1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use super::Transport;

use crate::{Error, Parcel, Settings};

use std::collections::VecDeque;
use std::io::prelude::*;
use std::io::Cursor;
use std::mem;

/// The type that we use to describe packet sizes.
pub type PacketSize = u32;

/// The current state.
#[derive(Clone, Debug)]
enum State
{
    /// We are awaiting packet size bytes.
    AwaitingSize(Vec<u8>),
    AwaitingPacket {
        size: PacketSize,
        received_data: Vec<u8>,
    },
}

/// A simple transport.
#[derive(Clone, Debug)]
pub struct Simple
{
    state: State,
    packets: VecDeque<Vec<u8>>,
}

impl Simple
{
    pub fn new() -> Self {
        Simple {
            state: State::AwaitingSize(Vec::new()),
            packets: VecDeque::new(),
        }
    }

    fn process_bytes(&mut self,
                     bytes: &[u8],
                     settings: &Settings)
        -> Result<(), Error> {
        let mut read = Cursor::new(bytes);

        loop {
            match self.state.clone() {
                State::AwaitingSize(mut size_bytes) => {
                    let remaining_bytes = mem::size_of::<PacketSize>() - size_bytes.len();

                    let mut received_bytes = vec![0; remaining_bytes];
                    let bytes_read = read.read(&mut received_bytes)?;
                    received_bytes.drain(bytes_read..);

                    assert_eq!(received_bytes.len(), bytes_read);

                    size_bytes.extend(received_bytes.into_iter());

                    if size_bytes.len() == mem::size_of::<PacketSize>() {
                        let mut size_buffer = Cursor::new(size_bytes);

                        let size = PacketSize::read(&mut size_buffer, settings).unwrap();

                        // We are now ready to receive packet data.
                        self.state = State::AwaitingPacket { size: size, received_data: Vec::new() }
                    } else {
                        // Still waiting to receive the whole packet.
                        self.state = State::AwaitingSize(size_bytes);
                        break;
                    }
                },
                State::AwaitingPacket { size, mut received_data } => {
                    let remaining_bytes = (size as usize) - received_data.len();
                    assert!(remaining_bytes > 0);

                    let mut received_bytes = vec![0; remaining_bytes];
                    let bytes_read = read.read(&mut received_bytes)?;
                    received_bytes.drain(bytes_read..);

                    assert_eq!(received_bytes.len(), bytes_read);

                    received_data.extend(received_bytes.into_iter());

                    assert!(received_data.len() <= (size as usize));

                    if (size as usize) == received_data.len() {
                        self.packets.push_back(received_data);

                        // Start reading the next packet.
                        self.state = State::AwaitingSize(Vec::new());
                    } else {
                        // Keep reading the current packet.
                        self.state = State::AwaitingPacket { size: size, received_data: received_data };
                        break;
                    }
                },
            }
        }

        Ok(())
    }
}

const BUFFER_SIZE: usize = 10000;

impl Transport for Simple
{
    fn process_data(&mut self,
                    read: &mut dyn Read,
                    settings: &Settings) -> Result<(), Error> {
        // Load the data into a temporary buffer before we process it.
        loop {
            let mut buffer = [0u8; BUFFER_SIZE];
            let bytes_read = read.read(&mut buffer).unwrap();
            let buffer = &buffer[0..bytes_read];

            if bytes_read == 0 {
                break;
            } else {
                self.process_bytes(buffer, settings)?;

                // We didn't fill the whole buffer so stop now.
                if bytes_read != BUFFER_SIZE { break; }
            }
        }

        Ok(())
    }

    fn send_raw_packet(&mut self,
                       write: &mut dyn Write,
                       packet: &[u8],
                       settings: &Settings) -> Result<(), Error> {
        // Prefix the packet size.
        (packet.len() as PacketSize).write(write, settings)?;
        // Write the packet data.
        write.write(&packet)?;

        Ok(())
    }

    fn receive_raw_packet(&mut self) -> Result<Option<Vec<u8>>, Error> {
        Ok(self.packets.pop_front())
    }
}

#[cfg(test)]
mod test
{
    use crate::Settings;
    pub use crate::wire::stream::Transport;
    pub use super::Simple;
    pub use std::io::Cursor;

    #[test]
    fn serialises_the_data_with_32bit_length_prefix() {
        let data: Vec<u8> = vec![5, 4, 3, 2, 1];
        let expected_data = &[
                0x00, 0x00, 0x00, 0x05, // 32-bit size prefix
                0x05, 0x04, 0x03, 0x02, 0x01, // The data
        ];

        let mut transport = Simple::new();

        let mut buffer = Cursor::new(Vec::new());

        transport.send_raw_packet(&mut buffer, &data, &Settings::default()).unwrap();
        let written_data = buffer.into_inner();

        assert_eq!(&written_data, &expected_data);
    }

    #[test]
    fn successfully_deserializes_data_with_32bit_length_prefix() {
        let data: Vec<u8> = vec![5, 4, 3, 2, 1];
        let expected_data = &[
                0x00, 0x00, 0x00, 0x05, // 32-bit size prefix
                0x05, 0x04, 0x03, 0x02, 0x01, // The data
        ];

        let mut transport = Simple::new();

        let mut buffer = Cursor::new(&expected_data);

        transport.process_data(&mut buffer, &Settings::default()).unwrap();
        let read_data = transport.receive_raw_packet().ok().unwrap().unwrap();
        assert_eq!(&read_data, &data);
    }
}