pumpkin_solver/api/solver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
use std::num::NonZero;
use super::results::OptimisationResult;
use super::results::SatisfactionResult;
use super::results::SatisfactionResultUnderAssumptions;
use crate::basic_types::CSPSolverExecutionFlag;
use crate::basic_types::ConstraintOperationError;
use crate::basic_types::HashSet;
use crate::basic_types::Solution;
use crate::branching::branchers::independent_variable_value_brancher::IndependentVariableValueBrancher;
#[cfg(doc)]
use crate::branching::value_selection::ValueSelector;
#[cfg(doc)]
use crate::branching::variable_selection::VariableSelector;
use crate::branching::Brancher;
use crate::branching::PhaseSaving;
use crate::branching::SolutionGuidedValueSelector;
use crate::branching::Vsids;
use crate::constraints::ConstraintPoster;
use crate::engine::predicates::predicate::Predicate;
use crate::engine::propagation::Propagator;
use crate::engine::termination::TerminationCondition;
use crate::engine::variables::DomainId;
use crate::engine::variables::IntegerVariable;
use crate::engine::variables::Literal;
use crate::engine::ConstraintSatisfactionSolver;
use crate::options::LearningOptions;
use crate::options::SolverOptions;
use crate::predicate;
use crate::pumpkin_assert_simple;
use crate::results::solution_iterator::SolutionIterator;
use crate::results::unsatisfiable::UnsatisfiableUnderAssumptions;
use crate::results::SolutionCallbackArguments;
use crate::statistics::statistic_logging::log_statistic;
use crate::statistics::statistic_logging::log_statistic_postfix;
use crate::variables::PropositionalVariable;
/// The main interaction point which allows the creation of variables, the addition of constraints,
/// and solving problems.
///
///
/// # Creating Variables
/// As stated in [`crate::variables`], we can create two types of variables: propositional variables
/// and integer variables.
///
/// ```rust
/// # use pumpkin_solver::Solver;
/// # use crate::pumpkin_solver::variables::TransformableVariable;
/// let mut solver = Solver::default();
///
/// // Integer Variables
///
/// // We can create an integer variable with a domain in the range [0, 10]
/// let integer_between_bounds = solver.new_bounded_integer(0, 10);
///
/// // We can also create such a variable with a name
/// let named_integer_between_bounds = solver.new_named_bounded_integer(0, 10, "x");
///
/// // We can also create an integer variable with a non-continuous domain in the follow way
/// let mut sparse_integer = solver.new_sparse_integer(vec![0, 3, 5]);
///
/// // We can also create such a variable with a name
/// let named_sparse_integer = solver.new_named_sparse_integer(vec![0, 3, 5], "y");
///
/// // Additionally, we can also create an affine view over a variable with both a scale and an offset (or either)
/// let view_over_integer = integer_between_bounds.scaled(-1).offset(15);
///
///
/// // Propositional Variable
///
/// // We can create a literal
/// let literal = solver.new_literal();
///
/// // We can also create such a variable with a name
/// let named_literal = solver.new_named_literal("z");
///
/// // We can also get the propositional variable from the literal
/// let propositional_variable = literal.get_propositional_variable();
///
/// // We can also create an iterator of new literals and get a number of them at once
/// let list_of_5_literals = solver.new_literals().take(5).collect::<Vec<_>>();
/// assert_eq!(list_of_5_literals.len(), 5);
/// ```
///
/// # Using the Solver
/// For examples on how to use the solver, see the [root-level crate documentation](crate) or [one of these examples](https://github.com/ConSol-Lab/Pumpkin/tree/master/pumpkin-lib/examples).
pub struct Solver {
/// The internal [`ConstraintSatisfactionSolver`] which is used to solve the problems.
satisfaction_solver: ConstraintSatisfactionSolver,
/// The function is called whenever an optimisation function finds a solution; see
/// [`Solver::with_solution_callback`].
solution_callback: Box<dyn Fn(SolutionCallbackArguments)>,
}
impl Default for Solver {
fn default() -> Self {
Self {
satisfaction_solver: Default::default(),
solution_callback: create_empty_function(),
}
}
}
/// Creates a place-holder empty function which does not do anything when a solution is found.
fn create_empty_function() -> Box<dyn Fn(SolutionCallbackArguments)> {
Box::new(|_| {})
}
impl std::fmt::Debug for Solver {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Solver")
.field("satisfaction_solver", &self.satisfaction_solver)
.finish()
}
}
impl Solver {
/// Creates a solver with the provided [`LearningOptions`] and [`SolverOptions`].
pub fn with_options(learning_options: LearningOptions, solver_options: SolverOptions) -> Self {
Solver {
satisfaction_solver: ConstraintSatisfactionSolver::new(
learning_options,
solver_options,
),
solution_callback: create_empty_function(),
}
}
/// Adds a call-back to the [`Solver`] which is called every time that a solution is found when
/// optimising using [`Solver::maximise`] or [`Solver::minimise`].
///
/// Note that this will also
/// perform the call-back on the optimal solution which is returned in
/// [`OptimisationResult::Optimal`].
pub fn with_solution_callback(
&mut self,
solution_callback: impl Fn(SolutionCallbackArguments) + 'static,
) {
self.solution_callback = Box::new(solution_callback);
}
/// Logs the statistics currently present in the solver with the provided objective value.
pub fn log_statistics_with_objective(&self, objective_value: i64) {
log_statistic("objective", objective_value);
self.log_statistics();
}
/// Logs the statistics currently present in the solver.
pub fn log_statistics(&self) {
self.satisfaction_solver.log_statistics();
log_statistic_postfix();
}
pub(crate) fn get_satisfaction_solver_mut(&mut self) -> &mut ConstraintSatisfactionSolver {
&mut self.satisfaction_solver
}
}
/// Methods to retrieve information about variables
impl Solver {
/// Get the literal corresponding to the given predicate. As the literal may need to be
/// created, this possibly mutates the solver.
///
/// # Example
/// ```rust
/// # use pumpkin_solver::Solver;
/// # use pumpkin_solver::predicate;
/// let mut solver = Solver::default();
///
/// let x = solver.new_bounded_integer(0, 10);
///
/// // We can get the literal representing the predicate `[x >= 3]` via the Solver
/// let literal = solver.get_literal(predicate!(x >= 3));
///
/// // Note that we can also get a literal which is always true
/// let true_lower_bound_literal = solver.get_literal(predicate!(x >= 0));
/// assert_eq!(true_lower_bound_literal, solver.get_true_literal());
/// ```
pub fn get_literal(&self, predicate: Predicate) -> Literal {
self.satisfaction_solver.get_literal(predicate)
}
/// Get the value of the given [`Literal`] at the root level (after propagation), which could be
/// unassigned.
pub fn get_literal_value(&self, literal: Literal) -> Option<bool> {
self.satisfaction_solver.get_literal_value(literal)
}
/// Get a literal which is globally true.
pub fn get_true_literal(&self) -> Literal {
self.satisfaction_solver.get_true_literal()
}
/// Get a literal which is globally false.
pub fn get_false_literal(&self) -> Literal {
self.satisfaction_solver.get_false_literal()
}
/// Get the lower-bound of the given [`IntegerVariable`] at the root level (after propagation).
pub fn lower_bound(&self, variable: &impl IntegerVariable) -> i32 {
self.satisfaction_solver.get_lower_bound(variable)
}
/// Get the upper-bound of the given [`IntegerVariable`] at the root level (after propagation).
pub fn upper_bound(&self, variable: &impl IntegerVariable) -> i32 {
self.satisfaction_solver.get_upper_bound(variable)
}
}
/// Functions to create and retrieve integer and propositional variables.
impl Solver {
/// Returns an infinite iterator of positive literals of new variables. The new variables will
/// be unnamed.
///
/// # Example
/// ```
/// # use pumpkin_solver::Solver;
/// # use pumpkin_solver::variables::Literal;
/// let mut solver = Solver::default();
/// let literals: Vec<Literal> = solver.new_literals().take(5).collect();
///
/// // `literals` contains 5 positive literals of newly created propositional variables.
/// assert_eq!(literals.len(), 5);
/// ```
///
/// Note that this method captures the lifetime of the immutable reference to `self`.
pub fn new_literals(&mut self) -> impl Iterator<Item = Literal> + '_ {
std::iter::from_fn(|| Some(self.new_literal()))
}
/// Create a fresh propositional variable and return the literal with positive polarity.
///
/// # Example
/// ```rust
/// # use pumpkin_solver::Solver;
/// let mut solver = Solver::default();
///
/// // We can create a literal
/// let literal = solver.new_literal();
/// ```
pub fn new_literal(&mut self) -> Literal {
Literal::new(
self.satisfaction_solver
.create_new_propositional_variable(None),
true,
)
}
/// Create a fresh propositional variable with a given name and return the literal with positive
/// polarity.
///
/// # Example
/// ```rust
/// # use pumpkin_solver::Solver;
/// let mut solver = Solver::default();
///
/// // We can also create such a variable with a name
/// let named_literal = solver.new_named_literal("z");
/// ```
pub fn new_named_literal(&mut self, name: impl Into<String>) -> Literal {
Literal::new(
self.satisfaction_solver
.create_new_propositional_variable(Some(name.into())),
true,
)
}
/// Create a new integer variable with the given bounds.
///
/// # Example
/// ```rust
/// # use pumpkin_solver::Solver;
/// let mut solver = Solver::default();
///
/// // We can create an integer variable with a domain in the range [0, 10]
/// let integer_between_bounds = solver.new_bounded_integer(0, 10);
/// ```
pub fn new_bounded_integer(&mut self, lower_bound: i32, upper_bound: i32) -> DomainId {
self.satisfaction_solver
.create_new_integer_variable(lower_bound, upper_bound, None)
}
/// Create a new named integer variable with the given bounds.
///
/// # Example
/// ```rust
/// # use pumpkin_solver::Solver;
/// let mut solver = Solver::default();
///
/// // We can also create such a variable with a name
/// let named_integer_between_bounds = solver.new_named_bounded_integer(0, 10, "x");
/// ```
pub fn new_named_bounded_integer(
&mut self,
lower_bound: i32,
upper_bound: i32,
name: impl Into<String>,
) -> DomainId {
self.satisfaction_solver.create_new_integer_variable(
lower_bound,
upper_bound,
Some(name.into()),
)
}
/// Create a new integer variable which has a domain of predefined values. We remove duplicates
/// by converting to a hash set
///
/// # Example
/// ```rust
/// # use pumpkin_solver::Solver;
/// let mut solver = Solver::default();
///
/// // We can also create an integer variable with a non-continuous domain in the follow way
/// let mut sparse_integer = solver.new_sparse_integer(vec![0, 3, 5]);
/// ```
pub fn new_sparse_integer(&mut self, values: impl Into<Vec<i32>>) -> DomainId {
let values: HashSet<i32> = values.into().into_iter().collect();
self.satisfaction_solver
.create_new_integer_variable_sparse(values.into_iter().collect(), None)
}
/// Create a new named integer variable which has a domain of predefined values.
///
/// # Example
/// ```rust
/// # use pumpkin_solver::Solver;
/// let mut solver = Solver::default();
///
/// // We can also create such a variable with a name
/// let named_sparse_integer = solver.new_named_sparse_integer(vec![0, 3, 5], "y");
/// ```
pub fn new_named_sparse_integer(
&mut self,
values: impl Into<Vec<i32>>,
name: impl Into<String>,
) -> DomainId {
self.satisfaction_solver
.create_new_integer_variable_sparse(values.into(), Some(name.into()))
}
}
/// Functions for solving with the constraints that have been added to the [`Solver`].
impl Solver {
/// Solves the current model in the [`Solver`] until it finds a solution (or is indicated to
/// terminate by the provided [`TerminationCondition`]) and returns a [`SatisfactionResult`]
/// which can be used to obtain the found solution or find other solutions.
pub fn satisfy<B: Brancher, T: TerminationCondition>(
&mut self,
brancher: &mut B,
termination: &mut T,
) -> SatisfactionResult {
match self.satisfaction_solver.solve(termination, brancher) {
CSPSolverExecutionFlag::Feasible => {
let solution: Solution = self.satisfaction_solver.get_solution_reference().into();
self.satisfaction_solver.restore_state_at_root(brancher);
self.process_solution(&solution, brancher);
SatisfactionResult::Satisfiable(solution)
}
CSPSolverExecutionFlag::Infeasible => {
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
let _ = self.satisfaction_solver.conclude_proof_unsat();
SatisfactionResult::Unsatisfiable
}
CSPSolverExecutionFlag::Timeout => {
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
SatisfactionResult::Unknown
}
}
}
pub fn get_solution_iterator<
'this,
'brancher,
'termination,
B: Brancher,
T: TerminationCondition,
>(
&'this mut self,
brancher: &'brancher mut B,
termination: &'termination mut T,
) -> SolutionIterator<'this, 'brancher, 'termination, B, T> {
SolutionIterator::new(self, brancher, termination)
}
/// Solves the current model in the [`Solver`] until it finds a solution (or is indicated to
/// terminate by the provided [`TerminationCondition`]) and returns a [`SatisfactionResult`]
/// which can be used to obtain the found solution or find other solutions.
///
/// This method takes as input a list of [`Literal`]s which represent so-called assumptions (see
/// \[1\] for a more detailed explanation). The [`Literal`]s corresponding to [`Predicate`]s
/// over [`IntegerVariable`]s (e.g. lower-bound predicates) can be retrieved from the [`Solver`]
/// using [`Solver::get_literal`].
///
/// # Bibliography
/// \[1\] N. Eén and N. Sörensson, ‘Temporal induction by incremental SAT solving’, Electronic
/// Notes in Theoretical Computer Science, vol. 89, no. 4, pp. 543–560, 2003.
pub fn satisfy_under_assumptions<'this, 'brancher, B: Brancher, T: TerminationCondition>(
&'this mut self,
brancher: &'brancher mut B,
termination: &mut T,
assumptions: &[Literal],
) -> SatisfactionResultUnderAssumptions<'this, 'brancher, B> {
match self
.satisfaction_solver
.solve_under_assumptions(assumptions, termination, brancher)
{
CSPSolverExecutionFlag::Feasible => {
let solution: Solution = self.satisfaction_solver.get_solution_reference().into();
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
brancher.on_solution(solution.as_reference());
SatisfactionResultUnderAssumptions::Satisfiable(solution)
}
CSPSolverExecutionFlag::Infeasible => {
if self
.satisfaction_solver
.state
.is_infeasible_under_assumptions()
{
// The state is automatically reset when we return this result
SatisfactionResultUnderAssumptions::UnsatisfiableUnderAssumptions(
UnsatisfiableUnderAssumptions::new(&mut self.satisfaction_solver, brancher),
)
} else {
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
SatisfactionResultUnderAssumptions::Unsatisfiable
}
}
CSPSolverExecutionFlag::Timeout => {
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
SatisfactionResultUnderAssumptions::Unknown
}
}
}
/// Solves the model currently in the [`Solver`] to optimality where the provided
/// `objective_variable` is minimised (or is indicated to terminate by the provided
/// [`TerminationCondition`]).
///
/// It returns an [`OptimisationResult`] which can be used to retrieve the optimal solution if
/// it exists.
pub fn minimise(
&mut self,
brancher: &mut impl Brancher,
termination: &mut impl TerminationCondition,
objective_variable: impl IntegerVariable,
) -> OptimisationResult {
self.minimise_internal(brancher, termination, objective_variable, false)
}
/// Solves the model currently in the [`Solver`] to optimality where the provided
/// `objective_variable` is maximised (or is indicated to terminate by the provided
/// [`TerminationCondition`]).
///
/// It returns an [`OptimisationResult`] which can be used to retrieve the optimal solution if
/// it exists.
pub fn maximise(
&mut self,
brancher: &mut impl Brancher,
termination: &mut impl TerminationCondition,
objective_variable: impl IntegerVariable,
) -> OptimisationResult {
self.minimise_internal(brancher, termination, objective_variable.scaled(-1), true)
}
/// The internal method which optimizes the objective function, this function takes an extra
/// argument (`is_maximising`) as compared to [`Solver::maximise`] and [`Solver::minimise`]
/// which determines whether the logged objective value should be scaled by `-1` or not.
///
/// This is necessary due to the fact that [`Solver::maximise`] simply calls minimise with
/// the objective variable scaled with `-1` which would lead to incorrect statistic if not
/// scaled back.
fn minimise_internal(
&mut self,
brancher: &mut impl Brancher,
termination: &mut impl TerminationCondition,
objective_variable: impl IntegerVariable,
is_maximising: bool,
) -> OptimisationResult {
// If we are maximising then when we simply scale the variable by -1, however, this will
// lead to the printed objective value in the statistics to be multiplied by -1; this
// objective_multiplier ensures that the objective is correctly logged.
let objective_multiplier = if is_maximising { -1 } else { 1 };
let initial_solve = self.satisfaction_solver.solve(termination, brancher);
match initial_solve {
CSPSolverExecutionFlag::Feasible => {}
CSPSolverExecutionFlag::Infeasible => {
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
let _ = self.satisfaction_solver.conclude_proof_unsat();
return OptimisationResult::Unsatisfiable;
}
CSPSolverExecutionFlag::Timeout => {
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
return OptimisationResult::Unknown;
}
}
let mut best_objective_value = Default::default();
let mut best_solution = Solution::default();
self.update_best_solution_and_process(
objective_multiplier,
&objective_variable,
&mut best_objective_value,
&mut best_solution,
brancher,
);
loop {
self.satisfaction_solver.restore_state_at_root(brancher);
let objective_bound_predicate = if is_maximising {
predicate![objective_variable <= best_objective_value as i32]
} else {
predicate![objective_variable >= best_objective_value as i32]
};
let objective_bound_literal = self
.satisfaction_solver
.get_literal(objective_bound_predicate);
if self
.strengthen(
&objective_variable,
best_objective_value * objective_multiplier as i64,
)
.is_err()
{
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
let _ = self
.satisfaction_solver
.conclude_proof_optimal(objective_bound_literal);
return OptimisationResult::Optimal(best_solution);
}
let solve_result = self.satisfaction_solver.solve(termination, brancher);
match solve_result {
CSPSolverExecutionFlag::Feasible => {
self.debug_bound_change(
&objective_variable,
best_objective_value * objective_multiplier as i64,
);
self.update_best_solution_and_process(
objective_multiplier,
&objective_variable,
&mut best_objective_value,
&mut best_solution,
brancher,
);
}
CSPSolverExecutionFlag::Infeasible => {
{
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
let _ = self
.satisfaction_solver
.conclude_proof_optimal(objective_bound_literal);
return OptimisationResult::Optimal(best_solution);
}
}
CSPSolverExecutionFlag::Timeout => {
// Reset the state whenever we return a result
self.satisfaction_solver.restore_state_at_root(brancher);
return OptimisationResult::Satisfiable(best_solution);
}
}
}
}
/// Processes a solution when it is found, it consists of the following procedure:
/// - Assigning `best_objective_value` the value assigned to `objective_variable` (multiplied by
/// `objective_multiplier`).
/// - Storing the new best solution in `best_solution`.
/// - Calling [`Brancher::on_solution`] on the provided `brancher`.
/// - Logging the statistics using [`Solver::log_statistics_with_objective`].
/// - Calling the solution callback stored in [`Solver::solution_callback`].
fn update_best_solution_and_process(
&self,
objective_multiplier: i32,
objective_variable: &impl IntegerVariable,
best_objective_value: &mut i64,
best_solution: &mut Solution,
brancher: &mut impl Brancher,
) {
*best_objective_value = (objective_multiplier
* self
.satisfaction_solver
.get_assigned_integer_value(objective_variable)
.expect("expected variable to be assigned")) as i64;
*best_solution = self.satisfaction_solver.get_solution_reference().into();
self.internal_process_solution(best_solution, brancher, Some(*best_objective_value))
}
pub(crate) fn process_solution(&self, solution: &Solution, brancher: &mut impl Brancher) {
self.internal_process_solution(solution, brancher, None)
}
fn internal_process_solution(
&self,
solution: &Solution,
brancher: &mut impl Brancher,
objective_value: Option<i64>,
) {
brancher.on_solution(self.satisfaction_solver.get_solution_reference());
(self.solution_callback)(SolutionCallbackArguments::new(
self,
solution,
objective_value,
));
}
/// Given the current objective value `best_objective_value`, it adds a constraint specifying
/// that the objective value should be at most `best_objective_value - 1`. Note that it is
/// assumed that we are always minimising the variable.
fn strengthen(
&mut self,
objective_variable: &impl IntegerVariable,
best_objective_value: i64,
) -> Result<(), ConstraintOperationError> {
self.satisfaction_solver
.add_clause([self.satisfaction_solver.get_literal(
objective_variable.upper_bound_predicate((best_objective_value - 1) as i32),
)])
}
fn debug_bound_change(
&self,
objective_variable: &impl IntegerVariable,
best_objective_value: i64,
) {
pumpkin_assert_simple!(
(self
.satisfaction_solver
.get_assigned_integer_value(objective_variable)
.expect("expected variable to be assigned") as i64)
< best_objective_value,
"{}",
format!(
"The current bound {} should be smaller than the previous bound {}",
self.satisfaction_solver
.get_assigned_integer_value(objective_variable)
.expect("expected variable to be assigned"),
best_objective_value
)
);
}
}
/// Functions for adding new constraints to the solver.
impl Solver {
/// Add a constraint to the solver. This returns a [`ConstraintPoster`] which enables control
/// on whether to add the constraint as-is, or whether to (half) reify it.
///
/// If none of the methods on [`ConstraintPoster`] are used, the constraint _is not_ actually
/// added to the solver. In this case, a warning is emitted.
///
/// # Example
/// ```
/// # use pumpkin_solver::constraints;
/// # use pumpkin_solver::Solver;
/// let mut solver = Solver::default();
///
/// let a = solver.new_bounded_integer(0, 3);
/// let b = solver.new_bounded_integer(0, 3);
///
/// solver.add_constraint(constraints::equals([a, b], 0)).post();
/// ```
pub fn add_constraint<Constraint>(
&mut self,
constraint: Constraint,
) -> ConstraintPoster<'_, Constraint> {
ConstraintPoster::new(self, constraint)
}
/// Creates a clause from `literals` and adds it to the current formula.
///
/// If the formula becomes trivially unsatisfiable, a [`ConstraintOperationError`] will be
/// returned. Subsequent calls to this method will always return an error, and no
/// modification of the solver will take place.
pub fn add_clause(
&mut self,
clause: impl IntoIterator<Item = Literal>,
) -> Result<(), ConstraintOperationError> {
self.satisfaction_solver.add_clause(clause)
}
/// Adds a propagator with a tag, which is used to identify inferences made by this propagator
/// in the proof log.
pub(crate) fn add_tagged_propagator(
&mut self,
propagator: impl Propagator + 'static,
tag: NonZero<u32>,
) -> Result<(), ConstraintOperationError> {
self.satisfaction_solver
.add_propagator(propagator, Some(tag))
}
/// Post a new propagator to the solver. If unsatisfiability can be immediately determined
/// through propagation, this will return a [`ConstraintOperationError`].
///
/// The caller should ensure the solver is in the root state before calling this, either
/// because no call to [`Self::solve()`] has been made, or because
/// [`Self::restore_state_at_root()`] was called.
///
/// If the solver is already in a conflicting state, i.e. a previous call to this method
/// already returned `false`, calling this again will not alter the solver in any way, and
/// `false` will be returned again.
pub(crate) fn add_propagator(
&mut self,
propagator: impl Propagator + 'static,
) -> Result<(), ConstraintOperationError> {
self.satisfaction_solver.add_propagator(propagator, None)
}
}
/// Default brancher implementation
impl Solver {
/// Creates a default [`IndependentVariableValueBrancher`] which uses [`Vsids`] as
/// [`VariableSelector`] and [`SolutionGuidedValueSelector`] (with [`PhaseSaving`] as its
/// back-up selector) as its [`ValueSelector`]; it searches over all
/// [`PropositionalVariable`]s defined in the provided `solver`.
pub fn default_brancher_over_all_propositional_variables(&self) -> DefaultBrancher {
self.satisfaction_solver
.default_brancher_over_all_propositional_variables()
}
}
/// Proof logging methods
impl Solver {
#[doc(hidden)]
/// Conclude the proof with the unsatisfiable claim.
///
/// This method will finish the proof. Any new operation will not be logged to the proof.
pub fn conclude_proof_unsat(&mut self) -> std::io::Result<()> {
self.satisfaction_solver.conclude_proof_unsat()
}
#[doc(hidden)]
/// Conclude the proof with the optimality claim.
///
/// This method will finish the proof. Any new operation will not be logged to the proof.
pub fn conclude_proof_optimal(&mut self, bound: Literal) -> std::io::Result<()> {
self.satisfaction_solver.conclude_proof_optimal(bound)
}
pub(crate) fn into_satisfaction_solver(self) -> ConstraintSatisfactionSolver {
self.satisfaction_solver
}
}
/// The type of [`Brancher`] which is created by
/// [`Solver::default_brancher_over_all_propositional_variables`].
///
/// It consists of the value selector
/// [`Vsids`] in combination with a [`SolutionGuidedValueSelector`] with as backup [`PhaseSaving`].
pub type DefaultBrancher = IndependentVariableValueBrancher<
PropositionalVariable,
Vsids<PropositionalVariable>,
SolutionGuidedValueSelector<
PropositionalVariable,
bool,
PhaseSaving<PropositionalVariable, bool>,
>,
>;