;
use crate::basic_types::PropagationStatusOneStepCP;
use crate::basic_types::Random;
use crate::basic_types::SolutionReference;
use crate::basic_types::StoredConflictInfo;
use crate::branching::branchers::independent_variable_value_brancher::IndependentVariableValueBrancher;
use crate::branching::Brancher;
use crate::branching::PhaseSaving;
use crate::branching::SelectionContext;
use crate::branching::SolutionGuidedValueSelector;
use crate::branching::Vsids;
use crate::engine::clause_allocators::ClauseAllocatorBasic;
use crate::engine::conflict_analysis::ConflictAnalysisContext;
use crate::engine::cp::PropagatorQueue;
use crate::engine::cp::WatchListCP;
use crate::engine::cp::WatchListPropositional;
use crate::engine::predicates::predicate::Predicate;
use crate::engine::proof::ProofLog;
use crate::engine::propagation::EnqueueDecision;
use crate::engine::propagation::PropagationContext;
use crate::engine::propagation::PropagationContextMut;
use crate::engine::propagation::Propagator;
use crate::engine::propagation::PropagatorInitialisationContext;
use crate::engine::reason::ReasonStore;
use crate::engine::variables::DomainId;
use crate::engine::variables::Literal;
use crate::engine::variables::PropositionalVariable;
use crate::engine::AssignmentsInteger;
use crate::engine::AssignmentsPropositional;
use crate::engine::BooleanDomainEvent;
use crate::engine::DebugHelper;
use crate::engine::EmptyDomain;
use crate::engine::ExplanationClauseManager;
use crate::engine::IntDomainEvent;
use crate::engine::LearnedClauseManager;
use crate::engine::LearningOptions;
use crate::engine::RestartOptions;
use crate::engine::RestartStrategy;
use crate::engine::VariableLiteralMappings;
use crate::propagators::clausal::BasicClausalPropagator;
use crate::propagators::clausal::ClausalPropagator;
use crate::pumpkin_assert_advanced;
use crate::pumpkin_assert_extreme;
use crate::pumpkin_assert_moderate;
use crate::pumpkin_assert_simple;
use crate::statistics::statistic_logger::StatisticLogger;
use crate::statistics::statistic_logging::should_log_statistics;
use crate::statistics::Statistic;
use crate::variable_names::VariableNames;
use crate::DefaultBrancher;
#[cfg(doc)]
use crate::Solver;
pub(crate) type ClausalPropagatorType = BasicClausalPropagator;
pub(crate) type ClauseAllocator = ClauseAllocatorBasic;
/// A solver which attempts to find a solution to a Constraint Satisfaction Problem (CSP) using
/// a Lazy Clause Generation (LCG [\[1\]](https://people.eng.unimelb.edu.au/pstuckey/papers/cp09-lc.pdf))
/// approach.
///
/// The solver maintains two views of the problem, a Constraint Programming (CP) view and a SAT
/// view. It requires that all of the propagators which are added, are able to explain the
/// propagations and conflicts they have made/found. It then uses standard SAT concepts such as
/// 1UIP (see \[2\]) to learn clauses (also called nogoods in the CP field, see \[3\]) to avoid
/// unnecessary exploration of the search space while utilizing the search procedure benefits from
/// constraint programming (e.g. by preventing the exponential blow-up of problem encodings).
///
/// # Practical
/// The [`ConstraintSatisfactionSolver`] makes use of certain options which allow the user to
/// influence the behaviour of the solver; see for example the [`SatisfactionSolverOptions`] and the
/// [`LearningOptions`].
///
/// The solver switches between making decisions using implementations of the [`Brancher`] (which
/// are passed to the [`ConstraintSatisfactionSolver::solve`] method) and propagation (use
/// [`ConstraintSatisfactionSolver::add_propagator`] to add a propagator). If a conflict is found by
/// any of the propagators (including the clausal one) then the solver will analyse the conflict
/// using 1UIP reasoning and backtrack if possible.
///
/// # Bibliography
/// \[1\] T. Feydy and P. J. Stuckey, ‘Lazy clause generation reengineered’, in International
/// Conference on Principles and Practice of Constraint Programming, 2009, pp. 352–366.
///
/// \[2\] J. Marques-Silva, I. Lynce, and S. Malik, ‘Conflict-driven clause learning SAT
/// solvers’, in Handbook of satisfiability, IOS press, 2021
///
/// \[3\] F. Rossi, P. Van Beek, and T. Walsh, ‘Constraint programming’, Foundations of Artificial
/// Intelligence, vol. 3, pp. 181–211, 2008.
#[derive(Debug)]
pub struct ConstraintSatisfactionSolver {
/// The solver continuously changes states during the search.
/// The state helps track additional information and contributes to making the code clearer.
pub(crate) state: CSPSolverState,
/// Tracks information related to the assignments of propositional variables.
pub(crate) assignments_propositional: AssignmentsPropositional,
/// Responsible for clausal propagation based on the two-watched scheme.
/// Although technically just another propagator, we treat the clausal propagator in a special
/// way due to efficiency and conflict analysis.
clausal_propagator: ClausalPropagatorType,
/// The list of propagators. Propagators live here and are queried when events (domain changes)
/// happen. The list is only traversed during synchronisation for now.
cp_propagators: PropagatorStore,
/// Tracks information about all allocated clauses. All clause allocaton goes exclusively
/// through the clause allocator. There are two notable exceptions:
/// - Unit clauses are stored directly on the trail.
/// - Binary clauses may be inlined in the watch lists of the clausal propagator.
pub(crate) clause_allocator: ClauseAllocator,
/// Tracks information about all learned clauses, with the exception of
/// unit clauses which are directly stored on the trail.
learned_clause_manager: LearnedClauseManager,
/// Tracks information about the restarts. Occassionally the solver will undo all its decisions
/// and start the search from the root note. Note that learned clauses and other state
/// information is kept after a restart.
restart_strategy: RestartStrategy,
/// Holds the assumptions when the solver is queried to solve under assumptions.
assumptions: Vec<Literal>,
/// Performs conflict analysis, core extraction, and minimisation.
conflict_analyser: ResolutionConflictAnalyser,
/// Tracks information related to the assignments of integer variables.
pub(crate) assignments_integer: AssignmentsInteger,
/// Contains information on which propagator to notify upon
/// integer events, e.g., lower or upper bound change of a variable.
watch_list_cp: WatchListCP,
/// Contains information on which propagator to notify upon
/// literal assignment. Not to be confused with the watch list
/// of the clausal propagator.
watch_list_propositional: WatchListPropositional,
/// Used in combination with the propositional watch list
/// Indicates the next literal on the propositional trail that needs to be inspected to notify
/// subscribed propagator(s).
propositional_trail_index: usize,
/// Indicates the next entry on the CP trail that needs to be inspected to notify the
/// subscribed propagator(s).
///
/// This variable is used to prevent propagators from being notified from backtrack events
/// while they have not been notified of the "forward" event.
last_notified_cp_trail_index: usize,
/// Dictates the order in which propagators will be called to propagate.
propagator_queue: PropagatorQueue,
/// Handles storing information about propagation reasons, which are used later to construct
/// explanations during conflict analysis
pub(crate) reason_store: ReasonStore,
/// Contains events that need to be processed to notify propagators of [`IntDomainEvent`]
/// occurrences.
event_drain: Vec<(IntDomainEvent, DomainId)>,
/// Contains events that need to be processed to notify propagators of backtrack
/// [`IntDomainEvent`] occurrences (i.e. [`IntDomainEvent`]s being undone).
backtrack_event_drain: Vec<(IntDomainEvent, DomainId)>,
/// Holds information needed to map atomic constraints (e.g., [x >= 5]) to literals
pub(crate) variable_literal_mappings: VariableLiteralMappings,
/// Used during synchronisation of the propositional and integer trail.
/// [`AssignmentsInteger::trail`][`cp_trail_synced_position`] is the next entry
/// that needs to be synchronised with [`AssignmentsPropositional::trail`].
cp_trail_synced_position: usize,
/// This is the SAT equivalent of the above, i.e., [`AssignmentsPropositional::trail`]
/// [[`sat_trail_synced_position`]] is the next
/// [`Literal`] on the trail that needs to be synchronised with [`AssignmentsInteger::trail`].
sat_trail_synced_position: usize,
/// Holds information about explanations during conflict analysis.
explanation_clause_manager: ExplanationClauseManager,
/// Convenience literals used in special cases.
true_literal: Literal,
false_literal: Literal,
/// Used to store the learned clause.
analysis_result: ConflictAnalysisResult,
/// A set of counters updated during the search.
counters: SolverStatistics,
/// Miscellaneous constant parameters used by the solver.
internal_parameters: SatisfactionSolverOptions,
/// The names of the variables in the solver.
variable_names: VariableNames,
/// A map from clause references to nogood step ids in the proof.
nogood_step_ids: KeyedVec<ClauseReference, Option<StepId>>,
unit_nogood_step_ids: HashMap<Literal, StepId>,
}
impl Default for ConstraintSatisfactionSolver {
fn default() -> Self {
ConstraintSatisfactionSolver::new(
LearningOptions::default(),
SatisfactionSolverOptions::default(),
)
}
}
/// The result of [`ConstraintSatisfactionSolver::extract_clausal_core`]; there are 2 cases:
/// 1. In the case of [`CoreExtractionResult::ConflictingAssumption`], two assumptions have been
/// given which directly conflict with one another; e.g. if the assumptions `[x, !x]` have been
/// given then the result of [`ConstraintSatisfactionSolver::extract_clausal_core`] will be a
/// [`CoreExtractionResult::ConflictingAssumption`] containing `!x`.
/// 2. The standard case is when a [`CoreExtractionResult::Core`] is returned which contains (a
/// subset of) the assumptions which led to conflict.
#[derive(Debug, Clone)]
pub enum CoreExtractionResult {
/// Conflicting assumptions were provided; e.g. in the case of the assumptions `[x, !x]`, this
/// result will contain `!x`
ConflictingAssumption(Literal),
/// The standard case where this result contains the core consisting of (a
/// subset of) the assumptions which led to conflict.
Core(Vec<Literal>),
}
/// Options for the [`Solver`] which determine how it behaves.
#[derive(Debug)]
pub struct SatisfactionSolverOptions {
/// The options used by the restart strategy.
pub restart_options: RestartOptions,
/// Whether learned clause minimisation should take place
pub learning_clause_minimisation: bool,
/// The proof log.
pub proof_log: ProofLog,
/// A random generator which is used by the [`Solver`], passing it as an
/// argument allows seeding of the randomization.
pub random_generator: SmallRng,
}
impl Default for SatisfactionSolverOptions {
fn default() -> Self {
SatisfactionSolverOptions {
restart_options: RestartOptions::default(),
proof_log: ProofLog::default(),
learning_clause_minimisation: true,
random_generator: SmallRng::seed_from_u64(42),
}
}
}
impl ConstraintSatisfactionSolver {
fn process_backtrack_events(&mut self) -> bool {
// If there are no variables being watched then there is no reason to perform these
// operations
if self.watch_list_cp.is_watching_any_backtrack_events() {
self.backtrack_event_drain
.extend(self.assignments_integer.drain_backtrack_domain_events());
if self.backtrack_event_drain.is_empty() {
return false;
}
for (event, domain) in self.backtrack_event_drain.drain(..) {
for propagator_var in self
.watch_list_cp
.get_backtrack_affected_propagators(event, domain)
{
let propagator = &mut self.cp_propagators[propagator_var.propagator];
let context = PropagationContext::new(
&self.assignments_integer,
&self.assignments_propositional,
);
propagator.notify_backtrack(context, propagator_var.variable, event.into())
}
}
}
true
}
/// Process the stored domain events. If no events were present, this returns false. Otherwise,
/// true is returned.
fn process_domain_events(&mut self) -> bool {
// If there are no variables being watched then there is no reason to perform these
// operations
if self.watch_list_cp.is_watching_anything() {
self.event_drain
.extend(self.assignments_integer.drain_domain_events());
if self.event_drain.is_empty()
&& self.propositional_trail_index
== self.assignments_propositional.num_trail_entries()
{
return false;
}
for (event, domain) in self.event_drain.drain(..) {
for propagator_var in self.watch_list_cp.get_affected_propagators(event, domain) {
let propagator = &mut self.cp_propagators[propagator_var.propagator];
let context = PropagationContext::new(
&self.assignments_integer,
&self.assignments_propositional,
);
let enqueue_decision =
propagator.notify(context, propagator_var.variable, event.into());
if enqueue_decision == EnqueueDecision::Enqueue {
self.propagator_queue
.enqueue_propagator(propagator_var.propagator, propagator.priority());
}
}
}
self.last_notified_cp_trail_index = self.assignments_integer.num_trail_entries();
}
// If there are no literals being watched then there is no reason to perform these
// operations
if self.watch_list_propositional.is_watching_anything() {
for i in
self.propositional_trail_index..self.assignments_propositional.num_trail_entries()
{
let literal = self.assignments_propositional.get_trail_entry(i);
for (event, affected_literal) in BooleanDomainEvent::get_iterator(literal) {
for propagator_var in self
.watch_list_propositional
.get_affected_propagators(event, affected_literal)
{
let propagator = &mut self.cp_propagators[propagator_var.propagator];
let context = PropagationContext::new(
&self.assignments_integer,
&self.assignments_propositional,
);
let enqueue_decision =
propagator.notify_literal(context, propagator_var.variable, event);
if enqueue_decision == EnqueueDecision::Enqueue {
self.propagator_queue.enqueue_propagator(
propagator_var.propagator,
propagator.priority(),
);
}
}
}
}
self.propositional_trail_index = self.assignments_propositional.num_trail_entries();
}
true
}
/// Given a predicate, returns the corresponding literal.
pub fn get_literal(&self, predicate: Predicate) -> Literal {
match predicate {
Predicate::IntegerPredicate(integer_predicate) => {
self.variable_literal_mappings.get_literal(
integer_predicate,
&self.assignments_propositional,
&self.assignments_integer,
)
}
bool_predicate => bool_predicate
.get_literal_of_bool_predicate(self.assignments_propositional.true_literal)
.unwrap(),
}
}
/// This is a temporary accessor to help refactoring.
pub fn get_solution_reference(&self) -> SolutionReference<'_> {
SolutionReference::new(&self.assignments_propositional, &self.assignments_integer)
}
pub(crate) fn is_conflicting(&self) -> bool {
self.state.conflicting()
}
pub(crate) fn declare_ready(&mut self) {
self.state.declare_ready()
}
/// Conclude the proof with the unsatisfiable claim.
///
/// This method will finish the proof. Any new operation will not be logged to the proof.
pub fn conclude_proof_unsat(&mut self) -> std::io::Result<()> {
let proof = std::mem::take(&mut self.internal_parameters.proof_log);
proof.unsat(&self.variable_names, &self.variable_literal_mappings)
}
/// Conclude the proof with the optimality claim.
///
/// This method will finish the proof. Any new operation will not be logged to the proof.
pub fn conclude_proof_optimal(&mut self, bound: Literal) -> std::io::Result<()> {
let proof = std::mem::take(&mut self.internal_parameters.proof_log);
proof.optimal(bound, &self.variable_names, &self.variable_literal_mappings)
}
fn complete_proof(&mut self) {
pumpkin_assert_simple!(
self.is_conflicting(),
"Proof attempted to be completed while not in conflicting state"
);
let result = self.compute_learned_clause(&mut DummyBrancher);
let _ = self
.internal_parameters
.proof_log
.log_learned_clause(result.learned_literals);
}
// fn debug_check_consistency(&self, cp_data_structures: &CPEngineDataStructures) -> bool {
// pumpkin_assert_simple!(
// assignments_integer.num_domains() as usize
// == self.mapping_domain_to_lower_bound_literals.len()
// );
// pumpkin_assert_simple!(
// assignments_integer.num_domains() as usize
// == self.mapping_domain_to_equality_literals.len()
// );
// pumpkin_assert_simple!(
// assignments_integer.num_domains() == cp_data_structures.watch_list_cp.num_domains()
// );
// true
// }
}
// methods that offer basic functionality
impl ConstraintSatisfactionSolver {
pub fn new(
learning_options: LearningOptions,
solver_options: SatisfactionSolverOptions,
) -> ConstraintSatisfactionSolver {
let dummy_literal = Literal::new(PropositionalVariable::new(0), true);
let mut csp_solver = ConstraintSatisfactionSolver {
state: CSPSolverState::default(),
assumptions: Vec::default(),
assignments_propositional: AssignmentsPropositional::default(),
clause_allocator: ClauseAllocator::default(),
assignments_integer: AssignmentsInteger::default(),
watch_list_cp: WatchListCP::default(),
watch_list_propositional: WatchListPropositional::default(),
propagator_queue: PropagatorQueue::new(5),
reason_store: ReasonStore::default(),
propositional_trail_index: 0,
last_notified_cp_trail_index: 0,
event_drain: vec![],
backtrack_event_drain: vec![],
variable_literal_mappings: VariableLiteralMappings::default(),
cp_trail_synced_position: 0,
sat_trail_synced_position: 0,
explanation_clause_manager: ExplanationClauseManager::default(),
true_literal: dummy_literal,
false_literal: !dummy_literal,
conflict_analyser: ResolutionConflictAnalyser::default(),
clausal_propagator: ClausalPropagatorType::default(),
learned_clause_manager: LearnedClauseManager::new(learning_options),
restart_strategy: RestartStrategy::new(solver_options.restart_options),
cp_propagators: PropagatorStore::default(),
counters: SolverStatistics::default(),
internal_parameters: solver_options,
analysis_result: ConflictAnalysisResult::default(),
variable_names: VariableNames::default(),
nogood_step_ids: KeyedVec::default(),
unit_nogood_step_ids: HashMap::default(),
};
// we introduce a dummy variable set to true at the root level
// this is useful for convenience when a fact needs to be expressed that is always true
// e.g., this makes writing propagator explanations easier for corner cases
let root_variable = csp_solver.create_new_propositional_variable(Some("true".to_owned()));
let true_literal = Literal::new(root_variable, true);
csp_solver.assignments_propositional.true_literal = true_literal;
csp_solver.assignments_propositional.false_literal = !true_literal;
csp_solver.true_literal = true_literal;
csp_solver.false_literal = !true_literal;
let result = csp_solver.add_clause([true_literal]);
pumpkin_assert_simple!(result.is_ok());
csp_solver
}
pub fn solve(
&mut self,
termination: &mut impl TerminationCondition,
brancher: &mut impl Brancher,
) -> CSPSolverExecutionFlag {
let dummy_assumptions: Vec<Literal> = vec![];
self.solve_under_assumptions(&dummy_assumptions, termination, brancher)
}
pub fn solve_under_assumptions(
&mut self,
assumptions: &[Literal],
termination: &mut impl TerminationCondition,
brancher: &mut impl Brancher,
) -> CSPSolverExecutionFlag {
if self.state.is_inconsistent() {
return CSPSolverExecutionFlag::Infeasible;
}
let start_time = Instant::now();
self.initialise(assumptions);
let result = self.solve_internal(termination, brancher);
self.counters.engine_statistics.time_spent_in_solver +=
start_time.elapsed().as_millis() as u64;
result
}
pub fn default_brancher_over_all_propositional_variables(&self) -> DefaultBrancher {
#[allow(deprecated)]
let variables = self
.get_propositional_assignments()
.get_propositional_variables()
.collect::<Vec<_>>();
IndependentVariableValueBrancher {
variable_selector: Vsids::new(&variables),
value_selector: SolutionGuidedValueSelector::new(
&variables,
Vec::new(),
PhaseSaving::new(&variables),
),
variable_type: PhantomData,
}
}
pub fn get_state(&self) -> &CSPSolverState {
&self.state
}
pub fn get_random_generator(&mut self) -> &mut impl Random {
&mut self.internal_parameters.random_generator
}
pub fn log_statistics(&self) {
// We first check whether the statistics will/should be logged to prevent unnecessarily
// going through all the propagators
if should_log_statistics() {
self.counters.log(StatisticLogger::default());
for (index, propagator) in self.cp_propagators.iter_propagators().enumerate() {
propagator.log_statistics(StatisticLogger::new([
propagator.name(),
"number",
index.to_string().as_str(),
]));
}
}
}
/// Create a new integer variable. Its domain will have the given lower and upper bounds.
pub fn create_new_integer_variable(
&mut self,
lower_bound: i32,
upper_bound: i32,
name: Option<String>,
) -> DomainId {
assert!(
!self.state.is_inconsistent(),
"Variables cannot be created in an inconsistent state"
);
let domain = self.variable_literal_mappings.create_new_domain(
lower_bound,
upper_bound,
&mut self.assignments_integer,
&mut self.watch_list_cp,
&mut self.watch_list_propositional,
&mut self.clausal_propagator,
&mut self.assignments_propositional,
&mut self.clause_allocator,
);
if let Some(name) = name {
self.variable_names.add_integer(domain, name);
}
domain
}
/// Creates an integer variable with a domain containing only the values in `values`
pub fn create_new_integer_variable_sparse(
&mut self,
mut values: Vec<i32>,
name: Option<String>,
) -> DomainId {
assert!(
!values.is_empty(),
"cannot create a variable with an empty domain"
);
values.sort();
values.dedup();
let lower_bound = values[0];
let upper_bound = values[values.len() - 1];
let domain_id = self.create_new_integer_variable(lower_bound, upper_bound, name);
let mut next_idx = 0;
for value in lower_bound..=upper_bound {
if value == values[next_idx] {
next_idx += 1;
} else {
self.assignments_integer
.remove_initial_value_from_domain(domain_id, value, None)
.expect("the domain should not be empty");
self.assignments_propositional.enqueue_decision_literal(
self.variable_literal_mappings.get_inequality_literal(
domain_id,
value,
&self.assignments_propositional,
&self.assignments_integer,
),
)
}
}
pumpkin_assert_simple!(
next_idx == values.len(),
"Expected all values to have been processed"
);
self.propagate_enqueued();
pumpkin_assert_simple!(!self.is_conflicting());
domain_id
}
/// Returns an unsatisfiable core or an [`Err`] if the provided assumptions were conflicting
/// with one another ([`Err`] then contain the [`Literal`] which was conflicting).
///
/// We define an unsatisfiable core as a clause containing only negated assumption literals,
/// which is implied by the formula. Alternatively, it is the negation of a conjunction of
/// assumptions which cannot be satisfied together with the rest of the formula. The clause is
/// not necessarily unique or minimal.
///
/// The unsatisfiable core can be verified with reverse unit propagation (RUP).
///
/// *Notes:*
/// - If the solver is not in an unsatisfied state, this method will panic.
/// - If the solver is in an unsatisfied state, but solving was done without assumptions, this
/// will return an empty vector.
/// - If the assumptions are inconsistent, i.e. both literal x and !x are assumed, an error is
/// returned, with the literal being one of the inconsistent assumptions.
///
/// # Example usage
/// ```rust
/// // We construct the following SAT instance:
/// // (x0 \/ x1 \/ x2) /\ (x0 \/ !x1 \/ x2)
/// // And solve under the assumptions:
/// // !x0 /\ x1 /\ !x2
/// # use pumpkin_solver::Solver;
/// # use pumpkin_solver::variables::PropositionalVariable;
/// # use pumpkin_solver::variables::Literal;
/// # use pumpkin_solver::termination::Indefinite;
/// # use pumpkin_solver::branching::branchers::independent_variable_value_brancher::IndependentVariableValueBrancher;
/// # use pumpkin_solver::results::SatisfactionResultUnderAssumptions;
/// let mut solver = Solver::default();
/// let x = vec![
/// solver.new_literal(),
/// solver.new_literal(),
/// solver.new_literal(),
/// ];
///
/// solver.add_clause([x[0], x[1], x[2]]);
/// solver.add_clause([x[0], !x[1], x[2]]);
///
/// let assumptions = [!x[0], x[1], !x[2]];
/// let mut termination = Indefinite;
/// let mut brancher = solver.default_brancher_over_all_propositional_variables();
/// let result =
/// solver.satisfy_under_assumptions(&mut brancher, &mut termination, &assumptions);
///
/// if let SatisfactionResultUnderAssumptions::UnsatisfiableUnderAssumptions(
/// mut unsatisfiable,
/// ) = result
/// {
/// {
/// let core = unsatisfiable.extract_core();
///
/// // The order of the literals in the core is undefined, so we check for unordered
/// // equality.
/// assert_eq!(
/// core.len(),
/// assumptions.len(),
/// "The core has the length of the number of assumptions"
/// );
/// assert!(
/// core.iter().all(|&lit| assumptions.contains(&lit)),
/// "All literals in the core are assumptions"
/// );
/// }
/// }
/// ```
pub fn extract_clausal_core(&mut self, brancher: &mut impl Brancher) -> CoreExtractionResult {
let mut conflict_analysis_context = ConflictAnalysisContext {
propagator_store: &self.cp_propagators,
assumptions: &self.assumptions,
clausal_propagator: &self.clausal_propagator,
variable_literal_mappings: &self.variable_literal_mappings,
assignments_integer: &self.assignments_integer,
assignments_propositional: &self.assignments_propositional,
internal_parameters: &mut self.internal_parameters,
solver_state: &mut self.state,
brancher,
clause_allocator: &mut self.clause_allocator,
explanation_clause_manager: &mut self.explanation_clause_manager,
reason_store: &mut self.reason_store,
counters: &mut self.counters,
learned_clause_manager: &mut self.learned_clause_manager,
nogood_step_ids: &self.nogood_step_ids,
};
let core = self
.conflict_analyser
.compute_clausal_core(&mut conflict_analysis_context);
if !self.state.is_infeasible() {
self.restore_state_at_root(brancher);
}
core
}
#[allow(unused)]
pub(crate) fn get_conflict_reasons(
&mut self,
brancher: &mut impl Brancher,
on_analysis_step: impl FnMut(AnalysisStep),
) {
let mut conflict_analysis_context = ConflictAnalysisContext {
propagator_store: &self.cp_propagators,
assumptions: &self.assumptions,
clausal_propagator: &self.clausal_propagator,
variable_literal_mappings: &self.variable_literal_mappings,
assignments_integer: &self.assignments_integer,
assignments_propositional: &self.assignments_propositional,
internal_parameters: &mut self.internal_parameters,
solver_state: &mut self.state,
brancher,
clause_allocator: &mut self.clause_allocator,
explanation_clause_manager: &mut self.explanation_clause_manager,
reason_store: &mut self.reason_store,
counters: &mut self.counters,
learned_clause_manager: &mut self.learned_clause_manager,
nogood_step_ids: &self.nogood_step_ids,
};
self.conflict_analyser
.get_conflict_reasons(&mut conflict_analysis_context, on_analysis_step);
}
/// Returns an infinite iterator of positive literals of new variables. The new variables will
/// be unnamed.
///
/// Note that this method captures the lifetime of the immutable reference to `self`.
pub fn new_literals(&mut self) -> impl Iterator<Item = Literal> + '_ {
std::iter::from_fn(|| Some(self.create_new_propositional_variable(None)))
.map(|var| Literal::new(var, true))
}
pub fn create_new_propositional_variable(
&mut self,
name: Option<String>,
) -> PropositionalVariable {
let variable = self
.variable_literal_mappings
.create_new_propositional_variable(
&mut self.watch_list_propositional,
&mut self.clausal_propagator,
&mut self.assignments_propositional,
);
if let Some(name) = name {
self.variable_names.add_propositional(variable, name);
}
variable
}
/// Get a literal which is globally true.
pub fn get_true_literal(&self) -> Literal {
self.assignments_propositional.true_literal
}
/// Get a literal which is globally false.
pub fn get_false_literal(&self) -> Literal {
self.assignments_propositional.false_literal
}
/// Get the lower bound for the given variable.
pub fn get_lower_bound(&self, variable: &impl IntegerVariable) -> i32 {
variable.lower_bound(&self.assignments_integer)
}
/// Get the upper bound for the given variable.
pub fn get_upper_bound(&self, variable: &impl IntegerVariable) -> i32 {
variable.upper_bound(&self.assignments_integer)
}
/// Determine whether `value` is in the domain of `variable`.
pub fn integer_variable_contains(&self, variable: &impl IntegerVariable, value: i32) -> bool {
variable.contains(&self.assignments_integer, value)
}
/// Get the assigned integer for the given variable. If it is not assigned, `None` is returned.
pub fn get_assigned_integer_value(&self, variable: &impl IntegerVariable) -> Option<i32> {
let lb = self.get_lower_bound(variable);
let ub = self.get_upper_bound(variable);
if lb == ub {
Some(lb)
} else {
None
}
}
/// Get the value of the given literal, which could be unassigned.
pub fn get_literal_value(&self, literal: Literal) -> Option<bool> {
if self.assignments_propositional.is_literal_assigned(literal) {
Some(
self.assignments_propositional
.is_literal_assigned_true(literal),
)
} else {
None
}
}
#[deprecated = "users of the solvers should not have to access solver fields"]
pub(crate) fn get_propositional_assignments(&self) -> &AssignmentsPropositional {
&self.assignments_propositional
}
pub fn restore_state_at_root(&mut self, brancher: &mut impl Brancher) {
if !self.assignments_propositional.is_at_the_root_level() {
self.backtrack(0, brancher);
self.state.declare_ready();
}
}
fn synchronise_propositional_trail_based_on_integer_trail(&mut self) -> Option<ConflictInfo> {
// for each entry on the integer trail, we now add the equivalent propositional
// representation on the propositional trail note that only one literal per
// predicate will be stored since the clausal propagator will propagate other
// literals to ensure that the meaning of the literal is respected e.g.,
// placing [x >= 5] will prompt the clausal propagator to set [x >= 4] [x >= 3] ... [x >= 1]
// to true
for cp_trail_pos in
self.cp_trail_synced_position..self.assignments_integer.num_trail_entries()
{
let entry = self.assignments_integer.get_trail_entry(cp_trail_pos);
// It could be the case that the reason is `None`
// due to a SAT propagation being put on the trail during
// `synchronise_integer_trail_based_on_propositional_trail` In that case we
// do not synchronise since we assume that the SAT trail is already aware of the
// information
if let Some(reason_ref) = entry.reason {
let literal = self.variable_literal_mappings.get_literal(
entry.predicate,
&self.assignments_propositional,
&self.assignments_integer,
);
let constraint_reference = ConstraintReference::create_reason_reference(reason_ref);
let conflict_info = self
.assignments_propositional
.enqueue_propagated_literal(literal, constraint_reference);
if conflict_info.is_some() {
self.cp_trail_synced_position = cp_trail_pos + 1;
return conflict_info;
}
// It could occur that one of these propagations caused a conflict in which case the
// SAT-view and the CP-view are unsynchronised We need to ensure
// that the views are synchronised up to the CP trail entry which caused the
// conflict
if let Err(e) = self.clausal_propagator.propagate(
&mut self.assignments_propositional,
&mut self.clause_allocator,
) {
self.cp_trail_synced_position = cp_trail_pos + 1;
return Some(e);
}
}
}
self.cp_trail_synced_position = self.assignments_integer.num_trail_entries();
None
}
fn synchronise_integer_trail_based_on_propositional_trail(
&mut self,
) -> Result<(), EmptyDomain> {
pumpkin_assert_moderate!(
self.cp_trail_synced_position == self.assignments_integer.num_trail_entries(),
"We can only sychronise the propositional trail if the integer trail is already
sychronised."
);
// this could possibly be improved if it shows up as a performance hotspot
// in some cases when we push e.g., [x >= a] on the stack, then we could also add the
// literals to the propositional stack and update the next_domain_trail_position
// pointer to go pass the entries that surely are not going to lead to any changes
// this would only work if the next_domain_trail pointer is already at the end of the
// stack, think about this, could be useful for propagators and might be useful
// for a custom domain propagator this would also simplify the code below, no
// additional checks would be needed? Not sure.
if self.assignments_integer.num_domains() == 0 {
self.sat_trail_synced_position = self.assignments_propositional.num_trail_entries();
return Ok(());
}
for sat_trail_pos in
self.sat_trail_synced_position..self.assignments_propositional.num_trail_entries()
{
let literal = self
.assignments_propositional
.get_trail_entry(sat_trail_pos);
self.synchronise_literal(literal)?;
}
self.sat_trail_synced_position = self.assignments_propositional.num_trail_entries();
// the newly added entries to the trail do not need to be synchronise with the propositional
// trail this is because the integer trail was already synchronise when this method
// was called and the newly added entries are already present on the propositional
// trail
self.cp_trail_synced_position = self.assignments_integer.num_trail_entries();
let _ = self.process_domain_events();
Ok(())
}
fn synchronise_literal(&mut self, literal: Literal) -> Result<(), EmptyDomain> {
// recall that a literal may be linked to multiple predicates
// e.g., this may happen when in preprocessing two literals are detected to be equal
// so now we loop for each predicate and make necessary updates
// (although currently we do not have any serious preprocessing!)
for j in 0..self.variable_literal_mappings.literal_to_predicates[literal].len() {
let predicate = self.variable_literal_mappings.literal_to_predicates[literal][j];
self.assignments_integer
.apply_integer_predicate(predicate, None)?;
}
Ok(())
}
fn synchronise_assignments(&mut self) {
pumpkin_assert_simple!(
self.sat_trail_synced_position >= self.assignments_propositional.num_trail_entries()
);
pumpkin_assert_simple!(
self.cp_trail_synced_position >= self.assignments_integer.num_trail_entries()
);
self.cp_trail_synced_position = self.assignments_integer.num_trail_entries();
self.sat_trail_synced_position = self.assignments_propositional.num_trail_entries();
}
}
// methods that serve as the main building blocks
impl ConstraintSatisfactionSolver {
fn initialise(&mut self, assumptions: &[Literal]) {
pumpkin_assert_simple!(
!self.state.is_infeasible_under_assumptions(),
"Solver is not expected to be in the infeasible under assumptions state when initialising.
Missed extracting the core?"
);
self.state.declare_solving();
assumptions.clone_into(&mut self.assumptions);
}
fn solve_internal(
&mut self,
termination: &mut impl TerminationCondition,
brancher: &mut impl Brancher,
) -> CSPSolverExecutionFlag {
loop {
if termination.should_stop() {
self.state.declare_timeout();
return CSPSolverExecutionFlag::Timeout;
}
self.learned_clause_manager
.shrink_learned_clause_database_if_needed(
&self.assignments_propositional,
&mut self.clause_allocator,
&mut self.clausal_propagator,
);
self.propagate_enqueued();
if self.state.no_conflict() {
self.declare_new_decision_level();
// Restarts should only occur after a new decision level has been declared to
// account for the fact that all assumptions should be assigned when restarts take
// place. Since one assumption is posted per decision level, all assumptions are
// assigned when the decision level is strictly larger than the number of
// assumptions.
if self.restart_strategy.should_restart() {
self.restart_during_search(brancher);
}
let branching_result = self.enqueue_next_decision(brancher);
if let Err(flag) = branching_result {
return flag;
}
}
// conflict
else {
if self.assignments_propositional.is_at_the_root_level() {
if self.assumptions.is_empty() {
// Only complete the proof when _not_ solving under assumptions. It is
// unclear what a proof would look like with assumptions, as there is extra
// state to consider. It also means that the learned clause could be
// non-empty, messing with all kinds of asserts.
self.complete_proof();
}
self.state.declare_infeasible();
return CSPSolverExecutionFlag::Infeasible;
}
self.resolve_conflict(brancher);
self.learned_clause_manager.decay_clause_activities();
brancher.on_conflict()
}
}
}
fn enqueue_next_decision(
&mut self,
brancher: &mut impl Brancher,
) -> Result<(), CSPSolverExecutionFlag> {
if let Some(assumption_literal) = self.peek_next_assumption_literal() {
let success = self.enqueue_assumption_literal(assumption_literal);
if !success {
return Err(CSPSolverExecutionFlag::Infeasible);
}
Ok(())
} else {
let decided_predicate = brancher.next_decision(&mut SelectionContext::new(
&self.assignments_integer,
&self.assignments_propositional,
&mut self.internal_parameters.random_generator,
));
if let Some(predicate) = decided_predicate {
self.counters.engine_statistics.num_decisions += 1;
self.assignments_propositional
.enqueue_decision_literal(match predicate {
Predicate::IntegerPredicate(integer_predicate) => {
self.variable_literal_mappings.get_literal(
integer_predicate,
&self.assignments_propositional,
&self.assignments_integer,
)
}
bool_predicate => bool_predicate
.get_literal_of_bool_predicate(
self.assignments_propositional.true_literal,
)
.unwrap(),
});
Ok(())
} else {
self.state.declare_solution_found();
Err(CSPSolverExecutionFlag::Feasible)
}
}
}
/// Returns true if the assumption was successfully enqueued, and false otherwise
pub(crate) fn enqueue_assumption_literal(&mut self, assumption_literal: Literal) -> bool {
// Case 1: the assumption is unassigned, assign it
if self
.assignments_propositional
.is_literal_unassigned(assumption_literal)
{
self.assignments_propositional
.enqueue_decision_literal(assumption_literal);
true
// Case 2: the assumption has already been set to true
// this happens when other assumptions propagated the literal
// or the assumption is already set to true at the root level
} else if self
.assignments_propositional
.is_literal_assigned_true(assumption_literal)
{
// in this case, do nothing
// note that the solver will then increase the decision level without enqueuing a
// decision literal this is necessary because by convention the solver will
// try to assign the i-th assumption literal at decision level i+1
true
}
// Case 3: the assumption literal is in conflict with the input assumption
// which means the instance is infeasible under the current assumptions
else {
self.state
.declare_infeasible_under_assumptions(assumption_literal);
false
}
}
pub(crate) fn declare_new_decision_level(&mut self) {
self.assignments_propositional.increase_decision_level();
self.assignments_integer.increase_decision_level();
self.reason_store.increase_decision_level();
}
/// Changes the state based on the conflict analysis result (stored in
/// [`ConstraintSatisfactionSolver::analysis_result`]). It performs the following:
/// - Adds the learned clause to the database
/// - Performs backtracking
/// - Enqueues the propagated [`Literal`] of the learned clause
/// - Updates the internal data structures (e.g. for the restart strategy or the learned clause
/// manager)
///
/// # Note
/// This method performs no propagation, this is left up to the solver afterwards
fn resolve_conflict(&mut self, brancher: &mut impl Brancher) {
pumpkin_assert_moderate!(self.state.conflicting());
self.analysis_result = self.compute_learned_clause(brancher);
self.process_learned_clause(brancher);
self.state.declare_solving();
}
fn compute_learned_clause(&mut self, brancher: &mut impl Brancher) -> ConflictAnalysisResult {
let mut conflict_analysis_context = ConflictAnalysisContext {
propagator_store: &self.cp_propagators,
assumptions: &self.assumptions,
clausal_propagator: &self.clausal_propagator,
variable_literal_mappings: &self.variable_literal_mappings,
assignments_integer: &self.assignments_integer,
assignments_propositional: &self.assignments_propositional,
internal_parameters: &mut self.internal_parameters,
solver_state: &mut self.state,
brancher,
clause_allocator: &mut self.clause_allocator,
explanation_clause_manager: &mut self.explanation_clause_manager,
reason_store: &mut self.reason_store,
counters: &mut self.counters,
learned_clause_manager: &mut self.learned_clause_manager,
nogood_step_ids: &self.nogood_step_ids,
};
self.conflict_analyser
.compute_1uip(&mut conflict_analysis_context)
}
fn process_learned_clause(&mut self, brancher: &mut impl Brancher) {
let proof_step_id = self
.internal_parameters
.proof_log
.log_learned_clause(self.analysis_result.learned_literals.iter().copied())
.expect("Failed to write proof log");
// unit clauses are treated in a special way: they are added as root level decisions
if self.analysis_result.learned_literals.len() == 1 {
// important to notify about the conflict _before_ backtracking removes literals from
// the trail
self.restart_strategy
.notify_conflict(1, self.assignments_propositional.num_trail_entries());
self.backtrack(0, brancher);
let unit_clause = self.analysis_result.learned_literals[0];
let _ = self.unit_nogood_step_ids.insert(unit_clause, proof_step_id);
self.assignments_propositional
.enqueue_decision_literal(unit_clause);
self.counters
.learned_clause_statistics
.num_unit_clauses_learned +=
(self.analysis_result.learned_literals.len() == 1) as u64;
} else {
self.counters
.learned_clause_statistics
.average_learned_clause_length
.add_term(self.analysis_result.learned_literals.len() as u64);
// important to get trail length before the backtrack
let num_variables_assigned_before_conflict =
&self.assignments_propositional.num_trail_entries();
self.counters
.learned_clause_statistics
.average_backtrack_amount
.add_term((self.get_decision_level() - self.analysis_result.backjump_level) as u64);
self.backtrack(self.analysis_result.backjump_level, brancher);
let clause_reference = self.learned_clause_manager.add_learned_clause(
self.analysis_result.learned_literals.clone(), // todo not ideal with clone
&mut self.clausal_propagator,
&mut self.assignments_propositional,
&mut self.clause_allocator,
);
self.nogood_step_ids.accomodate(clause_reference, None);
self.nogood_step_ids[clause_reference] = Some(proof_step_id);
let lbd = self.learned_clause_manager.compute_lbd_for_literals(
&self.analysis_result.learned_literals,
&self.assignments_propositional,
);
self.restart_strategy
.notify_conflict(lbd, *num_variables_assigned_before_conflict);
}
}
/// Performs a restart during the search process; it is only called when it has been determined
/// to be necessary by the [`ConstraintSatisfactionSolver::restart_strategy`]. A 'restart'
/// differs from backtracking to level zero in that a restart backtracks to decision level
/// zero and then performs additional operations, e.g., clean up learned clauses, adjust
/// restart frequency, etc.
///
/// This method will also increase the decision level after backtracking.
///
/// Returns true if a restart took place and false otherwise.
fn restart_during_search(&mut self, brancher: &mut impl Brancher) {
pumpkin_assert_simple!(
self.are_all_assumptions_assigned(),
"Sanity check: restarts should not trigger whilst assigning assumptions"
);
// no point backtracking past the assumption level
if self.get_decision_level() <= self.assumptions.len() {
return;
}
if brancher.is_restart_pointless() {
// If the brancher is static then there is no point in restarting as it would make the
// exact same decision
return;
}
self.counters.engine_statistics.num_restarts += 1;
self.backtrack(0, brancher);
self.restart_strategy.notify_restart();
self.declare_new_decision_level();
}
pub(crate) fn backtrack(&mut self, backtrack_level: usize, brancher: &mut impl Brancher) {
pumpkin_assert_simple!(backtrack_level < self.get_decision_level());
// We clear all of the unprocessed events from the watch list since synchronisation, we do
// not need to process these events
if self.watch_list_cp.is_watching_anything() {
pumpkin_assert_simple!(self.event_drain.is_empty());
self.assignments_integer
.drain_domain_events()
.for_each(drop);
}
// We synchronise the assignments propositional and for each unassigned literal, we notify
// the brancher that it has been unassigned
let unassigned_literals = self.assignments_propositional.synchronise(backtrack_level);
unassigned_literals.for_each(|literal| {
brancher.on_unassign_literal(literal);
});
// We synchronise the clausal propagator which sets the next variable on the trail to
// propagate
self.clausal_propagator
.synchronise(self.assignments_propositional.num_trail_entries());
pumpkin_assert_simple!(
self.assignments_propositional.get_decision_level()
< self.assignments_integer.get_decision_level(),
"assignments_propositional must be backtracked _before_ CPEngineDataStructures"
);
// We also set the last processed trail entry of the propositional trail
self.propositional_trail_index = min(
self.propositional_trail_index,
self.assignments_propositional.num_trail_entries(),
);
// We synchronise the assignments integer and for each of the unassigned integer variables,
// we notify the brancher that it has been unassigned
self.assignments_integer
.synchronise(
backtrack_level,
self.watch_list_cp.is_watching_any_backtrack_events(),
self.last_notified_cp_trail_index,
)
.iter()
.for_each(|(domain_id, previous_value)| {
brancher.on_unassign_integer(*domain_id, *previous_value)
});
pumpkin_assert_simple!(
!self.watch_list_cp.is_watching_anything()
|| self.last_notified_cp_trail_index
>= self.assignments_integer.num_trail_entries(),
);
self.last_notified_cp_trail_index = self.assignments_integer.num_trail_entries();
self.reason_store.synchronise(backtrack_level);
// note that variable_literal_mappings sync should be called after the sat/cp data
// structures backtrack
self.synchronise_assignments();
// for now all propagators are called to synchronise
// in the future this will be improved in two ways:
// + allow incremental synchronisation
// + only call the subset of propagators that were notified since last backtrack
for propagator in self.cp_propagators.iter_propagators_mut() {
let context =
PropagationContext::new(&self.assignments_integer, &self.assignments_propositional);
propagator.synchronise(context);
}
let _ = self.process_backtrack_events();
self.propagator_queue.clear();
}
/// Main propagation loop.
pub(crate) fn propagate_enqueued(&mut self) {
let num_assigned_variables_old = self.assignments_integer.num_trail_entries();
loop {
let conflict_info = self.synchronise_propositional_trail_based_on_integer_trail();
if let Some(conflict_info) = conflict_info {
// The previous propagation triggered an empty domain.
self.state
.declare_conflict(conflict_info.try_into().unwrap());
break;
}
let clausal_propagation_status = self.clausal_propagator.propagate(
&mut self.assignments_propositional,
&mut self.clause_allocator,
);
if let Err(conflict_info) = clausal_propagation_status {
self.state
.declare_conflict(conflict_info.try_into().unwrap());
break;
}
self.synchronise_integer_trail_based_on_propositional_trail()
.expect("should not be an error");
// ask propagators to propagate
let propagation_status_one_step_cp = self.propagate_cp_one_step();
match propagation_status_one_step_cp {
PropagationStatusOneStepCP::PropagationHappened => {
// do nothing, the result will be that the clausal propagator will go next
// recall that the idea is to always propagate simpler propagators before more
// complex ones after a cp propagation was done one step,
// it is time to go to the clausal propagator
}
PropagationStatusOneStepCP::FixedPoint => {
break;
}
PropagationStatusOneStepCP::ConflictDetected { conflict_info } => {
let result = self.synchronise_propositional_trail_based_on_integer_trail();
// If the clausal propagator found a conflict during synchronisation then we
// want to use that conflict; if we do not use that conflict then it could be
// the case that there are literals in the conflict_info found by the CP
// propagator which are not assigned in the SAT-view (which leads to an error
// during conflict analysis)
self.state.declare_conflict(
result
.map(|ci| {
ci.try_into()
.expect("this is not a ConflictInfo::Explanation")
})
.unwrap_or(conflict_info),
);
break;
}
} // end match
}
self.counters.engine_statistics.num_conflicts += self.state.conflicting() as u64;
self.counters.engine_statistics.num_propagations +=
self.assignments_integer.num_trail_entries() as u64 - num_assigned_variables_old as u64;
// Only check fixed point propagation if there was no reported conflict.
pumpkin_assert_extreme!(
self.state.conflicting()
|| DebugHelper::debug_fixed_point_propagation(
&self.clausal_propagator,
&self.assignments_integer,
&self.assignments_propositional,
&self.clause_allocator,
&self.cp_propagators,
)
);
}
/// Performs propagation using propagators, stops after a propagator propagates at least one
/// domain change. The idea is to go to the clausal propagator first before proceeding with
/// other propagators, in line with the idea of propagating simpler propagators before more
/// complex ones.
fn propagate_cp_one_step(&mut self) -> PropagationStatusOneStepCP {
if self.propagator_queue.is_empty() {
return PropagationStatusOneStepCP::FixedPoint;
}
let cp_trail_length = self.assignments_integer.num_trail_entries();
let is_at_root = self.get_decision_level() == 0;
let propagator_id = self.propagator_queue.pop();
let tag = self.cp_propagators.get_tag(propagator_id);
let propagator = &mut self.cp_propagators[propagator_id];
let propagation_status = {
let context = PropagationContextMut::new(
&mut self.assignments_integer,
&mut self.reason_store,
&mut self.assignments_propositional,
propagator_id,
);
propagator.propagate(context)
};
if is_at_root && self.internal_parameters.proof_log.is_logging_inferences() {
self.log_root_propagation_to_proof(cp_trail_length, tag);
}
let result = match propagation_status {
// An empty domain conflict will be caught by the clausal propagator.
Err(Inconsistency::EmptyDomain) => PropagationStatusOneStepCP::PropagationHappened,
// A propagator-specific reason for the current conflict.
Err(Inconsistency::Other(conflict_info)) => {
if let ConflictInfo::Explanation(ref propositional_conjunction) = conflict_info {
pumpkin_assert_advanced!(DebugHelper::debug_reported_failure(
&self.assignments_integer,
&self.assignments_propositional,
&self.variable_literal_mappings,
propositional_conjunction,
&self.cp_propagators[propagator_id],
propagator_id,
));
}
PropagationStatusOneStepCP::ConflictDetected {
conflict_info: conflict_info.into_stored(propagator_id),
}
}
Ok(()) => {
let _ = self.process_domain_events();
PropagationStatusOneStepCP::PropagationHappened
}
};
pumpkin_assert_extreme!(
DebugHelper::debug_check_propagations(
cp_trail_length,
propagator_id,
&self.assignments_integer,
&self.assignments_propositional,
&mut self.reason_store,
&self.variable_literal_mappings,
&self.cp_propagators
),
"Checking the propagations performed by the propagator led to inconsistencies!"
);
result
}
/// Introduces any root-level propagations to the proof by introducing them as
/// nogoods.
///
/// The inference `R -> l` is logged to the proof as follows:
/// 1. Infernce `R /\ ~l -> false`
/// 2. Nogood (clause) `l`
fn log_root_propagation_to_proof(
&mut self,
start_trail_index: usize,
tag: Option<NonZero<u32>>,
) {
for trail_idx in start_trail_index..self.assignments_integer.num_trail_entries() {
let entry = self.assignments_integer.get_trail_entry(trail_idx);
let reason = entry
.reason
.expect("Added by a propagator and must therefore have a reason");
// Get the conjunction of predicates explaining the propagation.
let reason = self
.reason_store
.get_or_compute(
reason,
PropagationContext::new(
&self.assignments_integer,
&self.assignments_propositional,
),
)
.expect("Reason ref is valid");
// Get the literal corresponding to the propagated predicate.
let propagated = self.variable_literal_mappings.get_literal(
entry.predicate,
&self.assignments_propositional,
&self.assignments_integer,
);
// Convert the conjunction of predicates to a conjunction of literals.
let premises = reason
.iter()
.map(|predicate| match predicate {
Predicate::IntegerPredicate(predicate) => {
self.variable_literal_mappings.get_literal(
*predicate,
&self.assignments_propositional,
&self.assignments_integer,
)
}
Predicate::Literal(literal) => *literal,
Predicate::False => self.false_literal,
Predicate::True => self.true_literal,
})
.collect::<Vec<_>>();
// The proof inference for the propagation `R -> l` is `R /\ ~l -> false`.
let inference_premises = premises.iter().copied().chain(std::iter::once(!propagated));
let _ = self.internal_parameters.proof_log.log_inference(
tag,
inference_premises,
self.false_literal,
);
// Since inference steps are only related to the nogood they directly precede,
// facts derived at the root are also logged as nogoods so they can be used in the
// derivation of other nogoods.
//
// In case we are logging hints, we must therefore identify what proof steps contribute
// to the derivation of the current nogood, and therefore are in the premise of the
// previously logged inference. These proof steps are necessarily unit nogoods, and
// therefore we recursively look up which unit nogoods are involved in the premise of
// the inference.
let mut to_explain = VecDeque::from(premises);
while let Some(premise) = to_explain.pop_front() {
pumpkin_assert_simple!(self
.assignments_propositional
.is_literal_assigned_true(premise));
if premise == self.true_literal {
continue;
}
if let Some(step_id) = self.unit_nogood_step_ids.get(&premise) {
self.internal_parameters.proof_log.add_propagation(*step_id);
} else {
let reason = self
.assignments_propositional
.get_literal_reason_constraint(premise);
// If the reason were a CP propagation, then `self.unit_nogood_step_ids` would
// have contained `premise`.
assert!(
reason.is_clause(),
"a propagation would have been logged as a nogood"
);
let clause_ref = reason.as_clause_reference();
let premises = self.clause_allocator[clause_ref]
.get_literal_slice()
.iter()
.skip(1)
.map(|&lit| !lit);
to_explain.extend(premises);
}
}
// Log the nogood which adds the root-level knowledge to the proof.
let nogood_step_id = self
.internal_parameters
.proof_log
.log_learned_clause([propagated]);
if let Ok(nogood_step_id) = nogood_step_id {
let _ = self.unit_nogood_step_ids.insert(propagated, nogood_step_id);
}
}
}
fn are_all_assumptions_assigned(&self) -> bool {
self.assignments_propositional.get_decision_level() > self.assumptions.len()
}
fn peek_next_assumption_literal(&self) -> Option<Literal> {
if self.are_all_assumptions_assigned() {
None
} else {
// the convention is that at decision level i, the (i-1)th assumption is set
// note that the decision level is increased before calling branching hence the minus
// one
Some(self.assumptions[self.assignments_propositional.get_decision_level() - 1])
}
}
}
// methods for adding constraints (propagators and clauses)
impl ConstraintSatisfactionSolver {
/// Add a clause (of at least length 2) which could later be deleted. Be mindful of the effect
/// of this on learned clauses etc. if a solve call were to be invoked after adding a clause
/// through this function.
///
/// The clause is marked as 'learned'.
pub(crate) fn add_allocated_deletable_clause(
&mut self,
clause: Vec<Literal>,
) -> ClauseReference {
self.clausal_propagator
.add_clause_unchecked(clause, true, &mut self.clause_allocator)
.unwrap()
}
/// Delete an allocated clause. Users of this method must ensure the state of the solver stays
/// well-defined. In particular, if there are learned clauses derived through this clause, and
/// it is removed, those learned clauses may no-longer be valid.
pub(crate) fn delete_allocated_clause(&mut self, reference: ClauseReference) -> Vec<Literal> {
let clause = self.clause_allocator[reference]
.get_literal_slice()
.to_vec();
self.clausal_propagator
.remove_clause_from_consideration(&clause, reference);
self.clause_allocator.delete_clause(reference);
clause
}
/// Post a new propagator to the solver. If unsatisfiability can be immediately determined
/// through propagation, this will return `false`. If not, this returns `true`.
///
/// The caller should ensure the solver is in the root state before calling this, either
/// because no call to [`Self::solve()`] has been made, or because
/// [`Self::restore_state_at_root()`] was called.
///
/// If the solver is already in a conflicting state, i.e. a previous call to this method
/// already returned `false`, calling this again will not alter the solver in any way, and
/// `false` will be returned again.
pub fn add_propagator(
&mut self,
propagator_to_add: impl Propagator + 'static,
tag: Option<NonZero<u32>>,
) -> Result<(), ConstraintOperationError> {
if self.state.is_inconsistent() {
return Err(ConstraintOperationError::InfeasiblePropagator);
}
pumpkin_assert_simple!(
propagator_to_add.priority() <= 3,
"The propagator priority exceeds 3.
Currently we only support values up to 3,
but this can easily be changed if there is a good reason."
);
let new_propagator_id = self.cp_propagators.alloc(Box::new(propagator_to_add), tag);
let new_propagator = &mut self.cp_propagators[new_propagator_id];
let mut initialisation_context = PropagatorInitialisationContext::new(
&mut self.watch_list_cp,
&mut self.watch_list_propositional,
new_propagator_id,
&self.assignments_integer,
&self.assignments_propositional,
);
let initialisation_status = new_propagator.initialise_at_root(&mut initialisation_context);
if let Err(conflict_explanation) = initialisation_status {
self.state
.declare_conflict(StoredConflictInfo::Explanation {
conjunction: conflict_explanation,
propagator: new_propagator_id,
});
self.complete_proof();
let _ = self.conclude_proof_unsat();
self.state.declare_infeasible();
Err(ConstraintOperationError::InfeasiblePropagator)
} else {
self.propagator_queue
.enqueue_propagator(new_propagator_id, new_propagator.priority());
self.propagate_enqueued();
if self.state.no_conflict() {
Ok(())
} else {
self.complete_proof();
let _ = self.conclude_proof_unsat();
Err(ConstraintOperationError::InfeasiblePropagator)
}
}
}
/// Creates a clause from `literals` and adds it to the current formula.
///
/// If the formula becomes trivially unsatisfiable, a [`ConstraintOperationError`] will be
/// returned. Subsequent calls to this method will always return an error, and no
/// modification of the solver will take place.
pub fn add_clause(
&mut self,
literals: impl IntoIterator<Item = Literal>,
) -> Result<(), ConstraintOperationError> {
pumpkin_assert_moderate!(!self.state.is_infeasible_under_assumptions());
pumpkin_assert_moderate!(self.is_propagation_complete());
if self.state.is_infeasible() {
return Err(ConstraintOperationError::InfeasibleState);
}
let literals: Vec<Literal> = literals.into_iter().collect();
let result = self.clausal_propagator.add_permanent_clause(
literals,
&mut self.assignments_propositional,
&mut self.clause_allocator,
);
if result.is_err() {
self.state.declare_infeasible();
return Err(ConstraintOperationError::InfeasibleClause);
}
self.propagate_enqueued();
if self.state.is_infeasible() {
self.state.declare_infeasible();
return Err(ConstraintOperationError::InfeasibleClause);
}
Ok(())
}
}
// methods for getting simple info out of the solver
impl ConstraintSatisfactionSolver {
pub fn is_propagation_complete(&self) -> bool {
self.clausal_propagator
.is_propagation_complete(self.assignments_propositional.num_trail_entries())
&& self.propagator_queue.is_empty()
}
pub(crate) fn get_decision_level(&self) -> usize {
pumpkin_assert_moderate!(
self.assignments_propositional.get_decision_level()
== self.assignments_integer.get_decision_level()
);
self.assignments_propositional.get_decision_level()
}
}
#[derive(Default, Debug)]
enum CSPSolverStateInternal {
#[default]
Ready,
Solving,
ContainsSolution,
Conflict {
conflict_info: StoredConflictInfo,
},
Infeasible,
InfeasibleUnderAssumptions {
violated_assumption: Literal,
},
Timeout,
}
#[derive(Default, Debug)]
pub struct CSPSolverState {
internal_state: CSPSolverStateInternal,
}
impl CSPSolverState {
pub fn is_ready(&self) -> bool {
matches!(self.internal_state, CSPSolverStateInternal::Ready)
}
pub fn no_conflict(&self) -> bool {
!self.conflicting()
}
pub fn conflicting(&self) -> bool {
matches!(
self.internal_state,
CSPSolverStateInternal::Conflict { conflict_info: _ }
)
// self.is_clausal_conflict() || self.is_cp_conflict()
}
pub fn is_infeasible(&self) -> bool {
matches!(self.internal_state, CSPSolverStateInternal::Infeasible)
}
/// Determines whether the current state is inconsistent; i.e. whether it is conflicting,
/// infeasible or infeasible under assumptions
pub fn is_inconsistent(&self) -> bool {
self.conflicting() || self.is_infeasible() || self.is_infeasible_under_assumptions()
}
pub fn is_infeasible_under_assumptions(&self) -> bool {
matches!(
self.internal_state,
CSPSolverStateInternal::InfeasibleUnderAssumptions {
violated_assumption: _
}
)
}
pub fn get_violated_assumption(&self) -> Literal {
if let CSPSolverStateInternal::InfeasibleUnderAssumptions {
violated_assumption,
} = self.internal_state
{
violated_assumption
} else {
panic!(
"Cannot extract violated assumption without getting the solver into the infeasible
under assumptions state."
);
}
}
pub fn get_conflict_info(&self) -> &StoredConflictInfo {
if let CSPSolverStateInternal::Conflict { conflict_info } = &self.internal_state {
conflict_info
} else {
panic!("Cannot extract conflict clause if solver is not in a clausal conflict.");
}
}
pub fn timeout(&self) -> bool {
matches!(self.internal_state, CSPSolverStateInternal::Timeout)
}
pub fn has_solution(&self) -> bool {
matches!(
self.internal_state,
CSPSolverStateInternal::ContainsSolution
)
}
pub(crate) fn declare_ready(&mut self) {
self.internal_state = CSPSolverStateInternal::Ready;
}
pub fn declare_solving(&mut self) {
pumpkin_assert_simple!((self.is_ready() || self.conflicting()) && !self.is_infeasible());
self.internal_state = CSPSolverStateInternal::Solving;
}
fn declare_infeasible(&mut self) {
self.internal_state = CSPSolverStateInternal::Infeasible;
}
fn declare_conflict(&mut self, conflict_info: StoredConflictInfo) {
pumpkin_assert_simple!(!self.conflicting());
self.internal_state = CSPSolverStateInternal::Conflict { conflict_info };
}
fn declare_solution_found(&mut self) {
pumpkin_assert_simple!(!self.is_infeasible());
self.internal_state = CSPSolverStateInternal::ContainsSolution;
}
fn declare_timeout(&mut self) {
pumpkin_assert_simple!(!self.is_infeasible());
self.internal_state = CSPSolverStateInternal::Timeout;
}
fn declare_infeasible_under_assumptions(&mut self, violated_assumption: Literal) {
pumpkin_assert_simple!(!self.is_infeasible());
self.internal_state = CSPSolverStateInternal::InfeasibleUnderAssumptions {
violated_assumption,
}
}
}
struct DummyBrancher;
impl Brancher for DummyBrancher {
fn next_decision(&mut self, _: &mut SelectionContext) -> Option<Predicate> {
panic!("DummyBrancher should only be used when `next_decision` will not be called")
}
}
#[cfg(test)]
mod tests {
use super::ConstraintSatisfactionSolver;
use super::CoreExtractionResult;
use crate::basic_types::CSPSolverExecutionFlag;
use crate::engine::reason::ReasonRef;
use crate::engine::termination::indefinite::Indefinite;
use crate::engine::variables::Literal;
use crate::predicate;
use crate::propagators::linear_not_equal::LinearNotEqualPropagator;
/// A test propagator which propagates the stored propagations and then reports one of the
/// stored conflicts. If multiple conflicts are stored then the next time it is called, it will
/// return the next conflict.
///
/// It is assumed that the propagations do not lead to conflict, if the propagations do lead to
/// a conflict then this method will panic.
fn is_same_core(core1: &[Literal], core2: &[Literal]) -> bool {
core1.len() == core2.len() && core2.iter().all(|lit| core1.contains(lit))
}
fn is_result_the_same(res1: &CoreExtractionResult, res2: &CoreExtractionResult) -> bool {
match (res1, res2) {
(
CoreExtractionResult::ConflictingAssumption(literal1),
CoreExtractionResult::ConflictingAssumption(literal2),
) => {
// The results are both conflicting assumptions, we check whether it is the same
// assumption
literal1 == literal2
}
(CoreExtractionResult::Core(core1), CoreExtractionResult::Core(core2)) => {
// The results are both cores, we check whether they are the same
is_same_core(core1, core2)
}
_ => {
// The results are different
false
}
}
}
fn run_test(
mut solver: ConstraintSatisfactionSolver,
assumptions: Vec<Literal>,
expected_flag: CSPSolverExecutionFlag,
expected_result: CoreExtractionResult,
) {
let mut brancher = solver.default_brancher_over_all_propositional_variables();
let flag = solver.solve_under_assumptions(&assumptions, &mut Indefinite, &mut brancher);
assert!(flag == expected_flag, "The flags do not match.");
if matches!(flag, CSPSolverExecutionFlag::Infeasible) {
assert!(
is_result_the_same(
&solver.extract_clausal_core(&mut brancher),
&expected_result
),
"The result is not the same"
);
}
}
fn create_instance1() -> (ConstraintSatisfactionSolver, Vec<Literal>) {
let mut solver = ConstraintSatisfactionSolver::default();
let lit1 = Literal::new(solver.create_new_propositional_variable(None), true);
let lit2 = Literal::new(solver.create_new_propositional_variable(None), true);
let _ = solver.add_clause([lit1, lit2]);
let _ = solver.add_clause([lit1, !lit2]);
let _ = solver.add_clause([!lit1, lit2]);
(solver, vec![lit1, lit2])
}
#[test]
fn core_extraction_unit_core() {
let mut solver = ConstraintSatisfactionSolver::default();
let lit1 = Literal::new(solver.create_new_propositional_variable(None), true);
let _ = solver.add_clause(vec![lit1]);
run_test(
solver,
vec![!lit1],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![!lit1]),
)
}
#[test]
fn simple_core_extraction_1_1() {
let (solver, lits) = create_instance1();
run_test(
solver,
vec![!lits[0], !lits[1]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![!lits[0]]),
)
}
#[test]
fn simple_core_extraction_1_2() {
let (solver, lits) = create_instance1();
run_test(
solver,
vec![!lits[1], !lits[0]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![!lits[1]]),
);
}
#[test]
fn simple_core_extraction_1_infeasible() {
let (mut solver, lits) = create_instance1();
let _ = solver.add_clause([!lits[0], !lits[1]]);
run_test(
solver,
vec![!lits[1], !lits[0]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![]),
);
}
#[test]
fn simple_core_extraction_1_core_before_inconsistency() {
let (solver, lits) = create_instance1();
run_test(
solver,
vec![!lits[1], lits[1]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![!lits[1]]), /* The core gets computed before
* inconsistency is detected */
);
}
fn create_instance2() -> (ConstraintSatisfactionSolver, Vec<Literal>) {
let mut solver = ConstraintSatisfactionSolver::default();
let lit1 = Literal::new(solver.create_new_propositional_variable(None), true);
let lit2 = Literal::new(solver.create_new_propositional_variable(None), true);
let lit3 = Literal::new(solver.create_new_propositional_variable(None), true);
let _ = solver.add_clause([lit1, lit2, lit3]);
let _ = solver.add_clause([lit1, !lit2, lit3]);
(solver, vec![lit1, lit2, lit3])
}
#[test]
fn simple_core_extraction_2_1() {
let (solver, lits) = create_instance2();
run_test(
solver,
vec![!lits[0], lits[1], !lits[2]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![!lits[0], lits[1], !lits[2]]),
);
}
#[test]
fn simple_core_extraction_2_long_assumptions_with_inconsistency_at_the_end() {
let (solver, lits) = create_instance2();
run_test(
solver,
vec![!lits[0], lits[1], !lits[2], lits[0]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![!lits[0], lits[1], !lits[2]]), /* could return
* inconsistent
* assumptions,
* however inconsistency will not be detected
* given the order of
* the assumptions */
);
}
#[test]
fn simple_core_extraction_2_inconsistent_long_assumptions() {
let (solver, lits) = create_instance2();
run_test(
solver,
vec![!lits[0], !lits[0], !lits[1], !lits[1], lits[0]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::ConflictingAssumption(lits[0]),
);
}
fn create_instance3() -> (ConstraintSatisfactionSolver, Vec<Literal>) {
let mut solver = ConstraintSatisfactionSolver::default();
let lit1 = Literal::new(solver.create_new_propositional_variable(None), true);
let lit2 = Literal::new(solver.create_new_propositional_variable(None), true);
let lit3 = Literal::new(solver.create_new_propositional_variable(None), true);
let _ = solver.add_clause([lit1, lit2, lit3]);
(solver, vec![lit1, lit2, lit3])
}
#[test]
fn simple_core_extraction_3_1() {
let (solver, lits) = create_instance3();
run_test(
solver,
vec![!lits[0], !lits[1], !lits[2]],
CSPSolverExecutionFlag::Infeasible,
CoreExtractionResult::Core(vec![!lits[0], !lits[1], !lits[2]]),
);
}
#[test]
fn simple_core_extraction_3_2() {
let (solver, lits) = create_instance3();
run_test(
solver,
vec![!lits[0], !lits[1]],
CSPSolverExecutionFlag::Feasible,
CoreExtractionResult::Core(vec![]), // will be ignored in the test
);
}
#[test]
fn negative_upper_bound() {
let mut solver = ConstraintSatisfactionSolver::default();
let domain_id = solver.create_new_integer_variable(0, 10, None);
let result = solver.get_literal(predicate![domain_id <= -2]);
assert_eq!(result, solver.assignments_propositional.false_literal);
}
#[test]
fn lower_bound_literal_lower_than_lower_bound_should_be_true_literal() {
let mut solver = ConstraintSatisfactionSolver::default();
let domain_id = solver.create_new_integer_variable(0, 10, None);
let result = solver.get_literal(predicate![domain_id >= -2]);
assert_eq!(result, solver.assignments_propositional.true_literal);
}
#[test]
fn new_domain_with_negative_lower_bound() {
let lb = -2;
let ub = 2;
let mut solver = ConstraintSatisfactionSolver::default();
let domain_id = solver.create_new_integer_variable(lb, ub, None);
assert_eq!(lb, solver.assignments_integer.get_lower_bound(domain_id));
assert_eq!(ub, solver.assignments_integer.get_upper_bound(domain_id));
assert_eq!(
solver.assignments_propositional.true_literal,
solver.get_literal(predicate![domain_id >= lb])
);
assert_eq!(
solver.assignments_propositional.false_literal,
solver.get_literal(predicate![domain_id <= lb - 1])
);
assert!(solver
.assignments_propositional
.is_literal_unassigned(solver.get_literal(predicate![domain_id == lb])));
assert_eq!(
solver.assignments_propositional.false_literal,
solver.get_literal(predicate![domain_id == lb - 1])
);
for value in (lb + 1)..ub {
let literal = solver.get_literal(predicate![domain_id >= value]);
assert!(solver
.assignments_propositional
.is_literal_unassigned(literal));
assert!(solver
.assignments_propositional
.is_literal_unassigned(solver.get_literal(predicate![domain_id == value])));
}
assert_eq!(
solver.assignments_propositional.false_literal,
solver.get_literal(predicate![domain_id >= ub + 1])
);
assert_eq!(
solver.assignments_propositional.true_literal,
solver.get_literal(predicate![domain_id <= ub])
);
assert!(solver
.assignments_propositional
.is_literal_unassigned(solver.get_literal(predicate![domain_id == ub])));
assert_eq!(
solver.assignments_propositional.false_literal,
solver.get_literal(predicate![domain_id == ub + 1])
);
}
#[test]
fn clausal_propagation_is_synced_until_right_before_conflict() {
let mut solver = ConstraintSatisfactionSolver::default();
let domain_id = solver.create_new_integer_variable(0, 10, None);
let dummy_reason = ReasonRef(0);
let result =
solver
.assignments_integer
.tighten_lower_bound(domain_id, 2, Some(dummy_reason));
assert!(result.is_ok());
assert_eq!(solver.assignments_integer.get_lower_bound(domain_id), 2);
let result =
solver
.assignments_integer
.tighten_lower_bound(domain_id, 8, Some(dummy_reason));
assert!(result.is_ok());
assert_eq!(solver.assignments_integer.get_lower_bound(domain_id), 8);
let result =
solver
.assignments_integer
.tighten_lower_bound(domain_id, 12, Some(dummy_reason));
assert!(result.is_err());
assert_eq!(solver.assignments_integer.get_lower_bound(domain_id), 12);
let _ = solver.synchronise_propositional_trail_based_on_integer_trail();
for lower_bound in 0..=8 {
let literal = solver.get_literal(predicate!(domain_id >= lower_bound));
assert!(
solver
.assignments_propositional
.is_literal_assigned_true(literal),
"Literal for lower-bound {lower_bound} is not assigned"
);
}
}
#[test]
fn check_correspondence_predicates_creating_new_int_domain() {
let mut solver = ConstraintSatisfactionSolver::default();
let lower_bound = 0;
let upper_bound = 10;
let domain_id = solver.create_new_integer_variable(lower_bound, upper_bound, None);
for bound in lower_bound + 1..upper_bound {
let lower_bound_predicate = predicate![domain_id >= bound];
let equality_predicate = predicate![domain_id == bound];
for predicate in [lower_bound_predicate, equality_predicate] {
let literal = solver.get_literal(predicate);
assert!(
solver.variable_literal_mappings.literal_to_predicates[literal]
.contains(&predicate.try_into().unwrap())
)
}
}
}
#[test]
fn check_can_compute_1uip_with_propagator_initialisation_conflict() {
let mut solver = ConstraintSatisfactionSolver::default();
let x = solver.create_new_integer_variable(1, 1, None);
let y = solver.create_new_integer_variable(2, 2, None);
let propagator = LinearNotEqualPropagator::new(Box::new([x, y]), 3);
let result = solver.add_propagator(propagator, None);
assert!(result.is_err());
}
}