1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
//! # Simple thread-safe cell
//!
//! [`PtrCell`] is an atomic cell type that allows safe, concurrent access to shared data. No
//! [`std`][1], no [data races][2], no [nasal demons (UB)][3], and most importantly, no [locks][4]
//!
//! This type is only useful in scenarios where you need to update a shared value by moving in and
//! out of it. If you want to concurrently update a value through mutable references and don't
//! require support for environments without the standard library ([`no_std`][5]), take a look at
//! the standard [`Mutex`][6] and [`RwLock`][7] instead
//!
//! #### Offers:
//! - **Ease of use**: The API is fairly straightforward
//! - **Performance**: Core algorithms are at most a couple of instructions long
//!
//! #### Limits:
//! - **Access**: To see what's stored inside a cell, you must either take the value out of it or
//! provide exclusive access (`&mut`) to the cell
//!
//! ## Usage
//!
//! ```rust
//! use ptr_cell::Semantics;
//!
//! // Construct a cell
//! let cell: ptr_cell::PtrCell<u16> = 0x81D.into();
//!
//! // Replace the value inside the cell
//! assert_eq!(cell.replace(Some(2047), Semantics::Relaxed), Some(0x81D));
//!
//! // Check whether the cell is empty
//! assert_eq!(cell.is_empty(Semantics::Relaxed), false);
//!
//! // Take the value out of the cell
//! assert_eq!(cell.take(Semantics::Relaxed), Some(2047))
//! ```
//!
//! ## Semantics
//!
//! `PtrCell` allows you to specify memory ordering semantics for its internal atomic operations
//! through the [`Semantics`] enum. Choosing appropriate semantics is crucial for achieving the
//! desired level of synchronization and performance. The available semantics are:
//!
//! - [`Ordered`](Semantics::Ordered): Noticeable overhead, strict
//! - [`Coupled`](Semantics::Coupled): Acceptable overhead, intuitive
//! - [`Relaxed`](Semantics::Relaxed): Little overhead, unconstrained
//!
//! `Coupled` is what you'd typically use. However, other orderings have their use cases too. For
//! example, the `Relaxed` semantics could be useful when the operations are already ordered through
//! other means, like [fences](core::sync::atomic::fence). As always, the documentation for each
//! item contains more details
//!
//! ## Examples
//!
//! Find the maximum value of a sequence of numbers by concurrently processing both of the
//! sequence's halves
//!
//! ```rust
//! use ptr_cell::Semantics;
//!
//! fn main() {
//!     // Initialize an array of random numbers
//!     const VALUES: [u8; 11] = [47, 12, 88, 45, 67, 34, 78, 90, 11, 77, 33];
//!
//!     // Construct a cell to hold the current maximum value
//!     let cell = ptr_cell::PtrCell::default();
//!     let maximum = std::sync::Arc::new(cell);
//!
//!     // Slice the array in two
//!     let (left, right) = VALUES.split_at(VALUES.len() / 2);
//!
//!     // Start a worker thread for each half
//!     let handles = [left, right].map(|half| {
//!         // Clone `maximum` to move it into the worker
//!         let maximum = std::sync::Arc::clone(&maximum);
//!
//!         // Spawn a thread to run the maximizer
//!         std::thread::spawn(move || maximize_in(half, &maximum))
//!     });
//!
//!     // Wait for the workers to finish
//!     for worker in handles {
//!         // Check whether a panic occured
//!         if let Err(payload) = worker.join() {
//!             // Thread panicked, propagate the panic
//!             std::panic::resume_unwind(payload)
//!         }
//!     }
//!
//!     // Check the found maximum
//!     assert_eq!(maximum.take(Semantics::Relaxed), Some(90))
//! }
//!
//! /// Inserts the maximum of `sequence` and `buffer` into `buffer`
//! ///
//! /// At least one swap takes place for each value of `sequence`
//! fn maximize_in<T>(sequence: &[T], buffer: &ptr_cell::PtrCell<T>)
//! where
//!     T: Ord + Copy,
//! {
//!     // Iterate over the slice
//!     for &item in sequence {
//!         // Wrap the item to make the cell accept it
//!         let mut slot = Some(item);
//!
//!         // Try to insert the value into the cell
//!         loop {
//!             // Replace the cell's value
//!             let previous = buffer.replace(slot, Semantics::Relaxed);
//!
//!             // Determine whether the swap resulted in a decrease of the buffer's value
//!             match slot < previous {
//!                 // It did, insert the old value back
//!                 true => slot = previous,
//!                 // It didn't, move on to the next item
//!                 false => break,
//!             }
//!         }
//!     }
//! }
//! ```
//!
//! [1]: https://doc.rust-lang.org/std
//! [2]: https://en.wikipedia.org/wiki/Race_condition#In_software
//! [3]: https://en.wikipedia.org/wiki/Undefined_behavior
//! [4]: https://en.wikipedia.org/wiki/Lock_(computer_science)
//! [5]: https://docs.rust-embedded.org/book/intro/no-std.html
//! [6]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
//! [7]: https://doc.rust-lang.org/std/sync/struct.RwLock.html

#![no_std]
#![warn(missing_docs)]

extern crate alloc;

use alloc::boxed::Box;
use core::sync::atomic::Ordering;

// **MAKE THE PTR SETTERS UNSAFE** (3.0.0)
// Add a default `std` flag (3.0.0)
// Implement get by using brief spinlocking (3.0.0)
// Add "virtually" to "no locks" in the top-level docs (3.0.0)
// Update the "Limits" section in the top-level docs (3.0.0)

/// Thread-safe cell based on atomic pointers
///
/// This cell type stores its data externally: instead of owning values directly, it holds pointers
/// to *leaked* values allocated by [`Box`]. Synchronization is achieved by atomically manipulating
/// these pointers
///
/// This type has the same in-memory representation as a `*mut T`
///
/// # Usage
///
/// ```rust
/// use ptr_cell::Semantics;
///
/// // Construct a cell
/// let cell: ptr_cell::PtrCell<u16> = 0x81D.into();
///
/// // Replace the value inside the cell
/// assert_eq!(cell.replace(Some(2047), Semantics::Relaxed), Some(0x81D));
///
/// // Check whether the cell is empty
/// assert_eq!(cell.is_empty(Semantics::Relaxed), false);
///
/// // Take the value out of the cell
/// assert_eq!(cell.take(Semantics::Relaxed), Some(2047))
/// ```
///
/// # Semantics
///
/// All methods that access this cell's data through `&self` inherently require a [`Semantics`]
/// variant, as this is the only way to load the underlying atomic pointer. This parameter is
/// omitted from the documentation of individual methods due to its universal applicability
///
/// # Pointer Safety
///
/// When dereferencing a pointer to the cell's value, you must ensure that the memory it points to
/// hasn't been [reclaimed](Self::heap_reclaim). Notice that calls to [`replace`](Self::replace) and
/// its derivatives ([`set`](Self::set) and [`take`](Self::take)) automatically reclaim memory. This
/// includes any calls made from other threads
///
/// This also applies to external pointers that the cell now manages, like the `ptr` parameter in
/// [`from_ptr`](Self::from_ptr)
#[repr(transparent)]
pub struct PtrCell<T> {
    /// Pointer to the contained value
    ///
    /// # Invariants
    ///
    /// - **If non-null**: Must point to memory that conforms to the [memory layout][1] used by
    ///   [`Box`]
    ///
    /// [1]: https://doc.rust-lang.org/std/boxed/index.html#memory-layout
    value: core::sync::atomic::AtomicPtr<T>,
}

impl<T> PtrCell<T> {
    /// Replaces the cell's value with a new one, constructed from the cell itself using the
    /// provided `new` function
    ///
    /// Think of this like the `push` method for a linked list, where each node is a `PtrCell`
    ///
    /// # Usage
    ///
    /// ```rust
    /// fn main() {
    ///     use ptr_cell::Semantics;
    ///
    ///     // Initialize a test sentence
    ///     const SENTENCE: &str = "Hachó en México";
    ///
    ///     // Construct an empty cell
    ///     let cell = ptr_cell::PtrCell::default();
    ///
    ///     // "encode" the sentence into the cell
    ///     for word in SENTENCE.split_whitespace().rev() {
    ///         // Make the new node set its value to the current word
    ///         let value = word;
    ///
    ///         // Replace the node with a new one pointing to it
    ///         cell.map_owner(|next| Node { value, next }, Semantics::Relaxed);
    ///     }
    ///
    ///     // Take the first node out of the cell and destructure it
    ///     let Node { value, mut next } = cell
    ///         .take(Semantics::Relaxed)
    ///         .expect("Values should have been inserted into the cell");
    ///
    ///     // Initialize the "decoded" sentence with the first word
    ///     let mut decoded = value.to_string();
    ///
    ///     // Iterate over each remaining node
    ///     while let Some(node) = next.take(Semantics::Relaxed) {
    ///         // Append the word to the sentence
    ///         decoded += " ";
    ///         decoded += node.value;
    ///
    ///         // Set the value to process next
    ///         next = node.next
    ///     }
    ///
    ///     // Check that there were no errors
    ///     assert_eq!(decoded, SENTENCE)
    /// }
    ///
    /// /// Unit of a linked list
    /// struct Node<T> {
    ///     pub value: T,
    ///     pub next: ptr_cell::PtrCell<Self>,
    /// }
    ///
    /// impl<T> AsMut<ptr_cell::PtrCell<Self>> for Node<T> {
    ///     fn as_mut(&mut self) -> &mut ptr_cell::PtrCell<Self> {
    ///         &mut self.next
    ///     }
    /// }
    /// ```
    pub fn map_owner<F>(&self, new: F, order: Semantics)
    where
        F: FnOnce(Self) -> T,
        T: AsMut<Self>,
    {
        let value_ptr = self.get_ptr(order);
        let value = unsafe { Self::from_ptr(value_ptr) };

        let owner_slot = Some(new(value));
        let owner_ptr = Self::heap_leak(owner_slot);

        let owner = unsafe { &mut *owner_ptr };
        let value_ptr = owner.as_mut().value.get_mut();

        loop {
            let value_ptr_result = self.value.compare_exchange_weak(
                *value_ptr,
                owner_ptr,
                order.read_write(),
                order.read(),
            );

            let Err(modified) = value_ptr_result else {
                break;
            };

            *value_ptr = modified;
            core::hint::spin_loop()
        }
    }

    /// Swaps the values of two cells
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a pair of test values
    /// const ONE: Option<u8> = Some(1);
    /// const TWO: Option<u8> = Some(2);
    ///
    /// // Construct a cell from each value
    /// let cell_one = ptr_cell::PtrCell::new(ONE);
    /// let mut cell_two = ptr_cell::PtrCell::new(TWO);
    ///
    /// // Swap the cells' contents
    /// cell_one.swap(&mut cell_two, Semantics::Relaxed);
    ///
    /// // Check that the cells now contain each other's values
    /// assert_eq!(ONE, cell_two.take(Semantics::Relaxed));
    /// assert_eq!(TWO, cell_one.take(Semantics::Relaxed))
    /// ```
    #[inline(always)]
    pub fn swap(&self, other: &mut Self, order: Semantics) {
        let other_ptr = other.get_ptr(Semantics::Relaxed);

        let ptr = self.replace_ptr(other_ptr, order);
        unsafe { other.set_ptr(ptr, Semantics::Relaxed) }
    }

    /// Returns the cell's value, replacing it with [`None`]
    ///
    /// This is an alias for `self.replace(None, order)`
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a test value
    /// const VALUE: Option<u8> = Some(0b01000101);
    ///
    /// // Wrap the value in a cell
    /// let cell = ptr_cell::PtrCell::new(VALUE);
    ///
    /// // Take the value out
    /// assert_eq!(cell.take(Semantics::Relaxed), VALUE);
    ///
    /// // Verify that the cell is now empty
    /// assert_eq!(cell.take(Semantics::Relaxed), None)
    /// ```
    #[inline(always)]
    pub fn take(&self, order: Semantics) -> Option<T> {
        self.replace(None, order)
    }

    /// Returns the pointer to the cell's value, replacing the pointer with a null one
    ///
    /// This is an alias for `self.replace_ptr(core::ptr::null_mut(), order)`
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a test value
    /// const VALUE: Option<u8> = Some(0b01000101);
    ///
    /// // Wrap the value in a cell
    /// let cell = ptr_cell::PtrCell::new(VALUE);
    ///
    /// // Take the pointer out
    /// let ptr = cell.take_ptr(Semantics::Relaxed);
    ///
    /// // Get the value back
    /// assert_eq!(unsafe { ptr_cell::PtrCell::heap_reclaim(ptr) }, VALUE)
    /// ```
    #[inline(always)]
    pub fn take_ptr(&self, order: Semantics) -> *mut T {
        self.replace_ptr(core::ptr::null_mut(), order)
    }

    /// Sets the cell's value to `slot`
    ///
    /// This is an alias for `{ self.replace(slot, order); }`
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a test value
    /// const VALUE: Option<u16> = Some(1776);
    ///
    /// // Construct an empty cell
    /// let cell: ptr_cell::PtrCell<_> = Default::default();
    ///
    /// // Set the cell's value
    /// cell.set(VALUE, Semantics::Relaxed);
    ///
    /// // Check that the value was set
    /// assert_eq!(cell.take(Semantics::Relaxed), VALUE)
    /// ```
    #[inline(always)]
    pub fn set(&self, slot: Option<T>, order: Semantics) {
        self.replace(slot, order);
    }

    /// Sets the pointer to the cell's value to `ptr`
    ///
    /// # Safety
    ///
    /// The memory `ptr` points to must conform to the [memory layout][1] used by [`Box`]
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a test value
    /// const VALUE: Option<u16> = Some(1776);
    ///
    /// // Construct an empty cell
    /// let cell: ptr_cell::PtrCell<_> = Default::default();
    ///
    /// // Allocate the value and get a pointer to it
    /// let ptr = ptr_cell::PtrCell::heap_leak(VALUE);
    ///
    /// // Make the cell point to the allocation
    /// unsafe { cell.set_ptr(ptr, Semantics::Relaxed) };
    ///
    /// // Check that the value was set
    /// assert_eq!(cell.take(Semantics::Relaxed), VALUE)
    /// ```
    ///
    /// [1]: https://doc.rust-lang.org/std/boxed/index.html#memory-layout
    #[inline(always)]
    pub unsafe fn set_ptr(&self, ptr: *mut T, order: Semantics) {
        self.value.store(ptr, order.write())
    }

    /// Returns the cell's value, replacing it with `slot`
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a pair of test values
    /// const SEMI: Option<char> = Some(';');
    /// const COLON: Option<char> = Some(':');
    ///
    /// // Wrap one of the values in a cell
    /// let cell = ptr_cell::PtrCell::new(SEMI);
    ///
    /// // Replace the value
    /// assert_eq!(cell.replace(COLON, Semantics::Relaxed), SEMI);
    ///
    /// // ...and get one back
    /// assert_eq!(cell.replace(None, Semantics::Relaxed), COLON)
    /// ```
    ///
    /// **Note**: For taking the value out of a cell, using [`take`](Self::take) is recommended
    #[inline(always)]
    pub fn replace(&self, slot: Option<T>, order: Semantics) -> Option<T> {
        let new_leak = Self::heap_leak(slot);
        let old_leak = self.replace_ptr(new_leak, order);

        unsafe { Self::heap_reclaim(old_leak) }
    }

    /// Returns the pointer to the cell's value, replacing the pointer with `ptr`
    ///
    /// **WARNING: THIS FUNCTION WAS ERRONEOUSLY MARKED AS SAFE. IT SHOULD BE UNSAFE AND WILL BE
    /// MARKED AS SUCH IN THE NEXT MAJOR RELEASE**
    ///
    /// # Safety
    ///
    /// The memory `ptr` points to must conform to the [memory layout][1] used by [`Box`]
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::{PtrCell, Semantics};
    ///
    /// unsafe {
    ///     // Allocate a pair of test values on the heap
    ///     let semi = PtrCell::heap_leak(Some(';'));
    ///     let colon = PtrCell::heap_leak(Some(':'));
    ///
    ///     // Construct a cell from one of the allocations
    ///     let cell = PtrCell::from_ptr(semi);
    ///
    ///     // Replace the pointer to the allocation
    ///     assert_eq!(cell.replace_ptr(colon, Semantics::Relaxed), semi);
    ///
    ///     // ...and get one back
    ///     let null = std::ptr::null_mut();
    ///     assert_eq!(cell.replace_ptr(null, Semantics::Relaxed), colon);
    ///
    ///     // Clean up
    ///     PtrCell::heap_reclaim(semi);
    ///     PtrCell::heap_reclaim(colon);
    /// }
    /// ```
    ///
    /// **Note**: For taking the pointer out of a cell, using [`take_ptr`](Self::take_ptr) is
    /// recommended
    ///
    /// [1]: https://doc.rust-lang.org/std/boxed/index.html#memory-layout
    #[inline(always)]
    pub fn replace_ptr(&self, ptr: *mut T, order: Semantics) -> *mut T {
        self.value.swap(ptr, order.read_write())
    }

    /// Mutably borrows the cell's value
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Construct a cell with a String inside
    /// let mut text: ptr_cell::PtrCell<_> = "Punto aquí".to_string().into();
    ///
    /// // Modify the String
    /// text.get_mut()
    ///     .expect("The cell should contain a value")
    ///     .push_str(" con un puntero");
    ///
    /// // Check the String's value
    /// let sentence = "Punto aquí con un puntero".to_string();
    /// assert_eq!(text.take(Semantics::Relaxed), Some(sentence))
    /// ```
    #[inline(always)]
    pub fn get_mut(&mut self) -> Option<&mut T> {
        let leak = *self.value.get_mut();

        non_null(leak).map(|ptr| unsafe { &mut *ptr })
    }

    /// Returns a pointer to the cell's value
    ///
    /// # Safety
    ///
    /// The cell's value may get deallocated at any moment. Because of this, it's hard to safely
    /// dereference the resulting pointer. Refer to the [Pointer Safety][1] section for more details
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Construct an empty cell
    /// let cell: ptr_cell::PtrCell<[u8; 3]> = Default::default();
    ///
    /// // Get the cell's pointer
    /// assert_eq!(cell.get_ptr(Semantics::Relaxed), std::ptr::null_mut())
    /// ```
    ///
    /// [1]: https://docs.rs/ptr_cell/2.2.0/ptr_cell/struct.PtrCell.html#pointer-safety
    #[inline(always)]
    pub fn get_ptr(&self, order: Semantics) -> *mut T {
        self.value.load(order.read())
    }

    /// Determines whether this cell is empty
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Construct an empty cell
    /// let cell: ptr_cell::PtrCell<[char; 3]> = Default::default();
    ///
    /// // Check that the cell's default value is None (empty)
    /// assert!(cell.is_empty(Semantics::Relaxed))
    /// ```
    #[inline(always)]
    pub fn is_empty(&self, order: Semantics) -> bool {
        self.get_ptr(order).is_null()
    }

    /// Constructs a cell with `slot` inside
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a test value
    /// const VALUE: Option<u16> = Some(0xFAA);
    ///
    /// // Wrap the value in a cell
    /// let cell = ptr_cell::PtrCell::new(VALUE);
    ///
    /// // Take the value out
    /// assert_eq!(cell.take(Semantics::Relaxed), VALUE)
    /// ```
    #[inline(always)]
    pub fn new(slot: Option<T>) -> Self {
        let ptr = Self::heap_leak(slot);

        unsafe { Self::from_ptr(ptr) }
    }

    /// Constructs a cell that owns the memory to which `ptr` points
    ///
    /// **A null pointer represents [None]**
    ///
    /// # Safety
    ///
    /// The memory must conform the [memory layout][1] used by [`Box`]
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Initialize a test value
    /// const VALUE: Option<u16> = Some(0xFAA);
    ///
    /// // Allocate the value on the heap and get a pointer to it
    /// let value_ptr = ptr_cell::PtrCell::heap_leak(VALUE);
    ///
    /// // Construct a cell from the pointer
    /// let cell = unsafe { ptr_cell::PtrCell::from_ptr(value_ptr) };
    ///
    /// // Take the value out
    /// assert_eq!(cell.take(Semantics::Relaxed), VALUE)
    /// ```
    ///
    /// [1]: https://doc.rust-lang.org/std/boxed/index.html#memory-layout
    #[inline(always)]
    pub const unsafe fn from_ptr(ptr: *mut T) -> Self {
        let value = core::sync::atomic::AtomicPtr::new(ptr);

        Self { value }
    }

    /// Reclaims ownership of the memory pointed to by `ptr` and returns the contained value
    ///
    /// **A null pointer represents [None]**
    ///
    /// This function is intended to be the inverse of [`heap_leak`](Self::heap_leak)
    ///
    /// # Safety
    ///
    /// The memory must conform to the [memory layout][1] used by [`Box`]
    ///
    /// Dereferencing `ptr` after this function has been called is undefined behavior
    ///
    /// # Usage
    ///
    /// ```rust
    /// // Initialize a test value
    /// const VALUE: Option<u16> = Some(1155);
    ///
    /// // Give up ownership of the value
    /// let ptr = ptr_cell::PtrCell::heap_leak(VALUE);
    ///
    /// // Get ownership of the value back
    /// assert_eq!(unsafe { ptr_cell::PtrCell::heap_reclaim(ptr) }, VALUE)
    /// ```
    ///
    /// [1]: https://doc.rust-lang.org/std/boxed/index.html#memory-layout
    #[inline(always)]
    pub unsafe fn heap_reclaim(ptr: *mut T) -> Option<T> {
        non_null(ptr).map(|ptr| *Box::from_raw(ptr))
    }

    /// Leaks `slot` to the heap and returns a raw pointer to it
    ///
    /// **[None] is represented by a null pointer**
    ///
    /// The memory will be allocated in accordance with the [memory layout][1] used by [`Box`]
    ///
    /// # Usage
    ///
    /// ```rust
    /// use ptr_cell::Semantics;
    ///
    /// // Allocate a value
    /// let ptr = ptr_cell::PtrCell::heap_leak(1031_u16.into());
    ///
    /// // Transfer ownership of the allocation to a new cell
    /// let cell = unsafe { ptr_cell::PtrCell::from_ptr(ptr) };
    ///
    /// // Check that the cell uses the same allocation
    /// assert_eq!(cell.get_ptr(Semantics::Relaxed), ptr)
    /// ```
    ///
    /// [1]: https://doc.rust-lang.org/std/boxed/index.html#memory-layout
    #[inline(always)]
    pub fn heap_leak(slot: Option<T>) -> *mut T {
        match slot {
            Some(value) => Box::into_raw(Box::new(value)),
            None => core::ptr::null_mut(),
        }
    }
}

impl<T> core::fmt::Debug for PtrCell<T> {
    fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
        formatter
            .debug_struct("PtrCell")
            .field("value", &self.value)
            .finish()
    }
}

impl<T> Default for PtrCell<T> {
    /// Constructs an empty cell
    #[inline(always)]
    fn default() -> Self {
        Self::new(None)
    }
}

impl<T> Drop for PtrCell<T> {
    #[inline(always)]
    fn drop(&mut self) {
        let ptr = *self.value.get_mut();

        unsafe { Self::heap_reclaim(ptr) };
    }
}

impl<T> From<T> for PtrCell<T> {
    #[inline(always)]
    fn from(value: T) -> Self {
        Self::new(Some(value))
    }
}

/// Returns `ptr` if it's non-null
#[inline(always)]
fn non_null<T>(ptr: *mut T) -> Option<*mut T> {
    match ptr.is_null() {
        true => None,
        false => Some(ptr),
    }
}

/// Memory ordering semantics for atomic operations. Determines how value updates are synchronized
/// between threads
///
/// ### Explanations
///
/// Lock-free programming is not easy to grasp. What's more, resources explaining Rust's atomic
/// orderings in depth are pretty sparse. However, this is not really an issue. Atomics in Rust are
/// almost identical to their C++ counterparts, of which there exist abundant explanations
///
/// Here are just some of them:
///
/// - Although not meant as an introduction to the release-acquire semantics, this [fantastic
/// article][1] by Jeff Preshing definitely provides the much-needed clarification
///
/// - Another [great article][2] by Preshing, but this time dedicated entirely to the concept of the
/// release-acquire semantics
///
/// - [Memory order][3] from the C++ standards. Way more technical, but has all contracts organized
/// in a single place. Please note that Rust lacks a direct analog to C++'s `memory_order_consume`
///
/// If you're still not sure what semantics to use, choose [`Coupled`](Semantics::Coupled)
///
/// [1]: https://preshing.com/20131125/acquire-and-release-fences-dont-work-the-way-youd-expect/
/// [2]: https://preshing.com/20120913/acquire-and-release-semantics/
/// [3]: https://en.cppreference.com/w/cpp/atomic/memory_order
#[non_exhaustive]
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub enum Semantics {
    /// [`Relaxed`](Ordering::Relaxed) semantics
    ///
    /// No synchronization constraints and the best performance
    Relaxed,

    /// [`Release`](Ordering::Release) - [`Acquire`](Ordering::Acquire) coupling semantics
    ///
    /// Mild synchronization constraints and fair performance
    ///
    /// A read will always see the preceding write (if one exists). Any operations that take place
    /// before the write will also be seen, regardless of their semantics. See the documentation for
    /// `Release` and `Acquire`
    ///
    /// A common assumption is that this is how memory operations naturally behave. While it's true
    /// on some platforms (namely, x86 and x86-64), this behavior is not universal. Thus, this is
    /// likely the semantics you want to use
    Coupled,

    /// [`SeqCst`](Ordering::SeqCst) semantics
    ///
    /// Maximum synchronization constraints and the worst performance
    ///
    /// All memory operations will appear to be executed in a single, total order. See the
    /// documentation for `SeqCst`
    Ordered,
}

/// Implements a method on [`Semantics`] that returns the appropriate [`Ordering`] for a type of
/// operations
macro_rules! operation {
    ($name:ident with $coupled:path:
        { $($overview:tt)* }, { $($returns:tt)* }, { $($assert:tt)* }
    $(,)? ) => {
        impl Semantics {
            $($overview)*
            ///
            /// # Returns
            /// - [`Relaxed`](Ordering::Relaxed) for [`Relaxed`](Semantics::Relaxed) semantics
            $($returns)*
            /// - [`SeqCst`](Ordering::SeqCst) for [`Ordered`](Semantics::Ordered) semantics
            ///
            /// # Usage
            ///
            /// ```rust
            /// use std::sync::atomic::Ordering;
            ///
            /// // Copy a variant of Semantics
            /// let semantics = ptr_cell::Semantics::Coupled;
            ///
            /// // Get the corresponding Ordering
            $($assert)*
            /// ```
            #[inline(always)]
            pub const fn $name(&self) -> Ordering {
                match self {
                    Self::Relaxed => Ordering::Relaxed,
                    Self::Coupled => $coupled,
                    Self::Ordered => Ordering::SeqCst,
                }
            }
        }
    };
}

operation!(read_write with Ordering::AcqRel: {
    /// Returns the memory ordering for read-write operations with these semantics
}, {
    /// - [`AcqRel`](Ordering::AcqRel) for [`Coupled`](Semantics::Coupled) semantics
}, {
    /// assert_eq!(semantics.read_write(), Ordering::AcqRel)
});

operation!(write with Ordering::Release: {
    /// Returns the memory ordering for write operations with these semantics
}, {
    /// - [`Release`](Ordering::Release) for [`Coupled`](Semantics::Coupled) semantics
}, {
    /// assert_eq!(semantics.write(), Ordering::Release)
});

operation!(read with Ordering::Acquire: {
    /// Returns the memory ordering for read operations with these semantics
}, {
    /// - [`Acquire`](Ordering::Acquire) for [`Coupled`](Semantics::Coupled) semantics
}, {
    /// assert_eq!(semantics.read(), Ordering::Acquire)
});

impl Default for Semantics {
    #[inline(always)]
    fn default() -> Self {
        Self::Coupled
    }
}