proto_types/protobuf.rs
1// This file is @generated by prost-build.
2/// The protocol compiler can output a FileDescriptorSet containing the .proto
3/// files it parses.
4
5#[derive(Clone, PartialEq, ::prost::Message)]
6pub struct FileDescriptorSet {
7 #[prost(message, repeated, tag = "1")]
8 pub file: ::prost::alloc::vec::Vec<FileDescriptorProto>,
9}
10/// Describes a complete .proto file.
11
12#[derive(Clone, PartialEq, ::prost::Message)]
13pub struct FileDescriptorProto {
14 /// file name, relative to root of source tree
15 #[prost(string, optional, tag = "1")]
16 pub name: ::core::option::Option<::prost::alloc::string::String>,
17 /// e.g. "foo", "foo.bar", etc.
18 #[prost(string, optional, tag = "2")]
19 pub package: ::core::option::Option<::prost::alloc::string::String>,
20 /// Names of files imported by this file.
21 #[prost(string, repeated, tag = "3")]
22 pub dependency: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
23 /// Indexes of the public imported files in the dependency list above.
24 #[prost(int32, repeated, packed = "false", tag = "10")]
25 pub public_dependency: ::prost::alloc::vec::Vec<i32>,
26 /// Indexes of the weak imported files in the dependency list.
27 /// For Google-internal migration only. Do not use.
28 #[prost(int32, repeated, packed = "false", tag = "11")]
29 pub weak_dependency: ::prost::alloc::vec::Vec<i32>,
30 /// All top-level definitions in this file.
31 #[prost(message, repeated, tag = "4")]
32 pub message_type: ::prost::alloc::vec::Vec<DescriptorProto>,
33 #[prost(message, repeated, tag = "5")]
34 pub enum_type: ::prost::alloc::vec::Vec<EnumDescriptorProto>,
35 #[prost(message, repeated, tag = "6")]
36 pub service: ::prost::alloc::vec::Vec<ServiceDescriptorProto>,
37 #[prost(message, repeated, tag = "7")]
38 pub extension: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
39 #[prost(message, optional, tag = "8")]
40 pub options: ::core::option::Option<FileOptions>,
41 /// This field contains optional information about the original source code.
42 /// You may safely remove this entire field without harming runtime
43 /// functionality of the descriptors -- the information is needed only by
44 /// development tools.
45 #[prost(message, optional, tag = "9")]
46 pub source_code_info: ::core::option::Option<SourceCodeInfo>,
47 /// The syntax of the proto file.
48 /// The supported values are "proto2" and "proto3".
49 #[prost(string, optional, tag = "12")]
50 pub syntax: ::core::option::Option<::prost::alloc::string::String>,
51}
52/// Describes a message type.
53
54#[derive(Clone, PartialEq, ::prost::Message)]
55pub struct DescriptorProto {
56 #[prost(string, optional, tag = "1")]
57 pub name: ::core::option::Option<::prost::alloc::string::String>,
58 #[prost(message, repeated, tag = "2")]
59 pub field: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
60 #[prost(message, repeated, tag = "6")]
61 pub extension: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
62 #[prost(message, repeated, tag = "3")]
63 pub nested_type: ::prost::alloc::vec::Vec<Self>,
64 #[prost(message, repeated, tag = "4")]
65 pub enum_type: ::prost::alloc::vec::Vec<EnumDescriptorProto>,
66 #[prost(message, repeated, tag = "5")]
67 pub extension_range: ::prost::alloc::vec::Vec<descriptor_proto::ExtensionRange>,
68 #[prost(message, repeated, tag = "8")]
69 pub oneof_decl: ::prost::alloc::vec::Vec<OneofDescriptorProto>,
70 #[prost(message, optional, tag = "7")]
71 pub options: ::core::option::Option<MessageOptions>,
72 #[prost(message, repeated, tag = "9")]
73 pub reserved_range: ::prost::alloc::vec::Vec<descriptor_proto::ReservedRange>,
74 /// Reserved field names, which may not be used by fields in the same message.
75 /// A given name may only be reserved once.
76 #[prost(string, repeated, tag = "10")]
77 pub reserved_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
78}
79/// Nested message and enum types in `DescriptorProto`.
80pub mod descriptor_proto {
81
82 #[derive(Clone, PartialEq, ::prost::Message)]
83 pub struct ExtensionRange {
84 /// Inclusive.
85 #[prost(int32, optional, tag = "1")]
86 pub start: ::core::option::Option<i32>,
87 /// Exclusive.
88 #[prost(int32, optional, tag = "2")]
89 pub end: ::core::option::Option<i32>,
90 #[prost(message, optional, tag = "3")]
91 pub options: ::core::option::Option<super::ExtensionRangeOptions>,
92 }
93 /// Range of reserved tag numbers. Reserved tag numbers may not be used by
94 /// fields or extension ranges in the same message. Reserved ranges may
95 /// not overlap.
96
97 #[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
98 pub struct ReservedRange {
99 /// Inclusive.
100 #[prost(int32, optional, tag = "1")]
101 pub start: ::core::option::Option<i32>,
102 /// Exclusive.
103 #[prost(int32, optional, tag = "2")]
104 pub end: ::core::option::Option<i32>,
105 }
106}
107
108#[derive(Clone, PartialEq, ::prost::Message)]
109pub struct ExtensionRangeOptions {
110 /// The parser stores options it doesn't recognize here. See above.
111 #[prost(message, repeated, tag = "999")]
112 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
113}
114/// Describes a field within a message.
115
116#[derive(Clone, PartialEq, ::prost::Message)]
117pub struct FieldDescriptorProto {
118 #[prost(string, optional, tag = "1")]
119 pub name: ::core::option::Option<::prost::alloc::string::String>,
120 #[prost(int32, optional, tag = "3")]
121 pub number: ::core::option::Option<i32>,
122 #[prost(enumeration = "field_descriptor_proto::Label", optional, tag = "4")]
123 pub label: ::core::option::Option<i32>,
124 /// If type_name is set, this need not be set. If both this and type_name
125 /// are set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP.
126 #[prost(enumeration = "field_descriptor_proto::Type", optional, tag = "5")]
127 pub r#type: ::core::option::Option<i32>,
128 /// For message and enum types, this is the name of the type. If the name
129 /// starts with a '.', it is fully-qualified. Otherwise, C++-like scoping
130 /// rules are used to find the type (i.e. first the nested types within this
131 /// message are searched, then within the parent, on up to the root
132 /// namespace).
133 #[prost(string, optional, tag = "6")]
134 pub type_name: ::core::option::Option<::prost::alloc::string::String>,
135 /// For extensions, this is the name of the type being extended. It is
136 /// resolved in the same manner as type_name.
137 #[prost(string, optional, tag = "2")]
138 pub extendee: ::core::option::Option<::prost::alloc::string::String>,
139 /// For numeric types, contains the original text representation of the value.
140 /// For booleans, "true" or "false".
141 /// For strings, contains the default text contents (not escaped in any way).
142 /// For bytes, contains the C escaped value. All bytes >= 128 are escaped.
143 /// TODO(kenton): Base-64 encode?
144 #[prost(string, optional, tag = "7")]
145 pub default_value: ::core::option::Option<::prost::alloc::string::String>,
146 /// If set, gives the index of a oneof in the containing type's oneof_decl
147 /// list. This field is a member of that oneof.
148 #[prost(int32, optional, tag = "9")]
149 pub oneof_index: ::core::option::Option<i32>,
150 /// JSON name of this field. The value is set by protocol compiler. If the
151 /// user has set a "json_name" option on this field, that option's value
152 /// will be used. Otherwise, it's deduced from the field's name by converting
153 /// it to camelCase.
154 #[prost(string, optional, tag = "10")]
155 pub json_name: ::core::option::Option<::prost::alloc::string::String>,
156 #[prost(message, optional, tag = "8")]
157 pub options: ::core::option::Option<FieldOptions>,
158 /// If true, this is a proto3 "optional". When a proto3 field is optional, it
159 /// tracks presence regardless of field type.
160 ///
161 /// When proto3_optional is true, this field must be belong to a oneof to
162 /// signal to old proto3 clients that presence is tracked for this field. This
163 /// oneof is known as a "synthetic" oneof, and this field must be its sole
164 /// member (each proto3 optional field gets its own synthetic oneof). Synthetic
165 /// oneofs exist in the descriptor only, and do not generate any API. Synthetic
166 /// oneofs must be ordered after all "real" oneofs.
167 ///
168 /// For message fields, proto3_optional doesn't create any semantic change,
169 /// since non-repeated message fields always track presence. However it still
170 /// indicates the semantic detail of whether the user wrote "optional" or not.
171 /// This can be useful for round-tripping the .proto file. For consistency we
172 /// give message fields a synthetic oneof also, even though it is not required
173 /// to track presence. This is especially important because the parser can't
174 /// tell if a field is a message or an enum, so it must always create a
175 /// synthetic oneof.
176 ///
177 /// Proto2 optional fields do not set this flag, because they already indicate
178 /// optional with `LABEL_OPTIONAL`.
179 #[prost(bool, optional, tag = "17")]
180 pub proto3_optional: ::core::option::Option<bool>,
181}
182/// Nested message and enum types in `FieldDescriptorProto`.
183pub mod field_descriptor_proto {
184
185 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
186 #[repr(i32)]
187 pub enum Type {
188 /// 0 is reserved for errors.
189 /// Order is weird for historical reasons.
190 Double = 1,
191 Float = 2,
192 /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT64 if
193 /// negative values are likely.
194 Int64 = 3,
195 Uint64 = 4,
196 /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT32 if
197 /// negative values are likely.
198 Int32 = 5,
199 Fixed64 = 6,
200 Fixed32 = 7,
201 Bool = 8,
202 String = 9,
203 /// Tag-delimited aggregate.
204 /// Group type is deprecated and not supported in proto3. However, Proto3
205 /// implementations should still be able to parse the group wire format and
206 /// treat group fields as unknown fields.
207 Group = 10,
208 /// Length-delimited aggregate.
209 Message = 11,
210 /// New in version 2.
211 Bytes = 12,
212 Uint32 = 13,
213 Enum = 14,
214 Sfixed32 = 15,
215 Sfixed64 = 16,
216 /// Uses ZigZag encoding.
217 Sint32 = 17,
218 /// Uses ZigZag encoding.
219 Sint64 = 18,
220 }
221 impl Type {
222 /// String value of the enum field names used in the ProtoBuf definition.
223 ///
224 /// The values are not transformed in any way and thus are considered stable
225 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
226 #[must_use]
227 pub const fn as_str_name(&self) -> &'static str {
228 match self {
229 Self::Double => "TYPE_DOUBLE",
230 Self::Float => "TYPE_FLOAT",
231 Self::Int64 => "TYPE_INT64",
232 Self::Uint64 => "TYPE_UINT64",
233 Self::Int32 => "TYPE_INT32",
234 Self::Fixed64 => "TYPE_FIXED64",
235 Self::Fixed32 => "TYPE_FIXED32",
236 Self::Bool => "TYPE_BOOL",
237 Self::String => "TYPE_STRING",
238 Self::Group => "TYPE_GROUP",
239 Self::Message => "TYPE_MESSAGE",
240 Self::Bytes => "TYPE_BYTES",
241 Self::Uint32 => "TYPE_UINT32",
242 Self::Enum => "TYPE_ENUM",
243 Self::Sfixed32 => "TYPE_SFIXED32",
244 Self::Sfixed64 => "TYPE_SFIXED64",
245 Self::Sint32 => "TYPE_SINT32",
246 Self::Sint64 => "TYPE_SINT64",
247 }
248 }
249 /// Creates an enum from field names used in the ProtoBuf definition.
250 #[must_use]
251 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
252 match value {
253 "TYPE_DOUBLE" => Some(Self::Double),
254 "TYPE_FLOAT" => Some(Self::Float),
255 "TYPE_INT64" => Some(Self::Int64),
256 "TYPE_UINT64" => Some(Self::Uint64),
257 "TYPE_INT32" => Some(Self::Int32),
258 "TYPE_FIXED64" => Some(Self::Fixed64),
259 "TYPE_FIXED32" => Some(Self::Fixed32),
260 "TYPE_BOOL" => Some(Self::Bool),
261 "TYPE_STRING" => Some(Self::String),
262 "TYPE_GROUP" => Some(Self::Group),
263 "TYPE_MESSAGE" => Some(Self::Message),
264 "TYPE_BYTES" => Some(Self::Bytes),
265 "TYPE_UINT32" => Some(Self::Uint32),
266 "TYPE_ENUM" => Some(Self::Enum),
267 "TYPE_SFIXED32" => Some(Self::Sfixed32),
268 "TYPE_SFIXED64" => Some(Self::Sfixed64),
269 "TYPE_SINT32" => Some(Self::Sint32),
270 "TYPE_SINT64" => Some(Self::Sint64),
271 _ => None,
272 }
273 }
274 }
275
276 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
277 #[repr(i32)]
278 pub enum Label {
279 /// 0 is reserved for errors
280 Optional = 1,
281 Required = 2,
282 Repeated = 3,
283 }
284 impl Label {
285 /// String value of the enum field names used in the ProtoBuf definition.
286 ///
287 /// The values are not transformed in any way and thus are considered stable
288 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
289 #[must_use]
290 pub const fn as_str_name(&self) -> &'static str {
291 match self {
292 Self::Optional => "LABEL_OPTIONAL",
293 Self::Required => "LABEL_REQUIRED",
294 Self::Repeated => "LABEL_REPEATED",
295 }
296 }
297 /// Creates an enum from field names used in the ProtoBuf definition.
298 #[must_use]
299 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
300 match value {
301 "LABEL_OPTIONAL" => Some(Self::Optional),
302 "LABEL_REQUIRED" => Some(Self::Required),
303 "LABEL_REPEATED" => Some(Self::Repeated),
304 _ => None,
305 }
306 }
307 }
308}
309/// Describes a oneof.
310
311#[derive(Clone, PartialEq, ::prost::Message)]
312pub struct OneofDescriptorProto {
313 #[prost(string, optional, tag = "1")]
314 pub name: ::core::option::Option<::prost::alloc::string::String>,
315 #[prost(message, optional, tag = "2")]
316 pub options: ::core::option::Option<OneofOptions>,
317}
318/// Describes an enum type.
319
320#[derive(Clone, PartialEq, ::prost::Message)]
321pub struct EnumDescriptorProto {
322 #[prost(string, optional, tag = "1")]
323 pub name: ::core::option::Option<::prost::alloc::string::String>,
324 #[prost(message, repeated, tag = "2")]
325 pub value: ::prost::alloc::vec::Vec<EnumValueDescriptorProto>,
326 #[prost(message, optional, tag = "3")]
327 pub options: ::core::option::Option<EnumOptions>,
328 /// Range of reserved numeric values. Reserved numeric values may not be used
329 /// by enum values in the same enum declaration. Reserved ranges may not
330 /// overlap.
331 #[prost(message, repeated, tag = "4")]
332 pub reserved_range: ::prost::alloc::vec::Vec<enum_descriptor_proto::EnumReservedRange>,
333 /// Reserved enum value names, which may not be reused. A given name may only
334 /// be reserved once.
335 #[prost(string, repeated, tag = "5")]
336 pub reserved_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
337}
338/// Nested message and enum types in `EnumDescriptorProto`.
339pub mod enum_descriptor_proto {
340 /// Range of reserved numeric values. Reserved values may not be used by
341 /// entries in the same enum. Reserved ranges may not overlap.
342 ///
343 /// Note that this is distinct from DescriptorProto.ReservedRange in that it
344 /// is inclusive such that it can appropriately represent the entire int32
345 /// domain.
346
347 #[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
348 pub struct EnumReservedRange {
349 /// Inclusive.
350 #[prost(int32, optional, tag = "1")]
351 pub start: ::core::option::Option<i32>,
352 /// Inclusive.
353 #[prost(int32, optional, tag = "2")]
354 pub end: ::core::option::Option<i32>,
355 }
356}
357/// Describes a value within an enum.
358
359#[derive(Clone, PartialEq, ::prost::Message)]
360pub struct EnumValueDescriptorProto {
361 #[prost(string, optional, tag = "1")]
362 pub name: ::core::option::Option<::prost::alloc::string::String>,
363 #[prost(int32, optional, tag = "2")]
364 pub number: ::core::option::Option<i32>,
365 #[prost(message, optional, tag = "3")]
366 pub options: ::core::option::Option<EnumValueOptions>,
367}
368/// Describes a service.
369
370#[derive(Clone, PartialEq, ::prost::Message)]
371pub struct ServiceDescriptorProto {
372 #[prost(string, optional, tag = "1")]
373 pub name: ::core::option::Option<::prost::alloc::string::String>,
374 #[prost(message, repeated, tag = "2")]
375 pub method: ::prost::alloc::vec::Vec<MethodDescriptorProto>,
376 #[prost(message, optional, tag = "3")]
377 pub options: ::core::option::Option<ServiceOptions>,
378}
379/// Describes a method of a service.
380
381#[derive(Clone, PartialEq, ::prost::Message)]
382pub struct MethodDescriptorProto {
383 #[prost(string, optional, tag = "1")]
384 pub name: ::core::option::Option<::prost::alloc::string::String>,
385 /// Input and output type names. These are resolved in the same way as
386 /// FieldDescriptorProto.type_name, but must refer to a message type.
387 #[prost(string, optional, tag = "2")]
388 pub input_type: ::core::option::Option<::prost::alloc::string::String>,
389 #[prost(string, optional, tag = "3")]
390 pub output_type: ::core::option::Option<::prost::alloc::string::String>,
391 #[prost(message, optional, tag = "4")]
392 pub options: ::core::option::Option<MethodOptions>,
393 /// Identifies if client streams multiple client messages
394 #[prost(bool, optional, tag = "5", default = "false")]
395 pub client_streaming: ::core::option::Option<bool>,
396 /// Identifies if server streams multiple server messages
397 #[prost(bool, optional, tag = "6", default = "false")]
398 pub server_streaming: ::core::option::Option<bool>,
399}
400/// Each of the definitions above may have "options" attached.
401///
402/// These are
403/// just annotations which may cause code to be generated slightly differently
404/// or may contain hints for code that manipulates protocol messages.
405///
406/// Clients may define custom options as extensions of the \*Options messages.
407/// These extensions may not yet be known at parsing time, so the parser cannot
408/// store the values in them. Instead it stores them in a field in the \*Options
409/// message called uninterpreted_option. This field must have the same name
410/// across all \*Options messages. We then use this field to populate the
411/// extensions when we build a descriptor, at which point all protos have been
412/// parsed and so all extensions are known.
413///
414/// Extension numbers for custom options may be chosen as follows:
415///
416/// * For options which will only be used within a single application or
417/// organization, or for experimental options, use field numbers 50000
418/// through 99999. It is up to you to ensure that you do not use the
419/// same number for multiple options.
420/// * For options which will be published and used publicly by multiple
421/// independent entities, e-mail protobuf-global-extension-registry@google.com
422/// to reserve extension numbers. Simply provide your project name (e.g.
423/// Objective-C plugin) and your project website (if available) -- there's no
424/// need to explain how you intend to use them. Usually you only need one
425/// extension number. You can declare multiple options with only one extension
426/// number by putting them in a sub-message. See the Custom Options section of
427/// the docs for examples:
428/// <https://developers.google.com/protocol-buffers/docs/proto#options>
429/// If this turns out to be popular, a web service will be set up
430/// to automatically assign option numbers.
431
432#[derive(Clone, PartialEq, ::prost::Message)]
433pub struct FileOptions {
434 /// Sets the Java package where classes generated from this .proto will be
435 /// placed. By default, the proto package is used, but this is often
436 /// inappropriate because proto packages do not normally start with backwards
437 /// domain names.
438 #[prost(string, optional, tag = "1")]
439 pub java_package: ::core::option::Option<::prost::alloc::string::String>,
440 /// Controls the name of the wrapper Java class generated for the .proto file.
441 /// That class will always contain the .proto file's getDescriptor() method as
442 /// well as any top-level extensions defined in the .proto file.
443 /// If java_multiple_files is disabled, then all the other classes from the
444 /// .proto file will be nested inside the single wrapper outer class.
445 #[prost(string, optional, tag = "8")]
446 pub java_outer_classname: ::core::option::Option<::prost::alloc::string::String>,
447 /// If enabled, then the Java code generator will generate a separate .java
448 /// file for each top-level message, enum, and service defined in the .proto
449 /// file. Thus, these types will *not* be nested inside the wrapper class
450 /// named by java_outer_classname. However, the wrapper class will still be
451 /// generated to contain the file's getDescriptor() method as well as any
452 /// top-level extensions defined in the file.
453 #[prost(bool, optional, tag = "10", default = "false")]
454 pub java_multiple_files: ::core::option::Option<bool>,
455 /// This option does nothing.
456 #[deprecated]
457 #[prost(bool, optional, tag = "20")]
458 pub java_generate_equals_and_hash: ::core::option::Option<bool>,
459 /// If set true, then the Java2 code generator will generate code that
460 /// throws an exception whenever an attempt is made to assign a non-UTF-8
461 /// byte sequence to a string field.
462 /// Message reflection will do the same.
463 /// However, an extension field still accepts non-UTF-8 byte sequences.
464 /// This option has no effect on when used with the lite runtime.
465 #[prost(bool, optional, tag = "27", default = "false")]
466 pub java_string_check_utf8: ::core::option::Option<bool>,
467 #[prost(
468 enumeration = "file_options::OptimizeMode",
469 optional,
470 tag = "9",
471 default = "Speed"
472 )]
473 pub optimize_for: ::core::option::Option<i32>,
474 /// Sets the Go package where structs generated from this .proto will be
475 /// placed. If omitted, the Go package will be derived from the following:
476 ///
477 /// * The basename of the package import path, if provided.
478 /// * Otherwise, the package statement in the .proto file, if present.
479 /// * Otherwise, the basename of the .proto file, without extension.
480 #[prost(string, optional, tag = "11")]
481 pub go_package: ::core::option::Option<::prost::alloc::string::String>,
482 /// Should generic services be generated in each language? "Generic" services
483 /// are not specific to any particular RPC system. They are generated by the
484 /// main code generators in each language (without additional plugins).
485 /// Generic services were the only kind of service generation supported by
486 /// early versions of google.protobuf.
487 ///
488 /// Generic services are now considered deprecated in favor of using plugins
489 /// that generate code specific to your particular RPC system. Therefore,
490 /// these default to false. Old code which depends on generic services should
491 /// explicitly set them to true.
492 #[prost(bool, optional, tag = "16", default = "false")]
493 pub cc_generic_services: ::core::option::Option<bool>,
494 #[prost(bool, optional, tag = "17", default = "false")]
495 pub java_generic_services: ::core::option::Option<bool>,
496 #[prost(bool, optional, tag = "18", default = "false")]
497 pub py_generic_services: ::core::option::Option<bool>,
498 #[prost(bool, optional, tag = "42", default = "false")]
499 pub php_generic_services: ::core::option::Option<bool>,
500 /// Is this file deprecated?
501 /// Depending on the target platform, this can emit Deprecated annotations
502 /// for everything in the file, or it will be completely ignored; in the very
503 /// least, this is a formalization for deprecating files.
504 #[prost(bool, optional, tag = "23", default = "false")]
505 pub deprecated: ::core::option::Option<bool>,
506 /// Enables the use of arenas for the proto messages in this file. This applies
507 /// only to generated classes for C++.
508 #[prost(bool, optional, tag = "31", default = "true")]
509 pub cc_enable_arenas: ::core::option::Option<bool>,
510 /// Sets the objective c class prefix which is prepended to all objective c
511 /// generated classes from this .proto. There is no default.
512 #[prost(string, optional, tag = "36")]
513 pub objc_class_prefix: ::core::option::Option<::prost::alloc::string::String>,
514 /// Namespace for generated classes; defaults to the package.
515 #[prost(string, optional, tag = "37")]
516 pub csharp_namespace: ::core::option::Option<::prost::alloc::string::String>,
517 /// By default Swift generators will take the proto package and CamelCase it
518 /// replacing '.' with underscore and use that to prefix the types/symbols
519 /// defined. When this options is provided, they will use this value instead
520 /// to prefix the types/symbols defined.
521 #[prost(string, optional, tag = "39")]
522 pub swift_prefix: ::core::option::Option<::prost::alloc::string::String>,
523 /// Sets the php class prefix which is prepended to all php generated classes
524 /// from this .proto. Default is empty.
525 #[prost(string, optional, tag = "40")]
526 pub php_class_prefix: ::core::option::Option<::prost::alloc::string::String>,
527 /// Use this option to change the namespace of php generated classes. Default
528 /// is empty. When this option is empty, the package name will be used for
529 /// determining the namespace.
530 #[prost(string, optional, tag = "41")]
531 pub php_namespace: ::core::option::Option<::prost::alloc::string::String>,
532 /// Use this option to change the namespace of php generated metadata classes.
533 /// Default is empty. When this option is empty, the proto file name will be
534 /// used for determining the namespace.
535 #[prost(string, optional, tag = "44")]
536 pub php_metadata_namespace: ::core::option::Option<::prost::alloc::string::String>,
537 /// Use this option to change the package of ruby generated classes. Default
538 /// is empty. When this option is not set, the package name will be used for
539 /// determining the ruby package.
540 #[prost(string, optional, tag = "45")]
541 pub ruby_package: ::core::option::Option<::prost::alloc::string::String>,
542 /// The parser stores options it doesn't recognize here.
543 /// See the documentation for the "Options" section above.
544 #[prost(message, repeated, tag = "999")]
545 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
546}
547/// Nested message and enum types in `FileOptions`.
548pub mod file_options {
549 /// Generated classes can be optimized for speed or code size.
550
551 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
552 #[repr(i32)]
553 pub enum OptimizeMode {
554 /// Generate complete code for parsing, serialization,
555 Speed = 1,
556 /// etc.
557 ///
558 /// Use ReflectionOps to implement these methods.
559 CodeSize = 2,
560 /// Generate code using MessageLite and the lite runtime.
561 LiteRuntime = 3,
562 }
563 impl OptimizeMode {
564 /// String value of the enum field names used in the ProtoBuf definition.
565 ///
566 /// The values are not transformed in any way and thus are considered stable
567 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
568 #[must_use]
569 pub const fn as_str_name(&self) -> &'static str {
570 match self {
571 Self::Speed => "SPEED",
572 Self::CodeSize => "CODE_SIZE",
573 Self::LiteRuntime => "LITE_RUNTIME",
574 }
575 }
576 /// Creates an enum from field names used in the ProtoBuf definition.
577 #[must_use]
578 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
579 match value {
580 "SPEED" => Some(Self::Speed),
581 "CODE_SIZE" => Some(Self::CodeSize),
582 "LITE_RUNTIME" => Some(Self::LiteRuntime),
583 _ => None,
584 }
585 }
586 }
587}
588
589#[derive(Clone, PartialEq, ::prost::Message)]
590pub struct MessageOptions {
591 /// Set true to use the old proto1 MessageSet wire format for extensions.
592 /// This is provided for backwards-compatibility with the MessageSet wire
593 /// format. You should not use this for any other reason: It's less
594 /// efficient, has fewer features, and is more complicated.
595 ///
596 /// The message must be defined exactly as follows:
597 /// message Foo {
598 /// option message_set_wire_format = true;
599 /// extensions 4 to max;
600 /// }
601 /// Note that the message cannot have any defined fields; MessageSets only
602 /// have extensions.
603 ///
604 /// All extensions of your type must be singular messages; e.g. they cannot
605 /// be int32s, enums, or repeated messages.
606 ///
607 /// Because this is an option, the above two restrictions are not enforced by
608 /// the protocol compiler.
609 #[prost(bool, optional, tag = "1", default = "false")]
610 pub message_set_wire_format: ::core::option::Option<bool>,
611 /// Disables the generation of the standard "descriptor()" accessor, which can
612 /// conflict with a field of the same name. This is meant to make migration
613 /// from proto1 easier; new code should avoid fields named "descriptor".
614 #[prost(bool, optional, tag = "2", default = "false")]
615 pub no_standard_descriptor_accessor: ::core::option::Option<bool>,
616 /// Is this message deprecated?
617 /// Depending on the target platform, this can emit Deprecated annotations
618 /// for the message, or it will be completely ignored; in the very least,
619 /// this is a formalization for deprecating messages.
620 #[prost(bool, optional, tag = "3", default = "false")]
621 pub deprecated: ::core::option::Option<bool>,
622 /// Whether the message is an automatically generated map entry type for the
623 /// maps field.
624 ///
625 /// For maps fields:
626 /// map\<KeyType, ValueType> map_field = 1;
627 /// The parsed descriptor looks like:
628 /// message MapFieldEntry {
629 /// option map_entry = true;
630 /// optional KeyType key = 1;
631 /// optional ValueType value = 2;
632 /// }
633 /// repeated MapFieldEntry map_field = 1;
634 ///
635 /// Implementations may choose not to generate the map_entry=true message, but
636 /// use a native map in the target language to hold the keys and values.
637 /// The reflection APIs in such implementations still need to work as
638 /// if the field is a repeated message field.
639 ///
640 /// NOTE: Do not set the option in .proto files. Always use the maps syntax
641 /// instead. The option should only be implicitly set by the proto compiler
642 /// parser.
643 #[prost(bool, optional, tag = "7")]
644 pub map_entry: ::core::option::Option<bool>,
645 /// The parser stores options it doesn't recognize here. See above.
646 #[prost(message, repeated, tag = "999")]
647 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
648}
649
650#[derive(Clone, PartialEq, ::prost::Message)]
651pub struct FieldOptions {
652 /// The ctype option instructs the C++ code generator to use a different
653 /// representation of the field than it normally would. See the specific
654 /// options below. This option is not yet implemented in the open source
655 /// release -- sorry, we'll try to include it in a future version!
656 #[prost(
657 enumeration = "field_options::CType",
658 optional,
659 tag = "1",
660 default = "String"
661 )]
662 pub ctype: ::core::option::Option<i32>,
663 /// The packed option can be enabled for repeated primitive fields to enable
664 /// a more efficient representation on the wire. Rather than repeatedly
665 /// writing the tag and type for each element, the entire array is encoded as
666 /// a single length-delimited blob. In proto3, only explicit setting it to
667 /// false will avoid using packed encoding.
668 #[prost(bool, optional, tag = "2")]
669 pub packed: ::core::option::Option<bool>,
670 /// The jstype option determines the JavaScript type used for values of the
671 /// field. The option is permitted only for 64 bit integral and fixed types
672 /// (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING
673 /// is represented as JavaScript string, which avoids loss of precision that
674 /// can happen when a large value is converted to a floating point JavaScript.
675 /// Specifying JS_NUMBER for the jstype causes the generated JavaScript code to
676 /// use the JavaScript "number" type. The behavior of the default option
677 /// JS_NORMAL is implementation dependent.
678 ///
679 /// This option is an enum to permit additional types to be added, e.g.
680 /// goog.math.Integer.
681 #[prost(
682 enumeration = "field_options::JsType",
683 optional,
684 tag = "6",
685 default = "JsNormal"
686 )]
687 pub jstype: ::core::option::Option<i32>,
688 /// Should this field be parsed lazily? Lazy applies only to message-type
689 /// fields. It means that when the outer message is initially parsed, the
690 /// inner message's contents will not be parsed but instead stored in encoded
691 /// form. The inner message will actually be parsed when it is first accessed.
692 ///
693 /// This is only a hint. Implementations are free to choose whether to use
694 /// eager or lazy parsing regardless of the value of this option. However,
695 /// setting this option true suggests that the protocol author believes that
696 /// using lazy parsing on this field is worth the additional bookkeeping
697 /// overhead typically needed to implement it.
698 ///
699 /// This option does not affect the public interface of any generated code;
700 /// all method signatures remain the same. Furthermore, thread-safety of the
701 /// interface is not affected by this option; const methods remain safe to
702 /// call from multiple threads concurrently, while non-const methods continue
703 /// to require exclusive access.
704 ///
705 /// Note that implementations may choose not to check required fields within
706 /// a lazy sub-message. That is, calling IsInitialized() on the outer message
707 /// may return true even if the inner message has missing required fields.
708 /// This is necessary because otherwise the inner message would have to be
709 /// parsed in order to perform the check, defeating the purpose of lazy
710 /// parsing. An implementation which chooses not to check required fields
711 /// must be consistent about it. That is, for any particular sub-message, the
712 /// implementation must either *always* check its required fields, or *never*
713 /// check its required fields, regardless of whether or not the message has
714 /// been parsed.
715 #[prost(bool, optional, tag = "5", default = "false")]
716 pub lazy: ::core::option::Option<bool>,
717 /// Is this field deprecated?
718 /// Depending on the target platform, this can emit Deprecated annotations
719 /// for accessors, or it will be completely ignored; in the very least, this
720 /// is a formalization for deprecating fields.
721 #[prost(bool, optional, tag = "3", default = "false")]
722 pub deprecated: ::core::option::Option<bool>,
723 /// For Google-internal migration only. Do not use.
724 #[prost(bool, optional, tag = "10", default = "false")]
725 pub weak: ::core::option::Option<bool>,
726 /// The parser stores options it doesn't recognize here. See above.
727 #[prost(message, repeated, tag = "999")]
728 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
729}
730/// Nested message and enum types in `FieldOptions`.
731pub mod field_options {
732
733 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
734 #[repr(i32)]
735 pub enum CType {
736 /// Default mode.
737 String = 0,
738 Cord = 1,
739 StringPiece = 2,
740 }
741 impl CType {
742 /// String value of the enum field names used in the ProtoBuf definition.
743 ///
744 /// The values are not transformed in any way and thus are considered stable
745 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
746 #[must_use]
747 pub const fn as_str_name(&self) -> &'static str {
748 match self {
749 Self::String => "STRING",
750 Self::Cord => "CORD",
751 Self::StringPiece => "STRING_PIECE",
752 }
753 }
754 /// Creates an enum from field names used in the ProtoBuf definition.
755 #[must_use]
756 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
757 match value {
758 "STRING" => Some(Self::String),
759 "CORD" => Some(Self::Cord),
760 "STRING_PIECE" => Some(Self::StringPiece),
761 _ => None,
762 }
763 }
764 }
765
766 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
767 #[repr(i32)]
768 pub enum JsType {
769 /// Use the default type.
770 JsNormal = 0,
771 /// Use JavaScript strings.
772 JsString = 1,
773 /// Use JavaScript numbers.
774 JsNumber = 2,
775 }
776 impl JsType {
777 /// String value of the enum field names used in the ProtoBuf definition.
778 ///
779 /// The values are not transformed in any way and thus are considered stable
780 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
781 #[must_use]
782 pub const fn as_str_name(&self) -> &'static str {
783 match self {
784 Self::JsNormal => "JS_NORMAL",
785 Self::JsString => "JS_STRING",
786 Self::JsNumber => "JS_NUMBER",
787 }
788 }
789 /// Creates an enum from field names used in the ProtoBuf definition.
790 #[must_use]
791 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
792 match value {
793 "JS_NORMAL" => Some(Self::JsNormal),
794 "JS_STRING" => Some(Self::JsString),
795 "JS_NUMBER" => Some(Self::JsNumber),
796 _ => None,
797 }
798 }
799 }
800}
801
802#[derive(Clone, PartialEq, ::prost::Message)]
803pub struct OneofOptions {
804 /// The parser stores options it doesn't recognize here. See above.
805 #[prost(message, repeated, tag = "999")]
806 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
807}
808
809#[derive(Clone, PartialEq, ::prost::Message)]
810pub struct EnumOptions {
811 /// Set this option to true to allow mapping different tag names to the same
812 /// value.
813 #[prost(bool, optional, tag = "2")]
814 pub allow_alias: ::core::option::Option<bool>,
815 /// Is this enum deprecated?
816 /// Depending on the target platform, this can emit Deprecated annotations
817 /// for the enum, or it will be completely ignored; in the very least, this
818 /// is a formalization for deprecating enums.
819 #[prost(bool, optional, tag = "3", default = "false")]
820 pub deprecated: ::core::option::Option<bool>,
821 /// The parser stores options it doesn't recognize here. See above.
822 #[prost(message, repeated, tag = "999")]
823 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
824}
825
826#[derive(Clone, PartialEq, ::prost::Message)]
827pub struct EnumValueOptions {
828 /// Is this enum value deprecated?
829 /// Depending on the target platform, this can emit Deprecated annotations
830 /// for the enum value, or it will be completely ignored; in the very least,
831 /// this is a formalization for deprecating enum values.
832 #[prost(bool, optional, tag = "1", default = "false")]
833 pub deprecated: ::core::option::Option<bool>,
834 /// The parser stores options it doesn't recognize here. See above.
835 #[prost(message, repeated, tag = "999")]
836 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
837}
838
839#[derive(Clone, PartialEq, ::prost::Message)]
840pub struct ServiceOptions {
841 /// Is this service deprecated?
842 /// Depending on the target platform, this can emit Deprecated annotations
843 /// for the service, or it will be completely ignored; in the very least,
844 /// this is a formalization for deprecating services.
845 #[prost(bool, optional, tag = "33", default = "false")]
846 pub deprecated: ::core::option::Option<bool>,
847 /// The parser stores options it doesn't recognize here. See above.
848 #[prost(message, repeated, tag = "999")]
849 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
850}
851
852#[derive(Clone, PartialEq, ::prost::Message)]
853pub struct MethodOptions {
854 /// Is this method deprecated?
855 /// Depending on the target platform, this can emit Deprecated annotations
856 /// for the method, or it will be completely ignored; in the very least,
857 /// this is a formalization for deprecating methods.
858 #[prost(bool, optional, tag = "33", default = "false")]
859 pub deprecated: ::core::option::Option<bool>,
860 #[prost(
861 enumeration = "method_options::IdempotencyLevel",
862 optional,
863 tag = "34",
864 default = "IdempotencyUnknown"
865 )]
866 pub idempotency_level: ::core::option::Option<i32>,
867 /// The parser stores options it doesn't recognize here. See above.
868 #[prost(message, repeated, tag = "999")]
869 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
870}
871/// Nested message and enum types in `MethodOptions`.
872pub mod method_options {
873 /// Is this method side-effect-free (or safe in HTTP parlance), or idempotent,
874 /// or neither?
875 ///
876 /// HTTP based RPC implementation may choose GET verb for safe
877 /// methods, and PUT verb for idempotent methods instead of the default POST.
878
879 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
880 #[repr(i32)]
881 pub enum IdempotencyLevel {
882 IdempotencyUnknown = 0,
883 /// implies idempotent
884 NoSideEffects = 1,
885 /// idempotent, but may have side effects
886 Idempotent = 2,
887 }
888 impl IdempotencyLevel {
889 /// String value of the enum field names used in the ProtoBuf definition.
890 ///
891 /// The values are not transformed in any way and thus are considered stable
892 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
893 #[must_use]
894 pub const fn as_str_name(&self) -> &'static str {
895 match self {
896 Self::IdempotencyUnknown => "IDEMPOTENCY_UNKNOWN",
897 Self::NoSideEffects => "NO_SIDE_EFFECTS",
898 Self::Idempotent => "IDEMPOTENT",
899 }
900 }
901 /// Creates an enum from field names used in the ProtoBuf definition.
902 #[must_use]
903 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
904 match value {
905 "IDEMPOTENCY_UNKNOWN" => Some(Self::IdempotencyUnknown),
906 "NO_SIDE_EFFECTS" => Some(Self::NoSideEffects),
907 "IDEMPOTENT" => Some(Self::Idempotent),
908 _ => None,
909 }
910 }
911 }
912}
913/// A message representing a option the parser does not recognize.
914///
915/// This only
916/// appears in options protos created by the compiler::Parser class.
917/// DescriptorPool resolves these when building Descriptor objects. Therefore,
918/// options protos in descriptor objects (e.g. returned by Descriptor::options(),
919/// or produced by Descriptor::CopyTo()) will never have UninterpretedOptions
920/// in them.
921
922#[derive(Clone, PartialEq, ::prost::Message)]
923pub struct UninterpretedOption {
924 #[prost(message, repeated, tag = "2")]
925 pub name: ::prost::alloc::vec::Vec<uninterpreted_option::NamePart>,
926 /// The value of the uninterpreted option, in whatever type the tokenizer
927 /// identified it as during parsing. Exactly one of these should be set.
928 #[prost(string, optional, tag = "3")]
929 pub identifier_value: ::core::option::Option<::prost::alloc::string::String>,
930 #[prost(uint64, optional, tag = "4")]
931 pub positive_int_value: ::core::option::Option<u64>,
932 #[prost(int64, optional, tag = "5")]
933 pub negative_int_value: ::core::option::Option<i64>,
934 #[prost(double, optional, tag = "6")]
935 pub double_value: ::core::option::Option<f64>,
936 #[prost(bytes = "vec", optional, tag = "7")]
937 pub string_value: ::core::option::Option<::prost::alloc::vec::Vec<u8>>,
938 #[prost(string, optional, tag = "8")]
939 pub aggregate_value: ::core::option::Option<::prost::alloc::string::String>,
940}
941/// Nested message and enum types in `UninterpretedOption`.
942pub mod uninterpreted_option {
943 /// The name of the uninterpreted option.
944 ///
945 /// Each string represents a segment in
946 /// a dot-separated name. is_extension is true iff a segment represents an
947 /// extension (denoted with parentheses in options specs in .proto files).
948 /// E.g.,{ \["foo", false\], \["bar.baz", true\], \["qux", false\] } represents
949 /// "foo.(bar.baz).qux".
950
951 #[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
952 pub struct NamePart {
953 #[prost(string, required, tag = "1")]
954 pub name_part: ::prost::alloc::string::String,
955 #[prost(bool, required, tag = "2")]
956 pub is_extension: bool,
957 }
958}
959/// Encapsulates information about the original source file from which a
960/// FileDescriptorProto was generated.
961
962#[derive(Clone, PartialEq, Eq, ::prost::Message)]
963pub struct SourceCodeInfo {
964 /// A Location identifies a piece of source code in a .proto file which
965 /// corresponds to a particular definition. This information is intended
966 /// to be useful to IDEs, code indexers, documentation generators, and similar
967 /// tools.
968 ///
969 /// For example, say we have a file like:
970 /// message Foo {
971 /// optional string foo = 1;
972 /// }
973 /// Let's look at just the field definition:
974 /// optional string foo = 1;
975 /// ^ ^^ ^^ ^ ^^^
976 /// a bc de f ghi
977 /// We have the following locations:
978 /// span path represents
979 /// \[a,i) \[ 4, 0, 2, 0 \] The whole field definition.
980 /// \[a,b) \[ 4, 0, 2, 0, 4 \] The label (optional).
981 /// \[c,d) \[ 4, 0, 2, 0, 5 \] The type (string).
982 /// \[e,f) \[ 4, 0, 2, 0, 1 \] The name (foo).
983 /// \[g,h) \[ 4, 0, 2, 0, 3 \] The number (1).
984 ///
985 /// Notes:
986 ///
987 /// * A location may refer to a repeated field itself (i.e. not to any
988 /// particular index within it). This is used whenever a set of elements are
989 /// logically enclosed in a single code segment. For example, an entire
990 /// extend block (possibly containing multiple extension definitions) will
991 /// have an outer location whose path refers to the "extensions" repeated
992 /// field without an index.
993 /// * Multiple locations may have the same path. This happens when a single
994 /// logical declaration is spread out across multiple places. The most
995 /// obvious example is the "extend" block again -- there may be multiple
996 /// extend blocks in the same scope, each of which will have the same path.
997 /// * A location's span is not always a subset of its parent's span. For
998 /// example, the "extendee" of an extension declaration appears at the
999 /// beginning of the "extend" block and is shared by all extensions within
1000 /// the block.
1001 /// * Just because a location's span is a subset of some other location's span
1002 /// does not mean that it is a descendant. For example, a "group" defines
1003 /// both a type and a field in a single declaration. Thus, the locations
1004 /// corresponding to the type and field and their components will overlap.
1005 /// * Code which tries to interpret locations should probably be designed to
1006 /// ignore those that it doesn't understand, as more types of locations could
1007 /// be recorded in the future.
1008 #[prost(message, repeated, tag = "1")]
1009 pub location: ::prost::alloc::vec::Vec<source_code_info::Location>,
1010}
1011/// Nested message and enum types in `SourceCodeInfo`.
1012pub mod source_code_info {
1013
1014 #[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1015 pub struct Location {
1016 /// Identifies which part of the FileDescriptorProto was defined at this
1017 /// location.
1018 ///
1019 /// Each element is a field number or an index. They form a path from
1020 /// the root FileDescriptorProto to the place where the definition. For
1021 /// example, this path:
1022 /// \[ 4, 3, 2, 7, 1 \]
1023 /// refers to:
1024 /// file.message_type(3) // 4, 3
1025 /// .field(7) // 2, 7
1026 /// .name() // 1
1027 /// This is because FileDescriptorProto.message_type has field number 4:
1028 /// repeated DescriptorProto message_type = 4;
1029 /// and DescriptorProto.field has field number 2:
1030 /// repeated FieldDescriptorProto field = 2;
1031 /// and FieldDescriptorProto.name has field number 1:
1032 /// optional string name = 1;
1033 ///
1034 /// Thus, the above path gives the location of a field name. If we removed
1035 /// the last element:
1036 /// \[ 4, 3, 2, 7 \]
1037 /// this path refers to the whole field declaration (from the beginning
1038 /// of the label to the terminating semicolon).
1039 #[prost(int32, repeated, tag = "1")]
1040 pub path: ::prost::alloc::vec::Vec<i32>,
1041 /// Always has exactly three or four elements: start line, start column,
1042 /// end line (optional, otherwise assumed same as start line), end column.
1043 /// These are packed into a single field for efficiency. Note that line
1044 /// and column numbers are zero-based -- typically you will want to add
1045 /// 1 to each before displaying to a user.
1046 #[prost(int32, repeated, tag = "2")]
1047 pub span: ::prost::alloc::vec::Vec<i32>,
1048 /// If this SourceCodeInfo represents a complete declaration, these are any
1049 /// comments appearing before and after the declaration which appear to be
1050 /// attached to the declaration.
1051 ///
1052 /// A series of line comments appearing on consecutive lines, with no other
1053 /// tokens appearing on those lines, will be treated as a single comment.
1054 ///
1055 /// leading_detached_comments will keep paragraphs of comments that appear
1056 /// before (but not connected to) the current element. Each paragraph,
1057 /// separated by empty lines, will be one comment element in the repeated
1058 /// field.
1059 ///
1060 /// Only the comment content is provided; comment markers (e.g. //) are
1061 /// stripped out. For block comments, leading whitespace and an asterisk
1062 /// will be stripped from the beginning of each line other than the first.
1063 /// Newlines are included in the output.
1064 ///
1065 /// Examples:
1066 ///
1067 /// optional int32 foo = 1; // Comment attached to foo.
1068 /// // Comment attached to bar.
1069 /// optional int32 bar = 2;
1070 ///
1071 /// optional string baz = 3;
1072 /// // Comment attached to baz.
1073 /// // Another line attached to baz.
1074 ///
1075 /// // Comment attached to qux.
1076 /// //
1077 /// // Another line attached to qux.
1078 /// optional double qux = 4;
1079 ///
1080 /// // Detached comment for corge. This is not leading or trailing comments
1081 /// // to qux or corge because there are blank lines separating it from
1082 /// // both.
1083 ///
1084 /// // Detached comment for corge paragraph 2.
1085 ///
1086 /// optional string corge = 5;
1087 /// /\* Block comment attached
1088 /// \* to corge. Leading asterisks
1089 /// \* will be removed. */
1090 /// /* Block comment attached to
1091 /// \* grault. \*/
1092 /// optional int32 grault = 6;
1093 ///
1094 /// // ignored detached comments.
1095 #[prost(string, optional, tag = "3")]
1096 pub leading_comments: ::core::option::Option<::prost::alloc::string::String>,
1097 #[prost(string, optional, tag = "4")]
1098 pub trailing_comments: ::core::option::Option<::prost::alloc::string::String>,
1099 #[prost(string, repeated, tag = "6")]
1100 pub leading_detached_comments: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
1101 }
1102}
1103/// Describes the relationship between generated code and its original source
1104/// file.
1105///
1106/// A GeneratedCodeInfo message is associated with only one generated
1107/// source file, but may contain references to different source .proto files.
1108
1109#[derive(Clone, PartialEq, Eq, ::prost::Message)]
1110pub struct GeneratedCodeInfo {
1111 /// An Annotation connects some span of text in generated code to an element
1112 /// of its generating .proto file.
1113 #[prost(message, repeated, tag = "1")]
1114 pub annotation: ::prost::alloc::vec::Vec<generated_code_info::Annotation>,
1115}
1116/// Nested message and enum types in `GeneratedCodeInfo`.
1117pub mod generated_code_info {
1118
1119 #[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1120 pub struct Annotation {
1121 /// Identifies the element in the original source .proto file. This field
1122 /// is formatted the same as SourceCodeInfo.Location.path.
1123 #[prost(int32, repeated, tag = "1")]
1124 pub path: ::prost::alloc::vec::Vec<i32>,
1125 /// Identifies the filesystem path to the original source .proto.
1126 #[prost(string, optional, tag = "2")]
1127 pub source_file: ::core::option::Option<::prost::alloc::string::String>,
1128 /// Identifies the starting offset in bytes in the generated code
1129 /// that relates to the identified object.
1130 #[prost(int32, optional, tag = "3")]
1131 pub begin: ::core::option::Option<i32>,
1132 /// Identifies the ending offset in bytes in the generated code that
1133 /// relates to the identified offset. The end offset should be one past
1134 /// the last relevant byte (so the length of the text = end - begin).
1135 #[prost(int32, optional, tag = "4")]
1136 pub end: ::core::option::Option<i32>,
1137 }
1138}
1139/// `Any` contains an arbitrary serialized protocol buffer message along with a
1140/// URL that describes the type of the serialized message.
1141///
1142/// Protobuf library provides support to pack/unpack Any values in the form
1143/// of utility functions or additional generated methods of the Any type.
1144///
1145/// Example 1: Pack and unpack a message in C++.
1146///
1147/// ```text
1148/// Foo foo = ...;
1149/// Any any;
1150/// any.PackFrom(foo);
1151/// ...
1152/// if (any.UnpackTo(&foo)) {
1153/// ...
1154/// }
1155/// ```
1156///
1157/// Example 2: Pack and unpack a message in Java.
1158///
1159/// ```text
1160/// Foo foo = ...;
1161/// Any any = Any.pack(foo);
1162/// ...
1163/// if (any.is(Foo.class)) {
1164/// foo = any.unpack(Foo.class);
1165/// }
1166/// ```
1167///
1168/// Example 3: Pack and unpack a message in Python.
1169///
1170/// ```text
1171/// foo = Foo(...)
1172/// any = Any()
1173/// any.Pack(foo)
1174/// ...
1175/// if any.Is(Foo.DESCRIPTOR):
1176/// any.Unpack(foo)
1177/// ...
1178/// ```
1179///
1180/// Example 4: Pack and unpack a message in Go
1181///
1182/// ```text
1183/// foo := &pb.Foo{...}
1184/// any, err := anypb.New(foo)
1185/// if err != nil {
1186/// ...
1187/// }
1188/// ...
1189/// foo := &pb.Foo{}
1190/// if err := any.UnmarshalTo(foo); err != nil {
1191/// ...
1192/// }
1193/// ```
1194///
1195/// The pack methods provided by protobuf library will by default use
1196/// 'type.googleapis.com/full.type.name' as the type URL and the unpack
1197/// methods only use the fully qualified type name after the last '/'
1198/// in the type URL, for example "foo.bar.com/x/y.z" will yield type
1199/// name "y.z".
1200///
1201/// # JSON
1202///
1203/// The JSON representation of an `Any` value uses the regular
1204/// representation of the deserialized, embedded message, with an
1205/// additional field `@type` which contains the type URL. Example:
1206///
1207/// ```text
1208/// package google.profile;
1209/// message Person {
1210/// string first_name = 1;
1211/// string last_name = 2;
1212/// }
1213///
1214/// {
1215/// "@type": "type.googleapis.com/google.profile.Person",
1216/// "firstName": <string>,
1217/// "lastName": <string>
1218/// }
1219/// ```
1220///
1221/// If the embedded message type is well-known and has a custom JSON
1222/// representation, that representation will be embedded adding a field
1223/// `value` which holds the custom JSON in addition to the `@type`
1224/// field. Example (for message \[google.protobuf.Duration\]\[\]):
1225///
1226/// ```text
1227/// {
1228/// "@type": "type.googleapis.com/google.protobuf.Duration",
1229/// "value": "1.212s"
1230/// }
1231/// ```
1232
1233#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1234pub struct Any {
1235 /// A URL/resource name that uniquely identifies the type of the serialized
1236 /// protocol buffer message. This string must contain at least
1237 /// one "/" character. The last segment of the URL's path must represent
1238 /// the fully qualified name of the type (as in
1239 /// `path/google.protobuf.Duration`). The name should be in a canonical form
1240 /// (e.g., leading "." is not accepted).
1241 ///
1242 /// In practice, teams usually precompile into the binary all types that they
1243 /// expect it to use in the context of Any. However, for URLs which use the
1244 /// scheme `http`, `https`, or no scheme, one can optionally set up a type
1245 /// server that maps type URLs to message definitions as follows:
1246 ///
1247 /// * If no scheme is provided, `https` is assumed.
1248 /// * An HTTP GET on the URL must yield a \[google.protobuf.Type\]\[\]
1249 /// value in binary format, or produce an error.
1250 /// * Applications are allowed to cache lookup results based on the
1251 /// URL, or have them precompiled into a binary to avoid any
1252 /// lookup. Therefore, binary compatibility needs to be preserved
1253 /// on changes to types. (Use versioned type names to manage
1254 /// breaking changes.)
1255 ///
1256 /// Note: this functionality is not currently available in the official
1257 /// protobuf release, and it is not used for type URLs beginning with
1258 /// type.googleapis.com.
1259 ///
1260 /// Schemes other than `http`, `https` (or the empty scheme) might be
1261 /// used with implementation specific semantics.
1262 #[prost(string, tag = "1")]
1263 pub type_url: ::prost::alloc::string::String,
1264 /// Must be a valid serialized protocol buffer of the above specified type.
1265 #[prost(bytes = "vec", tag = "2")]
1266 pub value: ::prost::alloc::vec::Vec<u8>,
1267}
1268/// `SourceContext` represents information about the source of a
1269/// protobuf element, like the file in which it is defined.
1270
1271#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1272pub struct SourceContext {
1273 /// The path-qualified name of the .proto file that contained the associated
1274 /// protobuf element. For example: `"google/protobuf/source_context.proto"`.
1275 #[prost(string, tag = "1")]
1276 pub file_name: ::prost::alloc::string::String,
1277}
1278/// A protocol buffer message type.
1279
1280#[derive(Clone, PartialEq, Eq, ::prost::Message)]
1281pub struct Type {
1282 /// The fully qualified message name.
1283 #[prost(string, tag = "1")]
1284 pub name: ::prost::alloc::string::String,
1285 /// The list of fields.
1286 #[prost(message, repeated, tag = "2")]
1287 pub fields: ::prost::alloc::vec::Vec<Field>,
1288 /// The list of types appearing in `oneof` definitions in this type.
1289 #[prost(string, repeated, tag = "3")]
1290 pub oneofs: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
1291 /// The protocol buffer options.
1292 #[prost(message, repeated, tag = "4")]
1293 pub options: ::prost::alloc::vec::Vec<Option>,
1294 /// The source context.
1295 #[prost(message, optional, tag = "5")]
1296 pub source_context: ::core::option::Option<SourceContext>,
1297 /// The source syntax.
1298 #[prost(enumeration = "Syntax", tag = "6")]
1299 pub syntax: i32,
1300}
1301/// A single field of a message type.
1302
1303#[derive(Clone, PartialEq, Eq, ::prost::Message)]
1304pub struct Field {
1305 /// The field type.
1306 #[prost(enumeration = "field::Kind", tag = "1")]
1307 pub kind: i32,
1308 /// The field cardinality.
1309 #[prost(enumeration = "field::Cardinality", tag = "2")]
1310 pub cardinality: i32,
1311 /// The field number.
1312 #[prost(int32, tag = "3")]
1313 pub number: i32,
1314 /// The field name.
1315 #[prost(string, tag = "4")]
1316 pub name: ::prost::alloc::string::String,
1317 /// The field type URL, without the scheme, for message or enumeration
1318 /// types. Example: `"type.googleapis.com/google.protobuf.Timestamp"`.
1319 #[prost(string, tag = "6")]
1320 pub type_url: ::prost::alloc::string::String,
1321 /// The index of the field type in `Type.oneofs`, for message or enumeration
1322 /// types. The first type has index 1; zero means the type is not in the list.
1323 #[prost(int32, tag = "7")]
1324 pub oneof_index: i32,
1325 /// Whether to use alternative packed wire representation.
1326 #[prost(bool, tag = "8")]
1327 pub packed: bool,
1328 /// The protocol buffer options.
1329 #[prost(message, repeated, tag = "9")]
1330 pub options: ::prost::alloc::vec::Vec<Option>,
1331 /// The field JSON name.
1332 #[prost(string, tag = "10")]
1333 pub json_name: ::prost::alloc::string::String,
1334 /// The string value of the default value of this field. Proto2 syntax only.
1335 #[prost(string, tag = "11")]
1336 pub default_value: ::prost::alloc::string::String,
1337}
1338/// Nested message and enum types in `Field`.
1339pub mod field {
1340 /// Basic field types.
1341
1342 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
1343 #[repr(i32)]
1344 pub enum Kind {
1345 /// Field type unknown.
1346 TypeUnknown = 0,
1347 /// Field type double.
1348 TypeDouble = 1,
1349 /// Field type float.
1350 TypeFloat = 2,
1351 /// Field type int64.
1352 TypeInt64 = 3,
1353 /// Field type uint64.
1354 TypeUint64 = 4,
1355 /// Field type int32.
1356 TypeInt32 = 5,
1357 /// Field type fixed64.
1358 TypeFixed64 = 6,
1359 /// Field type fixed32.
1360 TypeFixed32 = 7,
1361 /// Field type bool.
1362 TypeBool = 8,
1363 /// Field type string.
1364 TypeString = 9,
1365 /// Field type group. Proto2 syntax only, and deprecated.
1366 TypeGroup = 10,
1367 /// Field type message.
1368 TypeMessage = 11,
1369 /// Field type bytes.
1370 TypeBytes = 12,
1371 /// Field type uint32.
1372 TypeUint32 = 13,
1373 /// Field type enum.
1374 TypeEnum = 14,
1375 /// Field type sfixed32.
1376 TypeSfixed32 = 15,
1377 /// Field type sfixed64.
1378 TypeSfixed64 = 16,
1379 /// Field type sint32.
1380 TypeSint32 = 17,
1381 /// Field type sint64.
1382 TypeSint64 = 18,
1383 }
1384 impl Kind {
1385 /// String value of the enum field names used in the ProtoBuf definition.
1386 ///
1387 /// The values are not transformed in any way and thus are considered stable
1388 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1389 #[must_use]
1390 pub const fn as_str_name(&self) -> &'static str {
1391 match self {
1392 Self::TypeUnknown => "TYPE_UNKNOWN",
1393 Self::TypeDouble => "TYPE_DOUBLE",
1394 Self::TypeFloat => "TYPE_FLOAT",
1395 Self::TypeInt64 => "TYPE_INT64",
1396 Self::TypeUint64 => "TYPE_UINT64",
1397 Self::TypeInt32 => "TYPE_INT32",
1398 Self::TypeFixed64 => "TYPE_FIXED64",
1399 Self::TypeFixed32 => "TYPE_FIXED32",
1400 Self::TypeBool => "TYPE_BOOL",
1401 Self::TypeString => "TYPE_STRING",
1402 Self::TypeGroup => "TYPE_GROUP",
1403 Self::TypeMessage => "TYPE_MESSAGE",
1404 Self::TypeBytes => "TYPE_BYTES",
1405 Self::TypeUint32 => "TYPE_UINT32",
1406 Self::TypeEnum => "TYPE_ENUM",
1407 Self::TypeSfixed32 => "TYPE_SFIXED32",
1408 Self::TypeSfixed64 => "TYPE_SFIXED64",
1409 Self::TypeSint32 => "TYPE_SINT32",
1410 Self::TypeSint64 => "TYPE_SINT64",
1411 }
1412 }
1413 /// Creates an enum from field names used in the ProtoBuf definition.
1414 #[must_use]
1415 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1416 match value {
1417 "TYPE_UNKNOWN" => Some(Self::TypeUnknown),
1418 "TYPE_DOUBLE" => Some(Self::TypeDouble),
1419 "TYPE_FLOAT" => Some(Self::TypeFloat),
1420 "TYPE_INT64" => Some(Self::TypeInt64),
1421 "TYPE_UINT64" => Some(Self::TypeUint64),
1422 "TYPE_INT32" => Some(Self::TypeInt32),
1423 "TYPE_FIXED64" => Some(Self::TypeFixed64),
1424 "TYPE_FIXED32" => Some(Self::TypeFixed32),
1425 "TYPE_BOOL" => Some(Self::TypeBool),
1426 "TYPE_STRING" => Some(Self::TypeString),
1427 "TYPE_GROUP" => Some(Self::TypeGroup),
1428 "TYPE_MESSAGE" => Some(Self::TypeMessage),
1429 "TYPE_BYTES" => Some(Self::TypeBytes),
1430 "TYPE_UINT32" => Some(Self::TypeUint32),
1431 "TYPE_ENUM" => Some(Self::TypeEnum),
1432 "TYPE_SFIXED32" => Some(Self::TypeSfixed32),
1433 "TYPE_SFIXED64" => Some(Self::TypeSfixed64),
1434 "TYPE_SINT32" => Some(Self::TypeSint32),
1435 "TYPE_SINT64" => Some(Self::TypeSint64),
1436 _ => None,
1437 }
1438 }
1439 }
1440 /// Whether a field is optional, required, or repeated.
1441
1442 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
1443 #[repr(i32)]
1444 pub enum Cardinality {
1445 /// For fields with unknown cardinality.
1446 Unknown = 0,
1447 /// For optional fields.
1448 Optional = 1,
1449 /// For required fields. Proto2 syntax only.
1450 Required = 2,
1451 /// For repeated fields.
1452 Repeated = 3,
1453 }
1454 impl Cardinality {
1455 /// String value of the enum field names used in the ProtoBuf definition.
1456 ///
1457 /// The values are not transformed in any way and thus are considered stable
1458 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1459 #[must_use]
1460 pub const fn as_str_name(&self) -> &'static str {
1461 match self {
1462 Self::Unknown => "CARDINALITY_UNKNOWN",
1463 Self::Optional => "CARDINALITY_OPTIONAL",
1464 Self::Required => "CARDINALITY_REQUIRED",
1465 Self::Repeated => "CARDINALITY_REPEATED",
1466 }
1467 }
1468 /// Creates an enum from field names used in the ProtoBuf definition.
1469 #[must_use]
1470 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1471 match value {
1472 "CARDINALITY_UNKNOWN" => Some(Self::Unknown),
1473 "CARDINALITY_OPTIONAL" => Some(Self::Optional),
1474 "CARDINALITY_REQUIRED" => Some(Self::Required),
1475 "CARDINALITY_REPEATED" => Some(Self::Repeated),
1476 _ => None,
1477 }
1478 }
1479 }
1480}
1481/// Enum type definition.
1482
1483#[derive(Clone, PartialEq, Eq, ::prost::Message)]
1484pub struct Enum {
1485 /// Enum type name.
1486 #[prost(string, tag = "1")]
1487 pub name: ::prost::alloc::string::String,
1488 /// Enum value definitions.
1489 #[prost(message, repeated, tag = "2")]
1490 pub enumvalue: ::prost::alloc::vec::Vec<EnumValue>,
1491 /// Protocol buffer options.
1492 #[prost(message, repeated, tag = "3")]
1493 pub options: ::prost::alloc::vec::Vec<Option>,
1494 /// The source context.
1495 #[prost(message, optional, tag = "4")]
1496 pub source_context: ::core::option::Option<SourceContext>,
1497 /// The source syntax.
1498 #[prost(enumeration = "Syntax", tag = "5")]
1499 pub syntax: i32,
1500}
1501/// Enum value definition.
1502
1503#[derive(Clone, PartialEq, Eq, ::prost::Message)]
1504pub struct EnumValue {
1505 /// Enum value name.
1506 #[prost(string, tag = "1")]
1507 pub name: ::prost::alloc::string::String,
1508 /// Enum value number.
1509 #[prost(int32, tag = "2")]
1510 pub number: i32,
1511 /// Protocol buffer options.
1512 #[prost(message, repeated, tag = "3")]
1513 pub options: ::prost::alloc::vec::Vec<Option>,
1514}
1515/// A protocol buffer option, which can be attached to a message, field,
1516/// enumeration, etc.
1517
1518#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1519pub struct Option {
1520 /// The option's name. For protobuf built-in options (options defined in
1521 /// descriptor.proto), this is the short name. For example, `"map_entry"`.
1522 /// For custom options, it should be the fully-qualified name. For example,
1523 /// `"google.api.http"`.
1524 #[prost(string, tag = "1")]
1525 pub name: ::prost::alloc::string::String,
1526 /// The option's value packed in an Any message. If the value is a primitive,
1527 /// the corresponding wrapper type defined in google/protobuf/wrappers.proto
1528 /// should be used. If the value is an enum, it should be stored as an int32
1529 /// value using the google.protobuf.Int32Value type.
1530 #[prost(message, optional, tag = "2")]
1531 pub value: ::core::option::Option<Any>,
1532}
1533/// The syntax in which a protocol buffer element is defined.
1534
1535#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
1536#[repr(i32)]
1537pub enum Syntax {
1538 /// Syntax `proto2`.
1539 Proto2 = 0,
1540 /// Syntax `proto3`.
1541 Proto3 = 1,
1542}
1543impl Syntax {
1544 /// String value of the enum field names used in the ProtoBuf definition.
1545 ///
1546 /// The values are not transformed in any way and thus are considered stable
1547 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1548 #[must_use]
1549 pub const fn as_str_name(&self) -> &'static str {
1550 match self {
1551 Self::Proto2 => "SYNTAX_PROTO2",
1552 Self::Proto3 => "SYNTAX_PROTO3",
1553 }
1554 }
1555 /// Creates an enum from field names used in the ProtoBuf definition.
1556 #[must_use]
1557 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1558 match value {
1559 "SYNTAX_PROTO2" => Some(Self::Proto2),
1560 "SYNTAX_PROTO3" => Some(Self::Proto3),
1561 _ => None,
1562 }
1563 }
1564}
1565/// Api is a light-weight descriptor for an API Interface.
1566///
1567/// Interfaces are also described as "protocol buffer services" in some contexts,
1568/// such as by the "service" keyword in a .proto file, but they are different
1569/// from API Services, which represent a concrete implementation of an interface
1570/// as opposed to simply a description of methods and bindings. They are also
1571/// sometimes simply referred to as "APIs" in other contexts, such as the name of
1572/// this message itself. See <https://cloud.google.com/apis/design/glossary> for
1573/// detailed terminology.
1574
1575#[derive(Clone, PartialEq, Eq, ::prost::Message)]
1576pub struct Api {
1577 /// The fully qualified name of this interface, including package name
1578 /// followed by the interface's simple name.
1579 #[prost(string, tag = "1")]
1580 pub name: ::prost::alloc::string::String,
1581 /// The methods of this interface, in unspecified order.
1582 #[prost(message, repeated, tag = "2")]
1583 pub methods: ::prost::alloc::vec::Vec<Method>,
1584 /// Any metadata attached to the interface.
1585 #[prost(message, repeated, tag = "3")]
1586 pub options: ::prost::alloc::vec::Vec<Option>,
1587 /// A version string for this interface. If specified, must have the form
1588 /// `major-version.minor-version`, as in `1.10`. If the minor version is
1589 /// omitted, it defaults to zero. If the entire version field is empty, the
1590 /// major version is derived from the package name, as outlined below. If the
1591 /// field is not empty, the version in the package name will be verified to be
1592 /// consistent with what is provided here.
1593 ///
1594 /// The versioning schema uses [semantic
1595 /// versioning](<http://semver.org>) where the major version number
1596 /// indicates a breaking change and the minor version an additive,
1597 /// non-breaking change. Both version numbers are signals to users
1598 /// what to expect from different versions, and should be carefully
1599 /// chosen based on the product plan.
1600 ///
1601 /// The major version is also reflected in the package name of the
1602 /// interface, which must end in `v<major-version>`, as in
1603 /// `google.feature.v1`. For major versions 0 and 1, the suffix can
1604 /// be omitted. Zero major versions must only be used for
1605 /// experimental, non-GA interfaces.
1606 #[prost(string, tag = "4")]
1607 pub version: ::prost::alloc::string::String,
1608 /// Source context for the protocol buffer service represented by this
1609 /// message.
1610 #[prost(message, optional, tag = "5")]
1611 pub source_context: ::core::option::Option<SourceContext>,
1612 /// Included interfaces. See \[Mixin\]\[\].
1613 #[prost(message, repeated, tag = "6")]
1614 pub mixins: ::prost::alloc::vec::Vec<Mixin>,
1615 /// The source syntax of the service.
1616 #[prost(enumeration = "Syntax", tag = "7")]
1617 pub syntax: i32,
1618}
1619/// Method represents a method of an API interface.
1620
1621#[derive(Clone, PartialEq, Eq, ::prost::Message)]
1622pub struct Method {
1623 /// The simple name of this method.
1624 #[prost(string, tag = "1")]
1625 pub name: ::prost::alloc::string::String,
1626 /// A URL of the input message type.
1627 #[prost(string, tag = "2")]
1628 pub request_type_url: ::prost::alloc::string::String,
1629 /// If true, the request is streamed.
1630 #[prost(bool, tag = "3")]
1631 pub request_streaming: bool,
1632 /// The URL of the output message type.
1633 #[prost(string, tag = "4")]
1634 pub response_type_url: ::prost::alloc::string::String,
1635 /// If true, the response is streamed.
1636 #[prost(bool, tag = "5")]
1637 pub response_streaming: bool,
1638 /// Any metadata attached to the method.
1639 #[prost(message, repeated, tag = "6")]
1640 pub options: ::prost::alloc::vec::Vec<Option>,
1641 /// The source syntax of this method.
1642 #[prost(enumeration = "Syntax", tag = "7")]
1643 pub syntax: i32,
1644}
1645/// Declares an API Interface to be included in this interface. The including
1646/// interface must redeclare all the methods from the included interface, but
1647/// documentation and options are inherited as follows:
1648///
1649/// * If after comment and whitespace stripping, the documentation
1650/// string of the redeclared method is empty, it will be inherited
1651/// from the original method.
1652///
1653/// * Each annotation belonging to the service config (http,
1654/// visibility) which is not set in the redeclared method will be
1655/// inherited.
1656///
1657/// * If an http annotation is inherited, the path pattern will be
1658/// modified as follows. Any version prefix will be replaced by the
1659/// version of the including interface plus the \[root\]\[\] path if
1660/// specified.
1661///
1662/// Example of a simple mixin:
1663///
1664/// ```text
1665/// package google.acl.v1;
1666/// service AccessControl {
1667/// // Get the underlying ACL object.
1668/// rpc GetAcl(GetAclRequest) returns (Acl) {
1669/// option (google.api.http).get = "/v1/{resource=**}:getAcl";
1670/// }
1671/// }
1672///
1673/// package google.storage.v2;
1674/// service Storage {
1675/// rpc GetAcl(GetAclRequest) returns (Acl);
1676///
1677/// // Get a data record.
1678/// rpc GetData(GetDataRequest) returns (Data) {
1679/// option (google.api.http).get = "/v2/{resource=**}";
1680/// }
1681/// }
1682/// ```
1683///
1684/// Example of a mixin configuration:
1685///
1686/// ```text
1687/// apis:
1688/// - name: google.storage.v2.Storage
1689/// mixins:
1690/// - name: google.acl.v1.AccessControl
1691/// ```
1692///
1693/// The mixin construct implies that all methods in `AccessControl` are
1694/// also declared with same name and request/response types in
1695/// `Storage`. A documentation generator or annotation processor will
1696/// see the effective `Storage.GetAcl` method after inheriting
1697/// documentation and annotations as follows:
1698///
1699/// ```text
1700/// service Storage {
1701/// // Get the underlying ACL object.
1702/// rpc GetAcl(GetAclRequest) returns (Acl) {
1703/// option (google.api.http).get = "/v2/{resource=**}:getAcl";
1704/// }
1705/// ...
1706/// }
1707/// ```
1708///
1709/// Note how the version in the path pattern changed from `v1` to `v2`.
1710///
1711/// If the `root` field in the mixin is specified, it should be a
1712/// relative path under which inherited HTTP paths are placed. Example:
1713///
1714/// ```text
1715/// apis:
1716/// - name: google.storage.v2.Storage
1717/// mixins:
1718/// - name: google.acl.v1.AccessControl
1719/// root: acls
1720/// ```
1721///
1722/// This implies the following inherited HTTP annotation:
1723///
1724/// ```text
1725/// service Storage {
1726/// // Get the underlying ACL object.
1727/// rpc GetAcl(GetAclRequest) returns (Acl) {
1728/// option (google.api.http).get = "/v2/acls/{resource=**}:getAcl";
1729/// }
1730/// ...
1731/// }
1732/// ```
1733
1734#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1735pub struct Mixin {
1736 /// The fully qualified name of the interface which is included.
1737 #[prost(string, tag = "1")]
1738 pub name: ::prost::alloc::string::String,
1739 /// If non-empty specifies a path under which inherited HTTP paths
1740 /// are rooted.
1741 #[prost(string, tag = "2")]
1742 pub root: ::prost::alloc::string::String,
1743}
1744/// A Duration represents a signed, fixed-length span of time represented
1745/// as a count of seconds and fractions of seconds at nanosecond
1746/// resolution.
1747///
1748/// It is independent of any calendar and concepts like "day"
1749/// or "month". It is related to Timestamp in that the difference between
1750/// two Timestamp values is a Duration and it can be added or subtracted
1751/// from a Timestamp. Range is approximately +-10,000 years.
1752///
1753/// # Examples
1754///
1755/// Example 1: Compute Duration from two Timestamps in pseudo code.
1756///
1757/// ```text
1758/// Timestamp start = ...;
1759/// Timestamp end = ...;
1760/// Duration duration = ...;
1761///
1762/// duration.seconds = end.seconds - start.seconds;
1763/// duration.nanos = end.nanos - start.nanos;
1764///
1765/// if (duration.seconds < 0 && duration.nanos > 0) {
1766/// duration.seconds += 1;
1767/// duration.nanos -= 1000000000;
1768/// } else if (duration.seconds > 0 && duration.nanos < 0) {
1769/// duration.seconds -= 1;
1770/// duration.nanos += 1000000000;
1771/// }
1772/// ```
1773///
1774/// Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
1775///
1776/// ```text
1777/// Timestamp start = ...;
1778/// Duration duration = ...;
1779/// Timestamp end = ...;
1780///
1781/// end.seconds = start.seconds + duration.seconds;
1782/// end.nanos = start.nanos + duration.nanos;
1783///
1784/// if (end.nanos < 0) {
1785/// end.seconds -= 1;
1786/// end.nanos += 1000000000;
1787/// } else if (end.nanos >= 1000000000) {
1788/// end.seconds += 1;
1789/// end.nanos -= 1000000000;
1790/// }
1791/// ```
1792///
1793/// Example 3: Compute Duration from datetime.timedelta in Python.
1794///
1795/// ```text
1796/// td = datetime.timedelta(days=3, minutes=10)
1797/// duration = Duration()
1798/// duration.FromTimedelta(td)
1799/// ```
1800///
1801/// # JSON Mapping
1802///
1803/// In JSON format, the Duration type is encoded as a string rather than an
1804/// object, where the string ends in the suffix "s" (indicating seconds) and
1805/// is preceded by the number of seconds, with nanoseconds expressed as
1806/// fractional seconds. For example, 3 seconds with 0 nanoseconds should be
1807/// encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
1808/// be expressed in JSON format as "3.000000001s", and 3 seconds and 1
1809/// microsecond should be expressed in JSON format as "3.000001s".
1810
1811#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
1812#[cfg_attr(
1813 feature = "diesel-postgres",
1814 derive(diesel::QueryId, diesel::AsExpression, diesel::FromSqlRow),
1815 diesel(sql_type = diesel::sql_types::Interval)
1816)]
1817pub struct Duration {
1818 /// Signed seconds of the span of time. Must be from -315,576,000,000
1819 /// to +315,576,000,000 inclusive. Note: these bounds are computed from:
1820 /// 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
1821 #[prost(int64, tag = "1")]
1822 pub seconds: i64,
1823 /// Signed fractions of a second at nanosecond resolution of the span
1824 /// of time. Durations less than one second are represented with a 0
1825 /// `seconds` field and a positive or negative `nanos` field. For durations
1826 /// of one second or more, a non-zero value for the `nanos` field must be
1827 /// of the same sign as the `seconds` field. Must be from -999,999,999
1828 /// to +999,999,999 inclusive.
1829 #[prost(int32, tag = "2")]
1830 pub nanos: i32,
1831}
1832/// `FieldMask` represents a set of symbolic field paths, for example:
1833///
1834/// ```text
1835/// paths: "f.a"
1836/// paths: "f.b.d"
1837/// ```
1838///
1839/// Here `f` represents a field in some root message, `a` and `b`
1840/// fields in the message found in `f`, and `d` a field found in the
1841/// message in `f.b`.
1842///
1843/// Field masks are used to specify a subset of fields that should be
1844/// returned by a get operation or modified by an update operation.
1845/// Field masks also have a custom JSON encoding (see below).
1846///
1847/// # Field Masks in Projections
1848///
1849/// When used in the context of a projection, a response message or
1850/// sub-message is filtered by the API to only contain those fields as
1851/// specified in the mask. For example, if the mask in the previous
1852/// example is applied to a response message as follows:
1853///
1854/// ```text
1855/// f {
1856/// a : 22
1857/// b {
1858/// d : 1
1859/// x : 2
1860/// }
1861/// y : 13
1862/// }
1863/// z: 8
1864/// ```
1865///
1866/// The result will not contain specific values for fields x,y and z
1867/// (their value will be set to the default, and omitted in proto text
1868/// output):
1869///
1870/// ```text
1871/// f {
1872/// a : 22
1873/// b {
1874/// d : 1
1875/// }
1876/// }
1877/// ```
1878///
1879/// A repeated field is not allowed except at the last position of a
1880/// paths string.
1881///
1882/// If a FieldMask object is not present in a get operation, the
1883/// operation applies to all fields (as if a FieldMask of all fields
1884/// had been specified).
1885///
1886/// Note that a field mask does not necessarily apply to the
1887/// top-level response message. In case of a REST get operation, the
1888/// field mask applies directly to the response, but in case of a REST
1889/// list operation, the mask instead applies to each individual message
1890/// in the returned resource list. In case of a REST custom method,
1891/// other definitions may be used. Where the mask applies will be
1892/// clearly documented together with its declaration in the API. In
1893/// any case, the effect on the returned resource/resources is required
1894/// behavior for APIs.
1895///
1896/// # Field Masks in Update Operations
1897///
1898/// A field mask in update operations specifies which fields of the
1899/// targeted resource are going to be updated. The API is required
1900/// to only change the values of the fields as specified in the mask
1901/// and leave the others untouched. If a resource is passed in to
1902/// describe the updated values, the API ignores the values of all
1903/// fields not covered by the mask.
1904///
1905/// If a repeated field is specified for an update operation, new values will
1906/// be appended to the existing repeated field in the target resource. Note that
1907/// a repeated field is only allowed in the last position of a `paths` string.
1908///
1909/// If a sub-message is specified in the last position of the field mask for an
1910/// update operation, then new value will be merged into the existing sub-message
1911/// in the target resource.
1912///
1913/// For example, given the target message:
1914///
1915/// ```text
1916/// f {
1917/// b {
1918/// d: 1
1919/// x: 2
1920/// }
1921/// c: \[1\]
1922/// }
1923/// ```
1924///
1925/// And an update message:
1926///
1927/// ```text
1928/// f {
1929/// b {
1930/// d: 10
1931/// }
1932/// c: \[2\]
1933/// }
1934/// ```
1935///
1936/// then if the field mask is:
1937///
1938/// paths: \["f.b", "f.c"\]
1939///
1940/// then the result will be:
1941///
1942/// ```text
1943/// f {
1944/// b {
1945/// d: 10
1946/// x: 2
1947/// }
1948/// c: \[1, 2\]
1949/// }
1950/// ```
1951///
1952/// An implementation may provide options to override this default behavior for
1953/// repeated and message fields.
1954///
1955/// In order to reset a field's value to the default, the field must
1956/// be in the mask and set to the default value in the provided resource.
1957/// Hence, in order to reset all fields of a resource, provide a default
1958/// instance of the resource and set all fields in the mask, or do
1959/// not provide a mask as described below.
1960///
1961/// If a field mask is not present on update, the operation applies to
1962/// all fields (as if a field mask of all fields has been specified).
1963/// Note that in the presence of schema evolution, this may mean that
1964/// fields the client does not know and has therefore not filled into
1965/// the request will be reset to their default. If this is unwanted
1966/// behavior, a specific service may require a client to always specify
1967/// a field mask, producing an error if not.
1968///
1969/// As with get operations, the location of the resource which
1970/// describes the updated values in the request message depends on the
1971/// operation kind. In any case, the effect of the field mask is
1972/// required to be honored by the API.
1973///
1974/// ## Considerations for HTTP REST
1975///
1976/// The HTTP kind of an update operation which uses a field mask must
1977/// be set to PATCH instead of PUT in order to satisfy HTTP semantics
1978/// (PUT must only be used for full updates).
1979///
1980/// # JSON Encoding of Field Masks
1981///
1982/// In JSON, a field mask is encoded as a single string where paths are
1983/// separated by a comma. Fields name in each path are converted
1984/// to/from lower-camel naming conventions.
1985///
1986/// As an example, consider the following message declarations:
1987///
1988/// ```text
1989/// message Profile {
1990/// User user = 1;
1991/// Photo photo = 2;
1992/// }
1993/// message User {
1994/// string display_name = 1;
1995/// string address = 2;
1996/// }
1997/// ```
1998///
1999/// In proto a field mask for `Profile` may look as such:
2000///
2001/// ```text
2002/// mask {
2003/// paths: "user.display_name"
2004/// paths: "photo"
2005/// }
2006/// ```
2007///
2008/// In JSON, the same mask is represented as below:
2009///
2010/// ```text
2011/// {
2012/// mask: "user.displayName,photo"
2013/// }
2014/// ```
2015///
2016/// # Field Masks and Oneof Fields
2017///
2018/// Field masks treat fields in oneofs just as regular fields. Consider the
2019/// following message:
2020///
2021/// ```text
2022/// message SampleMessage {
2023/// oneof test_oneof {
2024/// string name = 4;
2025/// SubMessage sub_message = 9;
2026/// }
2027/// }
2028/// ```
2029///
2030/// The field mask can be:
2031///
2032/// ```text
2033/// mask {
2034/// paths: "name"
2035/// }
2036/// ```
2037///
2038/// Or:
2039///
2040/// ```text
2041/// mask {
2042/// paths: "sub_message"
2043/// }
2044/// ```
2045///
2046/// Note that oneof type names ("test_oneof" in this case) cannot be used in
2047/// paths.
2048///
2049/// ## Field Mask Verification
2050///
2051/// The implementation of any API method which has a FieldMask type field in the
2052/// request should verify the included field paths, and return an
2053/// `INVALID_ARGUMENT` error if any path is unmappable.
2054
2055#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
2056pub struct FieldMask {
2057 /// The set of field mask paths.
2058 #[prost(string, repeated, tag = "1")]
2059 pub paths: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
2060}
2061/// `Struct` represents a structured data value, consisting of fields
2062/// which map to dynamically typed values.
2063///
2064/// In some languages, `Struct`
2065/// might be supported by a native representation. For example, in
2066/// scripting languages like JS a struct is represented as an
2067/// object. The details of that representation are described together
2068/// with the proto support for the language.
2069///
2070/// The JSON representation for `Struct` is JSON object.
2071
2072#[derive(Clone, PartialEq, ::prost::Message)]
2073#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2074pub struct Struct {
2075 /// Unordered map of dynamically typed values.
2076 #[prost(btree_map = "string, message", tag = "1")]
2077 pub fields: ::prost::alloc::collections::BTreeMap<::prost::alloc::string::String, Value>,
2078}
2079/// `Value` represents a dynamically typed value which can be either
2080/// null, a number, a string, a boolean, a recursive struct value, or a
2081/// list of values.
2082///
2083/// A producer of value is expected to set one of these
2084/// variants. Absence of any variant indicates an error.
2085///
2086/// The JSON representation for `Value` is JSON value.
2087
2088#[derive(Clone, PartialEq, ::prost::Message)]
2089pub struct Value {
2090 /// The kind of value.
2091 #[prost(oneof = "value::Kind", tags = "1, 2, 3, 4, 5, 6")]
2092 pub kind: ::core::option::Option<value::Kind>,
2093}
2094/// Nested message and enum types in `Value`.
2095pub mod value {
2096 /// The kind of value.
2097
2098 #[derive(Clone, PartialEq, ::prost::Oneof)]
2099 pub enum Kind {
2100 /// Represents a null value.
2101 #[prost(enumeration = "super::NullValue", tag = "1")]
2102 NullValue(i32),
2103 /// Represents a double value.
2104 #[prost(double, tag = "2")]
2105 NumberValue(f64),
2106 /// Represents a string value.
2107 #[prost(string, tag = "3")]
2108 StringValue(::prost::alloc::string::String),
2109 /// Represents a boolean value.
2110 #[prost(bool, tag = "4")]
2111 BoolValue(bool),
2112 /// Represents a structured value.
2113 #[prost(message, tag = "5")]
2114 StructValue(super::Struct),
2115 /// Represents a repeated `Value`.
2116 #[prost(message, tag = "6")]
2117 ListValue(super::ListValue),
2118 }
2119}
2120/// `ListValue` is a wrapper around a repeated field of values.
2121///
2122/// The JSON representation for `ListValue` is JSON array.
2123
2124#[derive(Clone, PartialEq, ::prost::Message)]
2125pub struct ListValue {
2126 /// Repeated field of dynamically typed values.
2127 #[prost(message, repeated, tag = "1")]
2128 pub values: ::prost::alloc::vec::Vec<Value>,
2129}
2130/// `NullValue` is a singleton enumeration to represent the null value for the
2131/// `Value` type union.
2132///
2133/// The JSON representation for `NullValue` is JSON `null`.
2134
2135#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
2136#[repr(i32)]
2137pub enum NullValue {
2138 /// Null value.
2139 NullValue = 0,
2140}
2141impl NullValue {
2142 /// String value of the enum field names used in the ProtoBuf definition.
2143 ///
2144 /// The values are not transformed in any way and thus are considered stable
2145 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
2146 #[must_use]
2147 pub const fn as_str_name(&self) -> &'static str {
2148 match self {
2149 Self::NullValue => "NULL_VALUE",
2150 }
2151 }
2152 /// Creates an enum from field names used in the ProtoBuf definition.
2153 #[must_use]
2154 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
2155 match value {
2156 "NULL_VALUE" => Some(Self::NullValue),
2157 _ => None,
2158 }
2159 }
2160}
2161/// A Timestamp represents a point in time independent of any time zone or local
2162/// calendar, encoded as a count of seconds and fractions of seconds at
2163/// nanosecond resolution.
2164///
2165/// The count is relative to an epoch at UTC midnight on
2166/// January 1, 1970, in the proleptic Gregorian calendar which extends the
2167/// Gregorian calendar backwards to year one.
2168///
2169/// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
2170/// second table is needed for interpretation, using a [24-hour linear
2171/// smear](<https://developers.google.com/time/smear>).
2172///
2173/// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
2174/// restricting to that range, we ensure that we can convert to and from [RFC
2175/// 3339](<https://www.ietf.org/rfc/rfc3339.txt>) date strings.
2176///
2177/// # Examples
2178///
2179/// Example 1: Compute Timestamp from POSIX `time()`.
2180///
2181/// ```text
2182/// Timestamp timestamp;
2183/// timestamp.set_seconds(time(NULL));
2184/// timestamp.set_nanos(0);
2185/// ```
2186///
2187/// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
2188///
2189/// ```text
2190/// struct timeval tv;
2191/// gettimeofday(&tv, NULL);
2192///
2193/// Timestamp timestamp;
2194/// timestamp.set_seconds(tv.tv_sec);
2195/// timestamp.set_nanos(tv.tv_usec * 1000);
2196/// ```
2197///
2198/// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
2199///
2200/// ```text
2201/// FILETIME ft;
2202/// GetSystemTimeAsFileTime(&ft);
2203/// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
2204///
2205/// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
2206/// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
2207/// Timestamp timestamp;
2208/// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
2209/// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
2210/// ```
2211///
2212/// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
2213///
2214/// ```text
2215/// long millis = System.currentTimeMillis();
2216///
2217/// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
2218/// .setNanos((int) ((millis % 1000) * 1000000)).build();
2219/// ```
2220///
2221/// Example 5: Compute Timestamp from Java `Instant.now()`.
2222///
2223/// ```text
2224/// Instant now = Instant.now();
2225///
2226/// Timestamp timestamp =
2227/// Timestamp.newBuilder().setSeconds(now.getEpochSecond())
2228/// .setNanos(now.getNano()).build();
2229/// ```
2230///
2231/// Example 6: Compute Timestamp from current time in Python.
2232///
2233/// ```text
2234/// timestamp = Timestamp()
2235/// timestamp.GetCurrentTime()
2236/// ```
2237///
2238/// # JSON Mapping
2239///
2240/// In JSON format, the Timestamp type is encoded as a string in the
2241/// [RFC 3339](<https://www.ietf.org/rfc/rfc3339.txt>) format. That is, the
2242/// format is "{year}-{month}-{day}T{hour}:{min}:{sec}\[.{frac_sec}\]Z"
2243/// where {year} is always expressed using four digits while {month}, {day},
2244/// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
2245/// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
2246/// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
2247/// is required. A proto3 JSON serializer should always use UTC (as indicated by
2248/// "Z") when printing the Timestamp type and a proto3 JSON parser should be
2249/// able to accept both UTC and other timezones (as indicated by an offset).
2250///
2251/// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
2252/// 01:30 UTC on January 15, 2017.
2253///
2254/// In JavaScript, one can convert a Date object to this format using the
2255/// standard
2256/// [toISOString()](<https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString>)
2257/// method. In Python, a standard `datetime.datetime` object can be converted
2258/// to this format using
2259/// [`strftime`](<https://docs.python.org/2/library/time.html#time.strftime>) with
2260/// the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
2261/// the Joda Time's [`ISODateTimeFormat.dateTime()`](<http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D>) to obtain a formatter capable of generating timestamps in this format.
2262#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2263#[cfg_attr(
2264 any(feature = "diesel-postgres", feature = "diesel-sqlite"),
2265 derive(diesel::QueryId, diesel::AsExpression, diesel::FromSqlRow),
2266 diesel(sql_type = diesel::sql_types::Timestamp)
2267)]
2268#[cfg_attr(
2269 feature = "diesel-postgres",
2270 diesel(sql_type = diesel::sql_types::Timestamptz)
2271)]
2272#[cfg_attr(
2273 feature = "diesel-sqlite",
2274 diesel(sql_type = diesel::sql_types::TimestamptzSqlite)
2275)]
2276#[cfg_attr(
2277 feature = "diesel-mysql",
2278 diesel(sql_type = diesel::sql_types::Datetime)
2279)]
2280pub struct Timestamp {
2281 /// Represents seconds of UTC time since Unix epoch
2282 /// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
2283 /// 9999-12-31T23:59:59Z inclusive.
2284 #[prost(int64, tag = "1")]
2285 pub seconds: i64,
2286 /// Non-negative fractions of a second at nanosecond resolution. Negative
2287 /// second values with fractions must still have non-negative nanos values
2288 /// that count forward in time. Must be from 0 to 999,999,999
2289 /// inclusive.
2290 #[prost(int32, tag = "2")]
2291 pub nanos: i32,
2292}
2293
2294/// Wrapper message for `double`.
2295///
2296/// The JSON representation for `DoubleValue` is JSON number.
2297///
2298/// Not recommended for use in new APIs, but still useful for legacy APIs and
2299/// has no plan to be removed.
2300#[derive(Clone, Copy, PartialEq, ::prost::Message)]
2301#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2302pub struct DoubleValue {
2303 /// The double value.
2304 #[prost(double, tag = "1")]
2305 pub value: f64,
2306}
2307/// Wrapper message for `float`.
2308///
2309/// The JSON representation for `FloatValue` is JSON number.
2310///
2311/// Not recommended for use in new APIs, but still useful for legacy APIs and
2312/// has no plan to be removed.
2313#[derive(Clone, Copy, PartialEq, ::prost::Message)]
2314#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2315pub struct FloatValue {
2316 /// The float value.
2317 #[prost(float, tag = "1")]
2318 pub value: f32,
2319}
2320/// Wrapper message for `int64`.
2321///
2322/// The JSON representation for `Int64Value` is JSON string.
2323///
2324/// Not recommended for use in new APIs, but still useful for legacy APIs and
2325/// has no plan to be removed.
2326#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2327#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2328pub struct Int64Value {
2329 /// The int64 value.
2330 #[prost(int64, tag = "1")]
2331 pub value: i64,
2332}
2333/// Wrapper message for `uint64`.
2334///
2335/// The JSON representation for `UInt64Value` is JSON string.
2336///
2337/// Not recommended for use in new APIs, but still useful for legacy APIs and
2338/// has no plan to be removed.
2339#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2340#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2341pub struct UInt64Value {
2342 /// The uint64 value.
2343 #[prost(uint64, tag = "1")]
2344 pub value: u64,
2345}
2346/// Wrapper message for `int32`.
2347///
2348/// The JSON representation for `Int32Value` is JSON number.
2349///
2350/// Not recommended for use in new APIs, but still useful for legacy APIs and
2351/// has no plan to be removed.
2352#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2353#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2354pub struct Int32Value {
2355 /// The int32 value.
2356 #[prost(int32, tag = "1")]
2357 pub value: i32,
2358}
2359/// Wrapper message for `uint32`.
2360///
2361/// The JSON representation for `UInt32Value` is JSON number.
2362///
2363/// Not recommended for use in new APIs, but still useful for legacy APIs and
2364/// has no plan to be removed.
2365#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2366#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2367pub struct UInt32Value {
2368 /// The uint32 value.
2369 #[prost(uint32, tag = "1")]
2370 pub value: u32,
2371}
2372/// Wrapper message for `bool`.
2373///
2374/// The JSON representation for `BoolValue` is JSON `true` and `false`.
2375///
2376/// Not recommended for use in new APIs, but still useful for legacy APIs and
2377/// has no plan to be removed.
2378#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2379#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2380pub struct BoolValue {
2381 /// The bool value.
2382 #[prost(bool, tag = "1")]
2383 pub value: bool,
2384}
2385/// Wrapper message for `string`.
2386///
2387/// The JSON representation for `StringValue` is JSON string.
2388///
2389/// Not recommended for use in new APIs, but still useful for legacy APIs and
2390/// has no plan to be removed.
2391#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
2392#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2393pub struct StringValue {
2394 /// The string value.
2395 #[prost(string, tag = "1")]
2396 pub value: ::prost::alloc::string::String,
2397}
2398/// Wrapper message for `bytes`.
2399///
2400/// The JSON representation for `BytesValue` is JSON string.
2401///
2402/// Not recommended for use in new APIs, but still useful for legacy APIs and
2403/// has no plan to be removed.
2404#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
2405pub struct BytesValue {
2406 /// The bytes value.
2407 #[prost(bytes = "bytes", tag = "1")]
2408 pub value: ::prost::bytes::Bytes,
2409}