proto_types/protobuf.rs
1// This file is @generated by prost-build.
2/// The protocol compiler can output a FileDescriptorSet containing the .proto
3/// files it parses.
4
5#[derive(Clone, PartialEq, ::prost::Message)]
6pub struct FileDescriptorSet {
7 #[prost(message, repeated, tag = "1")]
8 pub file: ::prost::alloc::vec::Vec<FileDescriptorProto>,
9}
10/// Describes a complete .proto file.
11
12#[derive(Clone, PartialEq, ::prost::Message)]
13pub struct FileDescriptorProto {
14 /// file name, relative to root of source tree
15 #[prost(string, optional, tag = "1")]
16 pub name: ::core::option::Option<::prost::alloc::string::String>,
17 /// e.g. "foo", "foo.bar", etc.
18 #[prost(string, optional, tag = "2")]
19 pub package: ::core::option::Option<::prost::alloc::string::String>,
20 /// Names of files imported by this file.
21 #[prost(string, repeated, tag = "3")]
22 pub dependency: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
23 /// Indexes of the public imported files in the dependency list above.
24 #[prost(int32, repeated, packed = "false", tag = "10")]
25 pub public_dependency: ::prost::alloc::vec::Vec<i32>,
26 /// Indexes of the weak imported files in the dependency list.
27 /// For Google-internal migration only. Do not use.
28 #[prost(int32, repeated, packed = "false", tag = "11")]
29 pub weak_dependency: ::prost::alloc::vec::Vec<i32>,
30 /// All top-level definitions in this file.
31 #[prost(message, repeated, tag = "4")]
32 pub message_type: ::prost::alloc::vec::Vec<DescriptorProto>,
33 #[prost(message, repeated, tag = "5")]
34 pub enum_type: ::prost::alloc::vec::Vec<EnumDescriptorProto>,
35 #[prost(message, repeated, tag = "6")]
36 pub service: ::prost::alloc::vec::Vec<ServiceDescriptorProto>,
37 #[prost(message, repeated, tag = "7")]
38 pub extension: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
39 #[prost(message, optional, tag = "8")]
40 pub options: ::core::option::Option<FileOptions>,
41 /// This field contains optional information about the original source code.
42 /// You may safely remove this entire field without harming runtime
43 /// functionality of the descriptors -- the information is needed only by
44 /// development tools.
45 #[prost(message, optional, tag = "9")]
46 pub source_code_info: ::core::option::Option<SourceCodeInfo>,
47 /// The syntax of the proto file.
48 /// The supported values are "proto2" and "proto3".
49 #[prost(string, optional, tag = "12")]
50 pub syntax: ::core::option::Option<::prost::alloc::string::String>,
51}
52/// Describes a message type.
53
54#[derive(Clone, PartialEq, ::prost::Message)]
55pub struct DescriptorProto {
56 #[prost(string, optional, tag = "1")]
57 pub name: ::core::option::Option<::prost::alloc::string::String>,
58 #[prost(message, repeated, tag = "2")]
59 pub field: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
60 #[prost(message, repeated, tag = "6")]
61 pub extension: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
62 #[prost(message, repeated, tag = "3")]
63 pub nested_type: ::prost::alloc::vec::Vec<DescriptorProto>,
64 #[prost(message, repeated, tag = "4")]
65 pub enum_type: ::prost::alloc::vec::Vec<EnumDescriptorProto>,
66 #[prost(message, repeated, tag = "5")]
67 pub extension_range: ::prost::alloc::vec::Vec<descriptor_proto::ExtensionRange>,
68 #[prost(message, repeated, tag = "8")]
69 pub oneof_decl: ::prost::alloc::vec::Vec<OneofDescriptorProto>,
70 #[prost(message, optional, tag = "7")]
71 pub options: ::core::option::Option<MessageOptions>,
72 #[prost(message, repeated, tag = "9")]
73 pub reserved_range: ::prost::alloc::vec::Vec<descriptor_proto::ReservedRange>,
74 /// Reserved field names, which may not be used by fields in the same message.
75 /// A given name may only be reserved once.
76 #[prost(string, repeated, tag = "10")]
77 pub reserved_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
78}
79/// Nested message and enum types in `DescriptorProto`.
80pub mod descriptor_proto {
81
82 #[derive(Clone, PartialEq, ::prost::Message)]
83 pub struct ExtensionRange {
84 /// Inclusive.
85 #[prost(int32, optional, tag = "1")]
86 pub start: ::core::option::Option<i32>,
87 /// Exclusive.
88 #[prost(int32, optional, tag = "2")]
89 pub end: ::core::option::Option<i32>,
90 #[prost(message, optional, tag = "3")]
91 pub options: ::core::option::Option<super::ExtensionRangeOptions>,
92 }
93 /// Range of reserved tag numbers. Reserved tag numbers may not be used by
94 /// fields or extension ranges in the same message. Reserved ranges may
95 /// not overlap.
96
97 #[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
98 pub struct ReservedRange {
99 /// Inclusive.
100 #[prost(int32, optional, tag = "1")]
101 pub start: ::core::option::Option<i32>,
102 /// Exclusive.
103 #[prost(int32, optional, tag = "2")]
104 pub end: ::core::option::Option<i32>,
105 }
106}
107
108#[derive(Clone, PartialEq, ::prost::Message)]
109pub struct ExtensionRangeOptions {
110 /// The parser stores options it doesn't recognize here. See above.
111 #[prost(message, repeated, tag = "999")]
112 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
113}
114/// Describes a field within a message.
115
116#[derive(Clone, PartialEq, ::prost::Message)]
117pub struct FieldDescriptorProto {
118 #[prost(string, optional, tag = "1")]
119 pub name: ::core::option::Option<::prost::alloc::string::String>,
120 #[prost(int32, optional, tag = "3")]
121 pub number: ::core::option::Option<i32>,
122 #[prost(enumeration = "field_descriptor_proto::Label", optional, tag = "4")]
123 pub label: ::core::option::Option<i32>,
124 /// If type_name is set, this need not be set. If both this and type_name
125 /// are set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP.
126 #[prost(enumeration = "field_descriptor_proto::Type", optional, tag = "5")]
127 pub r#type: ::core::option::Option<i32>,
128 /// For message and enum types, this is the name of the type. If the name
129 /// starts with a '.', it is fully-qualified. Otherwise, C++-like scoping
130 /// rules are used to find the type (i.e. first the nested types within this
131 /// message are searched, then within the parent, on up to the root
132 /// namespace).
133 #[prost(string, optional, tag = "6")]
134 pub type_name: ::core::option::Option<::prost::alloc::string::String>,
135 /// For extensions, this is the name of the type being extended. It is
136 /// resolved in the same manner as type_name.
137 #[prost(string, optional, tag = "2")]
138 pub extendee: ::core::option::Option<::prost::alloc::string::String>,
139 /// For numeric types, contains the original text representation of the value.
140 /// For booleans, "true" or "false".
141 /// For strings, contains the default text contents (not escaped in any way).
142 /// For bytes, contains the C escaped value. All bytes >= 128 are escaped.
143 /// TODO(kenton): Base-64 encode?
144 #[prost(string, optional, tag = "7")]
145 pub default_value: ::core::option::Option<::prost::alloc::string::String>,
146 /// If set, gives the index of a oneof in the containing type's oneof_decl
147 /// list. This field is a member of that oneof.
148 #[prost(int32, optional, tag = "9")]
149 pub oneof_index: ::core::option::Option<i32>,
150 /// JSON name of this field. The value is set by protocol compiler. If the
151 /// user has set a "json_name" option on this field, that option's value
152 /// will be used. Otherwise, it's deduced from the field's name by converting
153 /// it to camelCase.
154 #[prost(string, optional, tag = "10")]
155 pub json_name: ::core::option::Option<::prost::alloc::string::String>,
156 #[prost(message, optional, tag = "8")]
157 pub options: ::core::option::Option<FieldOptions>,
158 /// If true, this is a proto3 "optional". When a proto3 field is optional, it
159 /// tracks presence regardless of field type.
160 ///
161 /// When proto3_optional is true, this field must be belong to a oneof to
162 /// signal to old proto3 clients that presence is tracked for this field. This
163 /// oneof is known as a "synthetic" oneof, and this field must be its sole
164 /// member (each proto3 optional field gets its own synthetic oneof). Synthetic
165 /// oneofs exist in the descriptor only, and do not generate any API. Synthetic
166 /// oneofs must be ordered after all "real" oneofs.
167 ///
168 /// For message fields, proto3_optional doesn't create any semantic change,
169 /// since non-repeated message fields always track presence. However it still
170 /// indicates the semantic detail of whether the user wrote "optional" or not.
171 /// This can be useful for round-tripping the .proto file. For consistency we
172 /// give message fields a synthetic oneof also, even though it is not required
173 /// to track presence. This is especially important because the parser can't
174 /// tell if a field is a message or an enum, so it must always create a
175 /// synthetic oneof.
176 ///
177 /// Proto2 optional fields do not set this flag, because they already indicate
178 /// optional with `LABEL_OPTIONAL`.
179 #[prost(bool, optional, tag = "17")]
180 pub proto3_optional: ::core::option::Option<bool>,
181}
182/// Nested message and enum types in `FieldDescriptorProto`.
183pub mod field_descriptor_proto {
184
185 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
186 #[repr(i32)]
187 pub enum Type {
188 /// 0 is reserved for errors.
189 /// Order is weird for historical reasons.
190 Double = 1,
191 Float = 2,
192 /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT64 if
193 /// negative values are likely.
194 Int64 = 3,
195 Uint64 = 4,
196 /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT32 if
197 /// negative values are likely.
198 Int32 = 5,
199 Fixed64 = 6,
200 Fixed32 = 7,
201 Bool = 8,
202 String = 9,
203 /// Tag-delimited aggregate.
204 /// Group type is deprecated and not supported in proto3. However, Proto3
205 /// implementations should still be able to parse the group wire format and
206 /// treat group fields as unknown fields.
207 Group = 10,
208 /// Length-delimited aggregate.
209 Message = 11,
210 /// New in version 2.
211 Bytes = 12,
212 Uint32 = 13,
213 Enum = 14,
214 Sfixed32 = 15,
215 Sfixed64 = 16,
216 /// Uses ZigZag encoding.
217 Sint32 = 17,
218 /// Uses ZigZag encoding.
219 Sint64 = 18,
220 }
221 impl Type {
222 /// String value of the enum field names used in the ProtoBuf definition.
223 ///
224 /// The values are not transformed in any way and thus are considered stable
225 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
226 pub fn as_str_name(&self) -> &'static str {
227 match self {
228 Self::Double => "TYPE_DOUBLE",
229 Self::Float => "TYPE_FLOAT",
230 Self::Int64 => "TYPE_INT64",
231 Self::Uint64 => "TYPE_UINT64",
232 Self::Int32 => "TYPE_INT32",
233 Self::Fixed64 => "TYPE_FIXED64",
234 Self::Fixed32 => "TYPE_FIXED32",
235 Self::Bool => "TYPE_BOOL",
236 Self::String => "TYPE_STRING",
237 Self::Group => "TYPE_GROUP",
238 Self::Message => "TYPE_MESSAGE",
239 Self::Bytes => "TYPE_BYTES",
240 Self::Uint32 => "TYPE_UINT32",
241 Self::Enum => "TYPE_ENUM",
242 Self::Sfixed32 => "TYPE_SFIXED32",
243 Self::Sfixed64 => "TYPE_SFIXED64",
244 Self::Sint32 => "TYPE_SINT32",
245 Self::Sint64 => "TYPE_SINT64",
246 }
247 }
248 /// Creates an enum from field names used in the ProtoBuf definition.
249 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
250 match value {
251 "TYPE_DOUBLE" => Some(Self::Double),
252 "TYPE_FLOAT" => Some(Self::Float),
253 "TYPE_INT64" => Some(Self::Int64),
254 "TYPE_UINT64" => Some(Self::Uint64),
255 "TYPE_INT32" => Some(Self::Int32),
256 "TYPE_FIXED64" => Some(Self::Fixed64),
257 "TYPE_FIXED32" => Some(Self::Fixed32),
258 "TYPE_BOOL" => Some(Self::Bool),
259 "TYPE_STRING" => Some(Self::String),
260 "TYPE_GROUP" => Some(Self::Group),
261 "TYPE_MESSAGE" => Some(Self::Message),
262 "TYPE_BYTES" => Some(Self::Bytes),
263 "TYPE_UINT32" => Some(Self::Uint32),
264 "TYPE_ENUM" => Some(Self::Enum),
265 "TYPE_SFIXED32" => Some(Self::Sfixed32),
266 "TYPE_SFIXED64" => Some(Self::Sfixed64),
267 "TYPE_SINT32" => Some(Self::Sint32),
268 "TYPE_SINT64" => Some(Self::Sint64),
269 _ => None,
270 }
271 }
272 }
273
274 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
275 #[repr(i32)]
276 pub enum Label {
277 /// 0 is reserved for errors
278 Optional = 1,
279 Required = 2,
280 Repeated = 3,
281 }
282 impl Label {
283 /// String value of the enum field names used in the ProtoBuf definition.
284 ///
285 /// The values are not transformed in any way and thus are considered stable
286 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
287 pub fn as_str_name(&self) -> &'static str {
288 match self {
289 Self::Optional => "LABEL_OPTIONAL",
290 Self::Required => "LABEL_REQUIRED",
291 Self::Repeated => "LABEL_REPEATED",
292 }
293 }
294 /// Creates an enum from field names used in the ProtoBuf definition.
295 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
296 match value {
297 "LABEL_OPTIONAL" => Some(Self::Optional),
298 "LABEL_REQUIRED" => Some(Self::Required),
299 "LABEL_REPEATED" => Some(Self::Repeated),
300 _ => None,
301 }
302 }
303 }
304}
305/// Describes a oneof.
306
307#[derive(Clone, PartialEq, ::prost::Message)]
308pub struct OneofDescriptorProto {
309 #[prost(string, optional, tag = "1")]
310 pub name: ::core::option::Option<::prost::alloc::string::String>,
311 #[prost(message, optional, tag = "2")]
312 pub options: ::core::option::Option<OneofOptions>,
313}
314/// Describes an enum type.
315
316#[derive(Clone, PartialEq, ::prost::Message)]
317pub struct EnumDescriptorProto {
318 #[prost(string, optional, tag = "1")]
319 pub name: ::core::option::Option<::prost::alloc::string::String>,
320 #[prost(message, repeated, tag = "2")]
321 pub value: ::prost::alloc::vec::Vec<EnumValueDescriptorProto>,
322 #[prost(message, optional, tag = "3")]
323 pub options: ::core::option::Option<EnumOptions>,
324 /// Range of reserved numeric values. Reserved numeric values may not be used
325 /// by enum values in the same enum declaration. Reserved ranges may not
326 /// overlap.
327 #[prost(message, repeated, tag = "4")]
328 pub reserved_range: ::prost::alloc::vec::Vec<enum_descriptor_proto::EnumReservedRange>,
329 /// Reserved enum value names, which may not be reused. A given name may only
330 /// be reserved once.
331 #[prost(string, repeated, tag = "5")]
332 pub reserved_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
333}
334/// Nested message and enum types in `EnumDescriptorProto`.
335pub mod enum_descriptor_proto {
336 /// Range of reserved numeric values. Reserved values may not be used by
337 /// entries in the same enum. Reserved ranges may not overlap.
338 ///
339 /// Note that this is distinct from DescriptorProto.ReservedRange in that it
340 /// is inclusive such that it can appropriately represent the entire int32
341 /// domain.
342
343 #[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
344 pub struct EnumReservedRange {
345 /// Inclusive.
346 #[prost(int32, optional, tag = "1")]
347 pub start: ::core::option::Option<i32>,
348 /// Inclusive.
349 #[prost(int32, optional, tag = "2")]
350 pub end: ::core::option::Option<i32>,
351 }
352}
353/// Describes a value within an enum.
354
355#[derive(Clone, PartialEq, ::prost::Message)]
356pub struct EnumValueDescriptorProto {
357 #[prost(string, optional, tag = "1")]
358 pub name: ::core::option::Option<::prost::alloc::string::String>,
359 #[prost(int32, optional, tag = "2")]
360 pub number: ::core::option::Option<i32>,
361 #[prost(message, optional, tag = "3")]
362 pub options: ::core::option::Option<EnumValueOptions>,
363}
364/// Describes a service.
365
366#[derive(Clone, PartialEq, ::prost::Message)]
367pub struct ServiceDescriptorProto {
368 #[prost(string, optional, tag = "1")]
369 pub name: ::core::option::Option<::prost::alloc::string::String>,
370 #[prost(message, repeated, tag = "2")]
371 pub method: ::prost::alloc::vec::Vec<MethodDescriptorProto>,
372 #[prost(message, optional, tag = "3")]
373 pub options: ::core::option::Option<ServiceOptions>,
374}
375/// Describes a method of a service.
376
377#[derive(Clone, PartialEq, ::prost::Message)]
378pub struct MethodDescriptorProto {
379 #[prost(string, optional, tag = "1")]
380 pub name: ::core::option::Option<::prost::alloc::string::String>,
381 /// Input and output type names. These are resolved in the same way as
382 /// FieldDescriptorProto.type_name, but must refer to a message type.
383 #[prost(string, optional, tag = "2")]
384 pub input_type: ::core::option::Option<::prost::alloc::string::String>,
385 #[prost(string, optional, tag = "3")]
386 pub output_type: ::core::option::Option<::prost::alloc::string::String>,
387 #[prost(message, optional, tag = "4")]
388 pub options: ::core::option::Option<MethodOptions>,
389 /// Identifies if client streams multiple client messages
390 #[prost(bool, optional, tag = "5", default = "false")]
391 pub client_streaming: ::core::option::Option<bool>,
392 /// Identifies if server streams multiple server messages
393 #[prost(bool, optional, tag = "6", default = "false")]
394 pub server_streaming: ::core::option::Option<bool>,
395}
396/// Each of the definitions above may have "options" attached. These are
397/// just annotations which may cause code to be generated slightly differently
398/// or may contain hints for code that manipulates protocol messages.
399///
400/// Clients may define custom options as extensions of the \*Options messages.
401/// These extensions may not yet be known at parsing time, so the parser cannot
402/// store the values in them. Instead it stores them in a field in the \*Options
403/// message called uninterpreted_option. This field must have the same name
404/// across all \*Options messages. We then use this field to populate the
405/// extensions when we build a descriptor, at which point all protos have been
406/// parsed and so all extensions are known.
407///
408/// Extension numbers for custom options may be chosen as follows:
409///
410/// * For options which will only be used within a single application or
411/// organization, or for experimental options, use field numbers 50000
412/// through 99999. It is up to you to ensure that you do not use the
413/// same number for multiple options.
414/// * For options which will be published and used publicly by multiple
415/// independent entities, e-mail protobuf-global-extension-registry@google.com
416/// to reserve extension numbers. Simply provide your project name (e.g.
417/// Objective-C plugin) and your project website (if available) -- there's no
418/// need to explain how you intend to use them. Usually you only need one
419/// extension number. You can declare multiple options with only one extension
420/// number by putting them in a sub-message. See the Custom Options section of
421/// the docs for examples:
422/// <https://developers.google.com/protocol-buffers/docs/proto#options>
423/// If this turns out to be popular, a web service will be set up
424/// to automatically assign option numbers.
425
426#[derive(Clone, PartialEq, ::prost::Message)]
427pub struct FileOptions {
428 /// Sets the Java package where classes generated from this .proto will be
429 /// placed. By default, the proto package is used, but this is often
430 /// inappropriate because proto packages do not normally start with backwards
431 /// domain names.
432 #[prost(string, optional, tag = "1")]
433 pub java_package: ::core::option::Option<::prost::alloc::string::String>,
434 /// Controls the name of the wrapper Java class generated for the .proto file.
435 /// That class will always contain the .proto file's getDescriptor() method as
436 /// well as any top-level extensions defined in the .proto file.
437 /// If java_multiple_files is disabled, then all the other classes from the
438 /// .proto file will be nested inside the single wrapper outer class.
439 #[prost(string, optional, tag = "8")]
440 pub java_outer_classname: ::core::option::Option<::prost::alloc::string::String>,
441 /// If enabled, then the Java code generator will generate a separate .java
442 /// file for each top-level message, enum, and service defined in the .proto
443 /// file. Thus, these types will *not* be nested inside the wrapper class
444 /// named by java_outer_classname. However, the wrapper class will still be
445 /// generated to contain the file's getDescriptor() method as well as any
446 /// top-level extensions defined in the file.
447 #[prost(bool, optional, tag = "10", default = "false")]
448 pub java_multiple_files: ::core::option::Option<bool>,
449 /// This option does nothing.
450 #[deprecated]
451 #[prost(bool, optional, tag = "20")]
452 pub java_generate_equals_and_hash: ::core::option::Option<bool>,
453 /// If set true, then the Java2 code generator will generate code that
454 /// throws an exception whenever an attempt is made to assign a non-UTF-8
455 /// byte sequence to a string field.
456 /// Message reflection will do the same.
457 /// However, an extension field still accepts non-UTF-8 byte sequences.
458 /// This option has no effect on when used with the lite runtime.
459 #[prost(bool, optional, tag = "27", default = "false")]
460 pub java_string_check_utf8: ::core::option::Option<bool>,
461 #[prost(
462 enumeration = "file_options::OptimizeMode",
463 optional,
464 tag = "9",
465 default = "Speed"
466 )]
467 pub optimize_for: ::core::option::Option<i32>,
468 /// Sets the Go package where structs generated from this .proto will be
469 /// placed. If omitted, the Go package will be derived from the following:
470 ///
471 /// * The basename of the package import path, if provided.
472 /// * Otherwise, the package statement in the .proto file, if present.
473 /// * Otherwise, the basename of the .proto file, without extension.
474 #[prost(string, optional, tag = "11")]
475 pub go_package: ::core::option::Option<::prost::alloc::string::String>,
476 /// Should generic services be generated in each language? "Generic" services
477 /// are not specific to any particular RPC system. They are generated by the
478 /// main code generators in each language (without additional plugins).
479 /// Generic services were the only kind of service generation supported by
480 /// early versions of google.protobuf.
481 ///
482 /// Generic services are now considered deprecated in favor of using plugins
483 /// that generate code specific to your particular RPC system. Therefore,
484 /// these default to false. Old code which depends on generic services should
485 /// explicitly set them to true.
486 #[prost(bool, optional, tag = "16", default = "false")]
487 pub cc_generic_services: ::core::option::Option<bool>,
488 #[prost(bool, optional, tag = "17", default = "false")]
489 pub java_generic_services: ::core::option::Option<bool>,
490 #[prost(bool, optional, tag = "18", default = "false")]
491 pub py_generic_services: ::core::option::Option<bool>,
492 #[prost(bool, optional, tag = "42", default = "false")]
493 pub php_generic_services: ::core::option::Option<bool>,
494 /// Is this file deprecated?
495 /// Depending on the target platform, this can emit Deprecated annotations
496 /// for everything in the file, or it will be completely ignored; in the very
497 /// least, this is a formalization for deprecating files.
498 #[prost(bool, optional, tag = "23", default = "false")]
499 pub deprecated: ::core::option::Option<bool>,
500 /// Enables the use of arenas for the proto messages in this file. This applies
501 /// only to generated classes for C++.
502 #[prost(bool, optional, tag = "31", default = "true")]
503 pub cc_enable_arenas: ::core::option::Option<bool>,
504 /// Sets the objective c class prefix which is prepended to all objective c
505 /// generated classes from this .proto. There is no default.
506 #[prost(string, optional, tag = "36")]
507 pub objc_class_prefix: ::core::option::Option<::prost::alloc::string::String>,
508 /// Namespace for generated classes; defaults to the package.
509 #[prost(string, optional, tag = "37")]
510 pub csharp_namespace: ::core::option::Option<::prost::alloc::string::String>,
511 /// By default Swift generators will take the proto package and CamelCase it
512 /// replacing '.' with underscore and use that to prefix the types/symbols
513 /// defined. When this options is provided, they will use this value instead
514 /// to prefix the types/symbols defined.
515 #[prost(string, optional, tag = "39")]
516 pub swift_prefix: ::core::option::Option<::prost::alloc::string::String>,
517 /// Sets the php class prefix which is prepended to all php generated classes
518 /// from this .proto. Default is empty.
519 #[prost(string, optional, tag = "40")]
520 pub php_class_prefix: ::core::option::Option<::prost::alloc::string::String>,
521 /// Use this option to change the namespace of php generated classes. Default
522 /// is empty. When this option is empty, the package name will be used for
523 /// determining the namespace.
524 #[prost(string, optional, tag = "41")]
525 pub php_namespace: ::core::option::Option<::prost::alloc::string::String>,
526 /// Use this option to change the namespace of php generated metadata classes.
527 /// Default is empty. When this option is empty, the proto file name will be
528 /// used for determining the namespace.
529 #[prost(string, optional, tag = "44")]
530 pub php_metadata_namespace: ::core::option::Option<::prost::alloc::string::String>,
531 /// Use this option to change the package of ruby generated classes. Default
532 /// is empty. When this option is not set, the package name will be used for
533 /// determining the ruby package.
534 #[prost(string, optional, tag = "45")]
535 pub ruby_package: ::core::option::Option<::prost::alloc::string::String>,
536 /// The parser stores options it doesn't recognize here.
537 /// See the documentation for the "Options" section above.
538 #[prost(message, repeated, tag = "999")]
539 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
540}
541/// Nested message and enum types in `FileOptions`.
542pub mod file_options {
543 /// Generated classes can be optimized for speed or code size.
544
545 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
546 #[repr(i32)]
547 pub enum OptimizeMode {
548 /// Generate complete code for parsing, serialization,
549 Speed = 1,
550 /// etc.
551 ///
552 /// Use ReflectionOps to implement these methods.
553 CodeSize = 2,
554 /// Generate code using MessageLite and the lite runtime.
555 LiteRuntime = 3,
556 }
557 impl OptimizeMode {
558 /// String value of the enum field names used in the ProtoBuf definition.
559 ///
560 /// The values are not transformed in any way and thus are considered stable
561 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
562 pub fn as_str_name(&self) -> &'static str {
563 match self {
564 Self::Speed => "SPEED",
565 Self::CodeSize => "CODE_SIZE",
566 Self::LiteRuntime => "LITE_RUNTIME",
567 }
568 }
569 /// Creates an enum from field names used in the ProtoBuf definition.
570 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
571 match value {
572 "SPEED" => Some(Self::Speed),
573 "CODE_SIZE" => Some(Self::CodeSize),
574 "LITE_RUNTIME" => Some(Self::LiteRuntime),
575 _ => None,
576 }
577 }
578 }
579}
580
581#[derive(Clone, PartialEq, ::prost::Message)]
582pub struct MessageOptions {
583 /// Set true to use the old proto1 MessageSet wire format for extensions.
584 /// This is provided for backwards-compatibility with the MessageSet wire
585 /// format. You should not use this for any other reason: It's less
586 /// efficient, has fewer features, and is more complicated.
587 ///
588 /// The message must be defined exactly as follows:
589 /// message Foo {
590 /// option message_set_wire_format = true;
591 /// extensions 4 to max;
592 /// }
593 /// Note that the message cannot have any defined fields; MessageSets only
594 /// have extensions.
595 ///
596 /// All extensions of your type must be singular messages; e.g. they cannot
597 /// be int32s, enums, or repeated messages.
598 ///
599 /// Because this is an option, the above two restrictions are not enforced by
600 /// the protocol compiler.
601 #[prost(bool, optional, tag = "1", default = "false")]
602 pub message_set_wire_format: ::core::option::Option<bool>,
603 /// Disables the generation of the standard "descriptor()" accessor, which can
604 /// conflict with a field of the same name. This is meant to make migration
605 /// from proto1 easier; new code should avoid fields named "descriptor".
606 #[prost(bool, optional, tag = "2", default = "false")]
607 pub no_standard_descriptor_accessor: ::core::option::Option<bool>,
608 /// Is this message deprecated?
609 /// Depending on the target platform, this can emit Deprecated annotations
610 /// for the message, or it will be completely ignored; in the very least,
611 /// this is a formalization for deprecating messages.
612 #[prost(bool, optional, tag = "3", default = "false")]
613 pub deprecated: ::core::option::Option<bool>,
614 /// Whether the message is an automatically generated map entry type for the
615 /// maps field.
616 ///
617 /// For maps fields:
618 /// map\<KeyType, ValueType> map_field = 1;
619 /// The parsed descriptor looks like:
620 /// message MapFieldEntry {
621 /// option map_entry = true;
622 /// optional KeyType key = 1;
623 /// optional ValueType value = 2;
624 /// }
625 /// repeated MapFieldEntry map_field = 1;
626 ///
627 /// Implementations may choose not to generate the map_entry=true message, but
628 /// use a native map in the target language to hold the keys and values.
629 /// The reflection APIs in such implementations still need to work as
630 /// if the field is a repeated message field.
631 ///
632 /// NOTE: Do not set the option in .proto files. Always use the maps syntax
633 /// instead. The option should only be implicitly set by the proto compiler
634 /// parser.
635 #[prost(bool, optional, tag = "7")]
636 pub map_entry: ::core::option::Option<bool>,
637 /// The parser stores options it doesn't recognize here. See above.
638 #[prost(message, repeated, tag = "999")]
639 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
640}
641
642#[derive(Clone, PartialEq, ::prost::Message)]
643pub struct FieldOptions {
644 /// The ctype option instructs the C++ code generator to use a different
645 /// representation of the field than it normally would. See the specific
646 /// options below. This option is not yet implemented in the open source
647 /// release -- sorry, we'll try to include it in a future version!
648 #[prost(
649 enumeration = "field_options::CType",
650 optional,
651 tag = "1",
652 default = "String"
653 )]
654 pub ctype: ::core::option::Option<i32>,
655 /// The packed option can be enabled for repeated primitive fields to enable
656 /// a more efficient representation on the wire. Rather than repeatedly
657 /// writing the tag and type for each element, the entire array is encoded as
658 /// a single length-delimited blob. In proto3, only explicit setting it to
659 /// false will avoid using packed encoding.
660 #[prost(bool, optional, tag = "2")]
661 pub packed: ::core::option::Option<bool>,
662 /// The jstype option determines the JavaScript type used for values of the
663 /// field. The option is permitted only for 64 bit integral and fixed types
664 /// (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING
665 /// is represented as JavaScript string, which avoids loss of precision that
666 /// can happen when a large value is converted to a floating point JavaScript.
667 /// Specifying JS_NUMBER for the jstype causes the generated JavaScript code to
668 /// use the JavaScript "number" type. The behavior of the default option
669 /// JS_NORMAL is implementation dependent.
670 ///
671 /// This option is an enum to permit additional types to be added, e.g.
672 /// goog.math.Integer.
673 #[prost(
674 enumeration = "field_options::JsType",
675 optional,
676 tag = "6",
677 default = "JsNormal"
678 )]
679 pub jstype: ::core::option::Option<i32>,
680 /// Should this field be parsed lazily? Lazy applies only to message-type
681 /// fields. It means that when the outer message is initially parsed, the
682 /// inner message's contents will not be parsed but instead stored in encoded
683 /// form. The inner message will actually be parsed when it is first accessed.
684 ///
685 /// This is only a hint. Implementations are free to choose whether to use
686 /// eager or lazy parsing regardless of the value of this option. However,
687 /// setting this option true suggests that the protocol author believes that
688 /// using lazy parsing on this field is worth the additional bookkeeping
689 /// overhead typically needed to implement it.
690 ///
691 /// This option does not affect the public interface of any generated code;
692 /// all method signatures remain the same. Furthermore, thread-safety of the
693 /// interface is not affected by this option; const methods remain safe to
694 /// call from multiple threads concurrently, while non-const methods continue
695 /// to require exclusive access.
696 ///
697 /// Note that implementations may choose not to check required fields within
698 /// a lazy sub-message. That is, calling IsInitialized() on the outer message
699 /// may return true even if the inner message has missing required fields.
700 /// This is necessary because otherwise the inner message would have to be
701 /// parsed in order to perform the check, defeating the purpose of lazy
702 /// parsing. An implementation which chooses not to check required fields
703 /// must be consistent about it. That is, for any particular sub-message, the
704 /// implementation must either *always* check its required fields, or *never*
705 /// check its required fields, regardless of whether or not the message has
706 /// been parsed.
707 #[prost(bool, optional, tag = "5", default = "false")]
708 pub lazy: ::core::option::Option<bool>,
709 /// Is this field deprecated?
710 /// Depending on the target platform, this can emit Deprecated annotations
711 /// for accessors, or it will be completely ignored; in the very least, this
712 /// is a formalization for deprecating fields.
713 #[prost(bool, optional, tag = "3", default = "false")]
714 pub deprecated: ::core::option::Option<bool>,
715 /// For Google-internal migration only. Do not use.
716 #[prost(bool, optional, tag = "10", default = "false")]
717 pub weak: ::core::option::Option<bool>,
718 /// The parser stores options it doesn't recognize here. See above.
719 #[prost(message, repeated, tag = "999")]
720 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
721}
722/// Nested message and enum types in `FieldOptions`.
723pub mod field_options {
724
725 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
726 #[repr(i32)]
727 pub enum CType {
728 /// Default mode.
729 String = 0,
730 Cord = 1,
731 StringPiece = 2,
732 }
733 impl CType {
734 /// String value of the enum field names used in the ProtoBuf definition.
735 ///
736 /// The values are not transformed in any way and thus are considered stable
737 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
738 pub fn as_str_name(&self) -> &'static str {
739 match self {
740 Self::String => "STRING",
741 Self::Cord => "CORD",
742 Self::StringPiece => "STRING_PIECE",
743 }
744 }
745 /// Creates an enum from field names used in the ProtoBuf definition.
746 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
747 match value {
748 "STRING" => Some(Self::String),
749 "CORD" => Some(Self::Cord),
750 "STRING_PIECE" => Some(Self::StringPiece),
751 _ => None,
752 }
753 }
754 }
755
756 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
757 #[repr(i32)]
758 pub enum JsType {
759 /// Use the default type.
760 JsNormal = 0,
761 /// Use JavaScript strings.
762 JsString = 1,
763 /// Use JavaScript numbers.
764 JsNumber = 2,
765 }
766 impl JsType {
767 /// String value of the enum field names used in the ProtoBuf definition.
768 ///
769 /// The values are not transformed in any way and thus are considered stable
770 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
771 pub fn as_str_name(&self) -> &'static str {
772 match self {
773 Self::JsNormal => "JS_NORMAL",
774 Self::JsString => "JS_STRING",
775 Self::JsNumber => "JS_NUMBER",
776 }
777 }
778 /// Creates an enum from field names used in the ProtoBuf definition.
779 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
780 match value {
781 "JS_NORMAL" => Some(Self::JsNormal),
782 "JS_STRING" => Some(Self::JsString),
783 "JS_NUMBER" => Some(Self::JsNumber),
784 _ => None,
785 }
786 }
787 }
788}
789
790#[derive(Clone, PartialEq, ::prost::Message)]
791pub struct OneofOptions {
792 /// The parser stores options it doesn't recognize here. See above.
793 #[prost(message, repeated, tag = "999")]
794 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
795}
796
797#[derive(Clone, PartialEq, ::prost::Message)]
798pub struct EnumOptions {
799 /// Set this option to true to allow mapping different tag names to the same
800 /// value.
801 #[prost(bool, optional, tag = "2")]
802 pub allow_alias: ::core::option::Option<bool>,
803 /// Is this enum deprecated?
804 /// Depending on the target platform, this can emit Deprecated annotations
805 /// for the enum, or it will be completely ignored; in the very least, this
806 /// is a formalization for deprecating enums.
807 #[prost(bool, optional, tag = "3", default = "false")]
808 pub deprecated: ::core::option::Option<bool>,
809 /// The parser stores options it doesn't recognize here. See above.
810 #[prost(message, repeated, tag = "999")]
811 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
812}
813
814#[derive(Clone, PartialEq, ::prost::Message)]
815pub struct EnumValueOptions {
816 /// Is this enum value deprecated?
817 /// Depending on the target platform, this can emit Deprecated annotations
818 /// for the enum value, or it will be completely ignored; in the very least,
819 /// this is a formalization for deprecating enum values.
820 #[prost(bool, optional, tag = "1", default = "false")]
821 pub deprecated: ::core::option::Option<bool>,
822 /// The parser stores options it doesn't recognize here. See above.
823 #[prost(message, repeated, tag = "999")]
824 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
825}
826
827#[derive(Clone, PartialEq, ::prost::Message)]
828pub struct ServiceOptions {
829 /// Is this service deprecated?
830 /// Depending on the target platform, this can emit Deprecated annotations
831 /// for the service, or it will be completely ignored; in the very least,
832 /// this is a formalization for deprecating services.
833 #[prost(bool, optional, tag = "33", default = "false")]
834 pub deprecated: ::core::option::Option<bool>,
835 /// The parser stores options it doesn't recognize here. See above.
836 #[prost(message, repeated, tag = "999")]
837 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
838}
839
840#[derive(Clone, PartialEq, ::prost::Message)]
841pub struct MethodOptions {
842 /// Is this method deprecated?
843 /// Depending on the target platform, this can emit Deprecated annotations
844 /// for the method, or it will be completely ignored; in the very least,
845 /// this is a formalization for deprecating methods.
846 #[prost(bool, optional, tag = "33", default = "false")]
847 pub deprecated: ::core::option::Option<bool>,
848 #[prost(
849 enumeration = "method_options::IdempotencyLevel",
850 optional,
851 tag = "34",
852 default = "IdempotencyUnknown"
853 )]
854 pub idempotency_level: ::core::option::Option<i32>,
855 /// The parser stores options it doesn't recognize here. See above.
856 #[prost(message, repeated, tag = "999")]
857 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
858}
859/// Nested message and enum types in `MethodOptions`.
860pub mod method_options {
861 /// Is this method side-effect-free (or safe in HTTP parlance), or idempotent,
862 /// or neither? HTTP based RPC implementation may choose GET verb for safe
863 /// methods, and PUT verb for idempotent methods instead of the default POST.
864
865 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
866 #[repr(i32)]
867 pub enum IdempotencyLevel {
868 IdempotencyUnknown = 0,
869 /// implies idempotent
870 NoSideEffects = 1,
871 /// idempotent, but may have side effects
872 Idempotent = 2,
873 }
874 impl IdempotencyLevel {
875 /// String value of the enum field names used in the ProtoBuf definition.
876 ///
877 /// The values are not transformed in any way and thus are considered stable
878 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
879 pub fn as_str_name(&self) -> &'static str {
880 match self {
881 Self::IdempotencyUnknown => "IDEMPOTENCY_UNKNOWN",
882 Self::NoSideEffects => "NO_SIDE_EFFECTS",
883 Self::Idempotent => "IDEMPOTENT",
884 }
885 }
886 /// Creates an enum from field names used in the ProtoBuf definition.
887 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
888 match value {
889 "IDEMPOTENCY_UNKNOWN" => Some(Self::IdempotencyUnknown),
890 "NO_SIDE_EFFECTS" => Some(Self::NoSideEffects),
891 "IDEMPOTENT" => Some(Self::Idempotent),
892 _ => None,
893 }
894 }
895 }
896}
897/// A message representing a option the parser does not recognize. This only
898/// appears in options protos created by the compiler::Parser class.
899/// DescriptorPool resolves these when building Descriptor objects. Therefore,
900/// options protos in descriptor objects (e.g. returned by Descriptor::options(),
901/// or produced by Descriptor::CopyTo()) will never have UninterpretedOptions
902/// in them.
903
904#[derive(Clone, PartialEq, ::prost::Message)]
905pub struct UninterpretedOption {
906 #[prost(message, repeated, tag = "2")]
907 pub name: ::prost::alloc::vec::Vec<uninterpreted_option::NamePart>,
908 /// The value of the uninterpreted option, in whatever type the tokenizer
909 /// identified it as during parsing. Exactly one of these should be set.
910 #[prost(string, optional, tag = "3")]
911 pub identifier_value: ::core::option::Option<::prost::alloc::string::String>,
912 #[prost(uint64, optional, tag = "4")]
913 pub positive_int_value: ::core::option::Option<u64>,
914 #[prost(int64, optional, tag = "5")]
915 pub negative_int_value: ::core::option::Option<i64>,
916 #[prost(double, optional, tag = "6")]
917 pub double_value: ::core::option::Option<f64>,
918 #[prost(bytes = "vec", optional, tag = "7")]
919 pub string_value: ::core::option::Option<::prost::alloc::vec::Vec<u8>>,
920 #[prost(string, optional, tag = "8")]
921 pub aggregate_value: ::core::option::Option<::prost::alloc::string::String>,
922}
923/// Nested message and enum types in `UninterpretedOption`.
924pub mod uninterpreted_option {
925 /// The name of the uninterpreted option. Each string represents a segment in
926 /// a dot-separated name. is_extension is true iff a segment represents an
927 /// extension (denoted with parentheses in options specs in .proto files).
928 /// E.g.,{ \["foo", false\], \["bar.baz", true\], \["qux", false\] } represents
929 /// "foo.(bar.baz).qux".
930
931 #[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
932 pub struct NamePart {
933 #[prost(string, required, tag = "1")]
934 pub name_part: ::prost::alloc::string::String,
935 #[prost(bool, required, tag = "2")]
936 pub is_extension: bool,
937 }
938}
939/// Encapsulates information about the original source file from which a
940/// FileDescriptorProto was generated.
941
942#[derive(Clone, PartialEq, ::prost::Message)]
943pub struct SourceCodeInfo {
944 /// A Location identifies a piece of source code in a .proto file which
945 /// corresponds to a particular definition. This information is intended
946 /// to be useful to IDEs, code indexers, documentation generators, and similar
947 /// tools.
948 ///
949 /// For example, say we have a file like:
950 /// message Foo {
951 /// optional string foo = 1;
952 /// }
953 /// Let's look at just the field definition:
954 /// optional string foo = 1;
955 /// ^ ^^ ^^ ^ ^^^
956 /// a bc de f ghi
957 /// We have the following locations:
958 /// span path represents
959 /// \[a,i) \[ 4, 0, 2, 0 \] The whole field definition.
960 /// \[a,b) \[ 4, 0, 2, 0, 4 \] The label (optional).
961 /// \[c,d) \[ 4, 0, 2, 0, 5 \] The type (string).
962 /// \[e,f) \[ 4, 0, 2, 0, 1 \] The name (foo).
963 /// \[g,h) \[ 4, 0, 2, 0, 3 \] The number (1).
964 ///
965 /// Notes:
966 ///
967 /// * A location may refer to a repeated field itself (i.e. not to any
968 /// particular index within it). This is used whenever a set of elements are
969 /// logically enclosed in a single code segment. For example, an entire
970 /// extend block (possibly containing multiple extension definitions) will
971 /// have an outer location whose path refers to the "extensions" repeated
972 /// field without an index.
973 /// * Multiple locations may have the same path. This happens when a single
974 /// logical declaration is spread out across multiple places. The most
975 /// obvious example is the "extend" block again -- there may be multiple
976 /// extend blocks in the same scope, each of which will have the same path.
977 /// * A location's span is not always a subset of its parent's span. For
978 /// example, the "extendee" of an extension declaration appears at the
979 /// beginning of the "extend" block and is shared by all extensions within
980 /// the block.
981 /// * Just because a location's span is a subset of some other location's span
982 /// does not mean that it is a descendant. For example, a "group" defines
983 /// both a type and a field in a single declaration. Thus, the locations
984 /// corresponding to the type and field and their components will overlap.
985 /// * Code which tries to interpret locations should probably be designed to
986 /// ignore those that it doesn't understand, as more types of locations could
987 /// be recorded in the future.
988 #[prost(message, repeated, tag = "1")]
989 pub location: ::prost::alloc::vec::Vec<source_code_info::Location>,
990}
991/// Nested message and enum types in `SourceCodeInfo`.
992pub mod source_code_info {
993
994 #[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
995 pub struct Location {
996 /// Identifies which part of the FileDescriptorProto was defined at this
997 /// location.
998 ///
999 /// Each element is a field number or an index. They form a path from
1000 /// the root FileDescriptorProto to the place where the definition. For
1001 /// example, this path:
1002 /// \[ 4, 3, 2, 7, 1 \]
1003 /// refers to:
1004 /// file.message_type(3) // 4, 3
1005 /// .field(7) // 2, 7
1006 /// .name() // 1
1007 /// This is because FileDescriptorProto.message_type has field number 4:
1008 /// repeated DescriptorProto message_type = 4;
1009 /// and DescriptorProto.field has field number 2:
1010 /// repeated FieldDescriptorProto field = 2;
1011 /// and FieldDescriptorProto.name has field number 1:
1012 /// optional string name = 1;
1013 ///
1014 /// Thus, the above path gives the location of a field name. If we removed
1015 /// the last element:
1016 /// \[ 4, 3, 2, 7 \]
1017 /// this path refers to the whole field declaration (from the beginning
1018 /// of the label to the terminating semicolon).
1019 #[prost(int32, repeated, tag = "1")]
1020 pub path: ::prost::alloc::vec::Vec<i32>,
1021 /// Always has exactly three or four elements: start line, start column,
1022 /// end line (optional, otherwise assumed same as start line), end column.
1023 /// These are packed into a single field for efficiency. Note that line
1024 /// and column numbers are zero-based -- typically you will want to add
1025 /// 1 to each before displaying to a user.
1026 #[prost(int32, repeated, tag = "2")]
1027 pub span: ::prost::alloc::vec::Vec<i32>,
1028 /// If this SourceCodeInfo represents a complete declaration, these are any
1029 /// comments appearing before and after the declaration which appear to be
1030 /// attached to the declaration.
1031 ///
1032 /// A series of line comments appearing on consecutive lines, with no other
1033 /// tokens appearing on those lines, will be treated as a single comment.
1034 ///
1035 /// leading_detached_comments will keep paragraphs of comments that appear
1036 /// before (but not connected to) the current element. Each paragraph,
1037 /// separated by empty lines, will be one comment element in the repeated
1038 /// field.
1039 ///
1040 /// Only the comment content is provided; comment markers (e.g. //) are
1041 /// stripped out. For block comments, leading whitespace and an asterisk
1042 /// will be stripped from the beginning of each line other than the first.
1043 /// Newlines are included in the output.
1044 ///
1045 /// Examples:
1046 ///
1047 /// optional int32 foo = 1; // Comment attached to foo.
1048 /// // Comment attached to bar.
1049 /// optional int32 bar = 2;
1050 ///
1051 /// optional string baz = 3;
1052 /// // Comment attached to baz.
1053 /// // Another line attached to baz.
1054 ///
1055 /// // Comment attached to qux.
1056 /// //
1057 /// // Another line attached to qux.
1058 /// optional double qux = 4;
1059 ///
1060 /// // Detached comment for corge. This is not leading or trailing comments
1061 /// // to qux or corge because there are blank lines separating it from
1062 /// // both.
1063 ///
1064 /// // Detached comment for corge paragraph 2.
1065 ///
1066 /// optional string corge = 5;
1067 /// /\* Block comment attached
1068 /// \* to corge. Leading asterisks
1069 /// \* will be removed. */
1070 /// /* Block comment attached to
1071 /// \* grault. \*/
1072 /// optional int32 grault = 6;
1073 ///
1074 /// // ignored detached comments.
1075 #[prost(string, optional, tag = "3")]
1076 pub leading_comments: ::core::option::Option<::prost::alloc::string::String>,
1077 #[prost(string, optional, tag = "4")]
1078 pub trailing_comments: ::core::option::Option<::prost::alloc::string::String>,
1079 #[prost(string, repeated, tag = "6")]
1080 pub leading_detached_comments: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
1081 }
1082}
1083/// Describes the relationship between generated code and its original source
1084/// file. A GeneratedCodeInfo message is associated with only one generated
1085/// source file, but may contain references to different source .proto files.
1086
1087#[derive(Clone, PartialEq, ::prost::Message)]
1088pub struct GeneratedCodeInfo {
1089 /// An Annotation connects some span of text in generated code to an element
1090 /// of its generating .proto file.
1091 #[prost(message, repeated, tag = "1")]
1092 pub annotation: ::prost::alloc::vec::Vec<generated_code_info::Annotation>,
1093}
1094/// Nested message and enum types in `GeneratedCodeInfo`.
1095pub mod generated_code_info {
1096
1097 #[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1098 pub struct Annotation {
1099 /// Identifies the element in the original source .proto file. This field
1100 /// is formatted the same as SourceCodeInfo.Location.path.
1101 #[prost(int32, repeated, tag = "1")]
1102 pub path: ::prost::alloc::vec::Vec<i32>,
1103 /// Identifies the filesystem path to the original source .proto.
1104 #[prost(string, optional, tag = "2")]
1105 pub source_file: ::core::option::Option<::prost::alloc::string::String>,
1106 /// Identifies the starting offset in bytes in the generated code
1107 /// that relates to the identified object.
1108 #[prost(int32, optional, tag = "3")]
1109 pub begin: ::core::option::Option<i32>,
1110 /// Identifies the ending offset in bytes in the generated code that
1111 /// relates to the identified offset. The end offset should be one past
1112 /// the last relevant byte (so the length of the text = end - begin).
1113 #[prost(int32, optional, tag = "4")]
1114 pub end: ::core::option::Option<i32>,
1115 }
1116}
1117/// `Any` contains an arbitrary serialized protocol buffer message along with a
1118/// URL that describes the type of the serialized message.
1119///
1120/// Protobuf library provides support to pack/unpack Any values in the form
1121/// of utility functions or additional generated methods of the Any type.
1122///
1123/// Example 1: Pack and unpack a message in C++.
1124///
1125/// ```text
1126/// Foo foo = ...;
1127/// Any any;
1128/// any.PackFrom(foo);
1129/// ...
1130/// if (any.UnpackTo(&foo)) {
1131/// ...
1132/// }
1133/// ```
1134///
1135/// Example 2: Pack and unpack a message in Java.
1136///
1137/// ```text
1138/// Foo foo = ...;
1139/// Any any = Any.pack(foo);
1140/// ...
1141/// if (any.is(Foo.class)) {
1142/// foo = any.unpack(Foo.class);
1143/// }
1144/// ```
1145///
1146/// Example 3: Pack and unpack a message in Python.
1147///
1148/// ```text
1149/// foo = Foo(...)
1150/// any = Any()
1151/// any.Pack(foo)
1152/// ...
1153/// if any.Is(Foo.DESCRIPTOR):
1154/// any.Unpack(foo)
1155/// ...
1156/// ```
1157///
1158/// Example 4: Pack and unpack a message in Go
1159///
1160/// ```text
1161/// foo := &pb.Foo{...}
1162/// any, err := anypb.New(foo)
1163/// if err != nil {
1164/// ...
1165/// }
1166/// ...
1167/// foo := &pb.Foo{}
1168/// if err := any.UnmarshalTo(foo); err != nil {
1169/// ...
1170/// }
1171/// ```
1172///
1173/// The pack methods provided by protobuf library will by default use
1174/// 'type.googleapis.com/full.type.name' as the type URL and the unpack
1175/// methods only use the fully qualified type name after the last '/'
1176/// in the type URL, for example "foo.bar.com/x/y.z" will yield type
1177/// name "y.z".
1178///
1179/// # JSON
1180///
1181/// The JSON representation of an `Any` value uses the regular
1182/// representation of the deserialized, embedded message, with an
1183/// additional field `@type` which contains the type URL. Example:
1184///
1185/// ```text
1186/// package google.profile;
1187/// message Person {
1188/// string first_name = 1;
1189/// string last_name = 2;
1190/// }
1191///
1192/// {
1193/// "@type": "type.googleapis.com/google.profile.Person",
1194/// "firstName": <string>,
1195/// "lastName": <string>
1196/// }
1197/// ```
1198///
1199/// If the embedded message type is well-known and has a custom JSON
1200/// representation, that representation will be embedded adding a field
1201/// `value` which holds the custom JSON in addition to the `@type`
1202/// field. Example (for message \[google.protobuf.Duration\]\[\]):
1203///
1204/// ```text
1205/// {
1206/// "@type": "type.googleapis.com/google.protobuf.Duration",
1207/// "value": "1.212s"
1208/// }
1209/// ```
1210
1211#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1212pub struct Any {
1213 /// A URL/resource name that uniquely identifies the type of the serialized
1214 /// protocol buffer message. This string must contain at least
1215 /// one "/" character. The last segment of the URL's path must represent
1216 /// the fully qualified name of the type (as in
1217 /// `path/google.protobuf.Duration`). The name should be in a canonical form
1218 /// (e.g., leading "." is not accepted).
1219 ///
1220 /// In practice, teams usually precompile into the binary all types that they
1221 /// expect it to use in the context of Any. However, for URLs which use the
1222 /// scheme `http`, `https`, or no scheme, one can optionally set up a type
1223 /// server that maps type URLs to message definitions as follows:
1224 ///
1225 /// * If no scheme is provided, `https` is assumed.
1226 /// * An HTTP GET on the URL must yield a \[google.protobuf.Type\]\[\]
1227 /// value in binary format, or produce an error.
1228 /// * Applications are allowed to cache lookup results based on the
1229 /// URL, or have them precompiled into a binary to avoid any
1230 /// lookup. Therefore, binary compatibility needs to be preserved
1231 /// on changes to types. (Use versioned type names to manage
1232 /// breaking changes.)
1233 ///
1234 /// Note: this functionality is not currently available in the official
1235 /// protobuf release, and it is not used for type URLs beginning with
1236 /// type.googleapis.com.
1237 ///
1238 /// Schemes other than `http`, `https` (or the empty scheme) might be
1239 /// used with implementation specific semantics.
1240 #[prost(string, tag = "1")]
1241 pub type_url: ::prost::alloc::string::String,
1242 /// Must be a valid serialized protocol buffer of the above specified type.
1243 #[prost(bytes = "vec", tag = "2")]
1244 pub value: ::prost::alloc::vec::Vec<u8>,
1245}
1246/// `SourceContext` represents information about the source of a
1247/// protobuf element, like the file in which it is defined.
1248
1249#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1250pub struct SourceContext {
1251 /// The path-qualified name of the .proto file that contained the associated
1252 /// protobuf element. For example: `"google/protobuf/source_context.proto"`.
1253 #[prost(string, tag = "1")]
1254 pub file_name: ::prost::alloc::string::String,
1255}
1256/// A protocol buffer message type.
1257
1258#[derive(Clone, PartialEq, ::prost::Message)]
1259pub struct Type {
1260 /// The fully qualified message name.
1261 #[prost(string, tag = "1")]
1262 pub name: ::prost::alloc::string::String,
1263 /// The list of fields.
1264 #[prost(message, repeated, tag = "2")]
1265 pub fields: ::prost::alloc::vec::Vec<Field>,
1266 /// The list of types appearing in `oneof` definitions in this type.
1267 #[prost(string, repeated, tag = "3")]
1268 pub oneofs: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
1269 /// The protocol buffer options.
1270 #[prost(message, repeated, tag = "4")]
1271 pub options: ::prost::alloc::vec::Vec<Option>,
1272 /// The source context.
1273 #[prost(message, optional, tag = "5")]
1274 pub source_context: ::core::option::Option<SourceContext>,
1275 /// The source syntax.
1276 #[prost(enumeration = "Syntax", tag = "6")]
1277 pub syntax: i32,
1278}
1279/// A single field of a message type.
1280
1281#[derive(Clone, PartialEq, ::prost::Message)]
1282pub struct Field {
1283 /// The field type.
1284 #[prost(enumeration = "field::Kind", tag = "1")]
1285 pub kind: i32,
1286 /// The field cardinality.
1287 #[prost(enumeration = "field::Cardinality", tag = "2")]
1288 pub cardinality: i32,
1289 /// The field number.
1290 #[prost(int32, tag = "3")]
1291 pub number: i32,
1292 /// The field name.
1293 #[prost(string, tag = "4")]
1294 pub name: ::prost::alloc::string::String,
1295 /// The field type URL, without the scheme, for message or enumeration
1296 /// types. Example: `"type.googleapis.com/google.protobuf.Timestamp"`.
1297 #[prost(string, tag = "6")]
1298 pub type_url: ::prost::alloc::string::String,
1299 /// The index of the field type in `Type.oneofs`, for message or enumeration
1300 /// types. The first type has index 1; zero means the type is not in the list.
1301 #[prost(int32, tag = "7")]
1302 pub oneof_index: i32,
1303 /// Whether to use alternative packed wire representation.
1304 #[prost(bool, tag = "8")]
1305 pub packed: bool,
1306 /// The protocol buffer options.
1307 #[prost(message, repeated, tag = "9")]
1308 pub options: ::prost::alloc::vec::Vec<Option>,
1309 /// The field JSON name.
1310 #[prost(string, tag = "10")]
1311 pub json_name: ::prost::alloc::string::String,
1312 /// The string value of the default value of this field. Proto2 syntax only.
1313 #[prost(string, tag = "11")]
1314 pub default_value: ::prost::alloc::string::String,
1315}
1316/// Nested message and enum types in `Field`.
1317pub mod field {
1318 /// Basic field types.
1319
1320 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
1321 #[repr(i32)]
1322 pub enum Kind {
1323 /// Field type unknown.
1324 TypeUnknown = 0,
1325 /// Field type double.
1326 TypeDouble = 1,
1327 /// Field type float.
1328 TypeFloat = 2,
1329 /// Field type int64.
1330 TypeInt64 = 3,
1331 /// Field type uint64.
1332 TypeUint64 = 4,
1333 /// Field type int32.
1334 TypeInt32 = 5,
1335 /// Field type fixed64.
1336 TypeFixed64 = 6,
1337 /// Field type fixed32.
1338 TypeFixed32 = 7,
1339 /// Field type bool.
1340 TypeBool = 8,
1341 /// Field type string.
1342 TypeString = 9,
1343 /// Field type group. Proto2 syntax only, and deprecated.
1344 TypeGroup = 10,
1345 /// Field type message.
1346 TypeMessage = 11,
1347 /// Field type bytes.
1348 TypeBytes = 12,
1349 /// Field type uint32.
1350 TypeUint32 = 13,
1351 /// Field type enum.
1352 TypeEnum = 14,
1353 /// Field type sfixed32.
1354 TypeSfixed32 = 15,
1355 /// Field type sfixed64.
1356 TypeSfixed64 = 16,
1357 /// Field type sint32.
1358 TypeSint32 = 17,
1359 /// Field type sint64.
1360 TypeSint64 = 18,
1361 }
1362 impl Kind {
1363 /// String value of the enum field names used in the ProtoBuf definition.
1364 ///
1365 /// The values are not transformed in any way and thus are considered stable
1366 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1367 pub fn as_str_name(&self) -> &'static str {
1368 match self {
1369 Self::TypeUnknown => "TYPE_UNKNOWN",
1370 Self::TypeDouble => "TYPE_DOUBLE",
1371 Self::TypeFloat => "TYPE_FLOAT",
1372 Self::TypeInt64 => "TYPE_INT64",
1373 Self::TypeUint64 => "TYPE_UINT64",
1374 Self::TypeInt32 => "TYPE_INT32",
1375 Self::TypeFixed64 => "TYPE_FIXED64",
1376 Self::TypeFixed32 => "TYPE_FIXED32",
1377 Self::TypeBool => "TYPE_BOOL",
1378 Self::TypeString => "TYPE_STRING",
1379 Self::TypeGroup => "TYPE_GROUP",
1380 Self::TypeMessage => "TYPE_MESSAGE",
1381 Self::TypeBytes => "TYPE_BYTES",
1382 Self::TypeUint32 => "TYPE_UINT32",
1383 Self::TypeEnum => "TYPE_ENUM",
1384 Self::TypeSfixed32 => "TYPE_SFIXED32",
1385 Self::TypeSfixed64 => "TYPE_SFIXED64",
1386 Self::TypeSint32 => "TYPE_SINT32",
1387 Self::TypeSint64 => "TYPE_SINT64",
1388 }
1389 }
1390 /// Creates an enum from field names used in the ProtoBuf definition.
1391 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1392 match value {
1393 "TYPE_UNKNOWN" => Some(Self::TypeUnknown),
1394 "TYPE_DOUBLE" => Some(Self::TypeDouble),
1395 "TYPE_FLOAT" => Some(Self::TypeFloat),
1396 "TYPE_INT64" => Some(Self::TypeInt64),
1397 "TYPE_UINT64" => Some(Self::TypeUint64),
1398 "TYPE_INT32" => Some(Self::TypeInt32),
1399 "TYPE_FIXED64" => Some(Self::TypeFixed64),
1400 "TYPE_FIXED32" => Some(Self::TypeFixed32),
1401 "TYPE_BOOL" => Some(Self::TypeBool),
1402 "TYPE_STRING" => Some(Self::TypeString),
1403 "TYPE_GROUP" => Some(Self::TypeGroup),
1404 "TYPE_MESSAGE" => Some(Self::TypeMessage),
1405 "TYPE_BYTES" => Some(Self::TypeBytes),
1406 "TYPE_UINT32" => Some(Self::TypeUint32),
1407 "TYPE_ENUM" => Some(Self::TypeEnum),
1408 "TYPE_SFIXED32" => Some(Self::TypeSfixed32),
1409 "TYPE_SFIXED64" => Some(Self::TypeSfixed64),
1410 "TYPE_SINT32" => Some(Self::TypeSint32),
1411 "TYPE_SINT64" => Some(Self::TypeSint64),
1412 _ => None,
1413 }
1414 }
1415 }
1416 /// Whether a field is optional, required, or repeated.
1417
1418 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
1419 #[repr(i32)]
1420 pub enum Cardinality {
1421 /// For fields with unknown cardinality.
1422 Unknown = 0,
1423 /// For optional fields.
1424 Optional = 1,
1425 /// For required fields. Proto2 syntax only.
1426 Required = 2,
1427 /// For repeated fields.
1428 Repeated = 3,
1429 }
1430 impl Cardinality {
1431 /// String value of the enum field names used in the ProtoBuf definition.
1432 ///
1433 /// The values are not transformed in any way and thus are considered stable
1434 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1435 pub fn as_str_name(&self) -> &'static str {
1436 match self {
1437 Self::Unknown => "CARDINALITY_UNKNOWN",
1438 Self::Optional => "CARDINALITY_OPTIONAL",
1439 Self::Required => "CARDINALITY_REQUIRED",
1440 Self::Repeated => "CARDINALITY_REPEATED",
1441 }
1442 }
1443 /// Creates an enum from field names used in the ProtoBuf definition.
1444 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1445 match value {
1446 "CARDINALITY_UNKNOWN" => Some(Self::Unknown),
1447 "CARDINALITY_OPTIONAL" => Some(Self::Optional),
1448 "CARDINALITY_REQUIRED" => Some(Self::Required),
1449 "CARDINALITY_REPEATED" => Some(Self::Repeated),
1450 _ => None,
1451 }
1452 }
1453 }
1454}
1455/// Enum type definition.
1456
1457#[derive(Clone, PartialEq, ::prost::Message)]
1458pub struct Enum {
1459 /// Enum type name.
1460 #[prost(string, tag = "1")]
1461 pub name: ::prost::alloc::string::String,
1462 /// Enum value definitions.
1463 #[prost(message, repeated, tag = "2")]
1464 pub enumvalue: ::prost::alloc::vec::Vec<EnumValue>,
1465 /// Protocol buffer options.
1466 #[prost(message, repeated, tag = "3")]
1467 pub options: ::prost::alloc::vec::Vec<Option>,
1468 /// The source context.
1469 #[prost(message, optional, tag = "4")]
1470 pub source_context: ::core::option::Option<SourceContext>,
1471 /// The source syntax.
1472 #[prost(enumeration = "Syntax", tag = "5")]
1473 pub syntax: i32,
1474}
1475/// Enum value definition.
1476
1477#[derive(Clone, PartialEq, ::prost::Message)]
1478pub struct EnumValue {
1479 /// Enum value name.
1480 #[prost(string, tag = "1")]
1481 pub name: ::prost::alloc::string::String,
1482 /// Enum value number.
1483 #[prost(int32, tag = "2")]
1484 pub number: i32,
1485 /// Protocol buffer options.
1486 #[prost(message, repeated, tag = "3")]
1487 pub options: ::prost::alloc::vec::Vec<Option>,
1488}
1489/// A protocol buffer option, which can be attached to a message, field,
1490/// enumeration, etc.
1491
1492#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1493pub struct Option {
1494 /// The option's name. For protobuf built-in options (options defined in
1495 /// descriptor.proto), this is the short name. For example, `"map_entry"`.
1496 /// For custom options, it should be the fully-qualified name. For example,
1497 /// `"google.api.http"`.
1498 #[prost(string, tag = "1")]
1499 pub name: ::prost::alloc::string::String,
1500 /// The option's value packed in an Any message. If the value is a primitive,
1501 /// the corresponding wrapper type defined in google/protobuf/wrappers.proto
1502 /// should be used. If the value is an enum, it should be stored as an int32
1503 /// value using the google.protobuf.Int32Value type.
1504 #[prost(message, optional, tag = "2")]
1505 pub value: ::core::option::Option<Any>,
1506}
1507/// The syntax in which a protocol buffer element is defined.
1508
1509#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
1510#[repr(i32)]
1511pub enum Syntax {
1512 /// Syntax `proto2`.
1513 Proto2 = 0,
1514 /// Syntax `proto3`.
1515 Proto3 = 1,
1516}
1517impl Syntax {
1518 /// String value of the enum field names used in the ProtoBuf definition.
1519 ///
1520 /// The values are not transformed in any way and thus are considered stable
1521 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1522 pub fn as_str_name(&self) -> &'static str {
1523 match self {
1524 Self::Proto2 => "SYNTAX_PROTO2",
1525 Self::Proto3 => "SYNTAX_PROTO3",
1526 }
1527 }
1528 /// Creates an enum from field names used in the ProtoBuf definition.
1529 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1530 match value {
1531 "SYNTAX_PROTO2" => Some(Self::Proto2),
1532 "SYNTAX_PROTO3" => Some(Self::Proto3),
1533 _ => None,
1534 }
1535 }
1536}
1537/// Api is a light-weight descriptor for an API Interface.
1538///
1539/// Interfaces are also described as "protocol buffer services" in some contexts,
1540/// such as by the "service" keyword in a .proto file, but they are different
1541/// from API Services, which represent a concrete implementation of an interface
1542/// as opposed to simply a description of methods and bindings. They are also
1543/// sometimes simply referred to as "APIs" in other contexts, such as the name of
1544/// this message itself. See <https://cloud.google.com/apis/design/glossary> for
1545/// detailed terminology.
1546
1547#[derive(Clone, PartialEq, ::prost::Message)]
1548pub struct Api {
1549 /// The fully qualified name of this interface, including package name
1550 /// followed by the interface's simple name.
1551 #[prost(string, tag = "1")]
1552 pub name: ::prost::alloc::string::String,
1553 /// The methods of this interface, in unspecified order.
1554 #[prost(message, repeated, tag = "2")]
1555 pub methods: ::prost::alloc::vec::Vec<Method>,
1556 /// Any metadata attached to the interface.
1557 #[prost(message, repeated, tag = "3")]
1558 pub options: ::prost::alloc::vec::Vec<Option>,
1559 /// A version string for this interface. If specified, must have the form
1560 /// `major-version.minor-version`, as in `1.10`. If the minor version is
1561 /// omitted, it defaults to zero. If the entire version field is empty, the
1562 /// major version is derived from the package name, as outlined below. If the
1563 /// field is not empty, the version in the package name will be verified to be
1564 /// consistent with what is provided here.
1565 ///
1566 /// The versioning schema uses [semantic
1567 /// versioning](<http://semver.org>) where the major version number
1568 /// indicates a breaking change and the minor version an additive,
1569 /// non-breaking change. Both version numbers are signals to users
1570 /// what to expect from different versions, and should be carefully
1571 /// chosen based on the product plan.
1572 ///
1573 /// The major version is also reflected in the package name of the
1574 /// interface, which must end in `v<major-version>`, as in
1575 /// `google.feature.v1`. For major versions 0 and 1, the suffix can
1576 /// be omitted. Zero major versions must only be used for
1577 /// experimental, non-GA interfaces.
1578 #[prost(string, tag = "4")]
1579 pub version: ::prost::alloc::string::String,
1580 /// Source context for the protocol buffer service represented by this
1581 /// message.
1582 #[prost(message, optional, tag = "5")]
1583 pub source_context: ::core::option::Option<SourceContext>,
1584 /// Included interfaces. See \[Mixin\]\[\].
1585 #[prost(message, repeated, tag = "6")]
1586 pub mixins: ::prost::alloc::vec::Vec<Mixin>,
1587 /// The source syntax of the service.
1588 #[prost(enumeration = "Syntax", tag = "7")]
1589 pub syntax: i32,
1590}
1591/// Method represents a method of an API interface.
1592
1593#[derive(Clone, PartialEq, ::prost::Message)]
1594pub struct Method {
1595 /// The simple name of this method.
1596 #[prost(string, tag = "1")]
1597 pub name: ::prost::alloc::string::String,
1598 /// A URL of the input message type.
1599 #[prost(string, tag = "2")]
1600 pub request_type_url: ::prost::alloc::string::String,
1601 /// If true, the request is streamed.
1602 #[prost(bool, tag = "3")]
1603 pub request_streaming: bool,
1604 /// The URL of the output message type.
1605 #[prost(string, tag = "4")]
1606 pub response_type_url: ::prost::alloc::string::String,
1607 /// If true, the response is streamed.
1608 #[prost(bool, tag = "5")]
1609 pub response_streaming: bool,
1610 /// Any metadata attached to the method.
1611 #[prost(message, repeated, tag = "6")]
1612 pub options: ::prost::alloc::vec::Vec<Option>,
1613 /// The source syntax of this method.
1614 #[prost(enumeration = "Syntax", tag = "7")]
1615 pub syntax: i32,
1616}
1617/// Declares an API Interface to be included in this interface. The including
1618/// interface must redeclare all the methods from the included interface, but
1619/// documentation and options are inherited as follows:
1620///
1621/// * If after comment and whitespace stripping, the documentation
1622/// string of the redeclared method is empty, it will be inherited
1623/// from the original method.
1624///
1625/// * Each annotation belonging to the service config (http,
1626/// visibility) which is not set in the redeclared method will be
1627/// inherited.
1628///
1629/// * If an http annotation is inherited, the path pattern will be
1630/// modified as follows. Any version prefix will be replaced by the
1631/// version of the including interface plus the \[root\]\[\] path if
1632/// specified.
1633///
1634/// Example of a simple mixin:
1635///
1636/// ```text
1637/// package google.acl.v1;
1638/// service AccessControl {
1639/// // Get the underlying ACL object.
1640/// rpc GetAcl(GetAclRequest) returns (Acl) {
1641/// option (google.api.http).get = "/v1/{resource=**}:getAcl";
1642/// }
1643/// }
1644///
1645/// package google.storage.v2;
1646/// service Storage {
1647/// rpc GetAcl(GetAclRequest) returns (Acl);
1648///
1649/// // Get a data record.
1650/// rpc GetData(GetDataRequest) returns (Data) {
1651/// option (google.api.http).get = "/v2/{resource=**}";
1652/// }
1653/// }
1654/// ```
1655///
1656/// Example of a mixin configuration:
1657///
1658/// ```text
1659/// apis:
1660/// - name: google.storage.v2.Storage
1661/// mixins:
1662/// - name: google.acl.v1.AccessControl
1663/// ```
1664///
1665/// The mixin construct implies that all methods in `AccessControl` are
1666/// also declared with same name and request/response types in
1667/// `Storage`. A documentation generator or annotation processor will
1668/// see the effective `Storage.GetAcl` method after inheriting
1669/// documentation and annotations as follows:
1670///
1671/// ```text
1672/// service Storage {
1673/// // Get the underlying ACL object.
1674/// rpc GetAcl(GetAclRequest) returns (Acl) {
1675/// option (google.api.http).get = "/v2/{resource=**}:getAcl";
1676/// }
1677/// ...
1678/// }
1679/// ```
1680///
1681/// Note how the version in the path pattern changed from `v1` to `v2`.
1682///
1683/// If the `root` field in the mixin is specified, it should be a
1684/// relative path under which inherited HTTP paths are placed. Example:
1685///
1686/// ```text
1687/// apis:
1688/// - name: google.storage.v2.Storage
1689/// mixins:
1690/// - name: google.acl.v1.AccessControl
1691/// root: acls
1692/// ```
1693///
1694/// This implies the following inherited HTTP annotation:
1695///
1696/// ```text
1697/// service Storage {
1698/// // Get the underlying ACL object.
1699/// rpc GetAcl(GetAclRequest) returns (Acl) {
1700/// option (google.api.http).get = "/v2/acls/{resource=**}:getAcl";
1701/// }
1702/// ...
1703/// }
1704/// ```
1705
1706#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
1707pub struct Mixin {
1708 /// The fully qualified name of the interface which is included.
1709 #[prost(string, tag = "1")]
1710 pub name: ::prost::alloc::string::String,
1711 /// If non-empty specifies a path under which inherited HTTP paths
1712 /// are rooted.
1713 #[prost(string, tag = "2")]
1714 pub root: ::prost::alloc::string::String,
1715}
1716/// A Duration represents a signed, fixed-length span of time represented
1717/// as a count of seconds and fractions of seconds at nanosecond
1718/// resolution. It is independent of any calendar and concepts like "day"
1719/// or "month". It is related to Timestamp in that the difference between
1720/// two Timestamp values is a Duration and it can be added or subtracted
1721/// from a Timestamp. Range is approximately +-10,000 years.
1722///
1723/// # Examples
1724///
1725/// Example 1: Compute Duration from two Timestamps in pseudo code.
1726///
1727/// ```text
1728/// Timestamp start = ...;
1729/// Timestamp end = ...;
1730/// Duration duration = ...;
1731///
1732/// duration.seconds = end.seconds - start.seconds;
1733/// duration.nanos = end.nanos - start.nanos;
1734///
1735/// if (duration.seconds < 0 && duration.nanos > 0) {
1736/// duration.seconds += 1;
1737/// duration.nanos -= 1000000000;
1738/// } else if (duration.seconds > 0 && duration.nanos < 0) {
1739/// duration.seconds -= 1;
1740/// duration.nanos += 1000000000;
1741/// }
1742/// ```
1743///
1744/// Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
1745///
1746/// ```text
1747/// Timestamp start = ...;
1748/// Duration duration = ...;
1749/// Timestamp end = ...;
1750///
1751/// end.seconds = start.seconds + duration.seconds;
1752/// end.nanos = start.nanos + duration.nanos;
1753///
1754/// if (end.nanos < 0) {
1755/// end.seconds -= 1;
1756/// end.nanos += 1000000000;
1757/// } else if (end.nanos >= 1000000000) {
1758/// end.seconds += 1;
1759/// end.nanos -= 1000000000;
1760/// }
1761/// ```
1762///
1763/// Example 3: Compute Duration from datetime.timedelta in Python.
1764///
1765/// ```text
1766/// td = datetime.timedelta(days=3, minutes=10)
1767/// duration = Duration()
1768/// duration.FromTimedelta(td)
1769/// ```
1770///
1771/// # JSON Mapping
1772///
1773/// In JSON format, the Duration type is encoded as a string rather than an
1774/// object, where the string ends in the suffix "s" (indicating seconds) and
1775/// is preceded by the number of seconds, with nanoseconds expressed as
1776/// fractional seconds. For example, 3 seconds with 0 nanoseconds should be
1777/// encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
1778/// be expressed in JSON format as "3.000000001s", and 3 seconds and 1
1779/// microsecond should be expressed in JSON format as "3.000001s".
1780
1781#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
1782pub struct Duration {
1783 /// Signed seconds of the span of time. Must be from -315,576,000,000
1784 /// to +315,576,000,000 inclusive. Note: these bounds are computed from:
1785 /// 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
1786 #[prost(int64, tag = "1")]
1787 pub seconds: i64,
1788 /// Signed fractions of a second at nanosecond resolution of the span
1789 /// of time. Durations less than one second are represented with a 0
1790 /// `seconds` field and a positive or negative `nanos` field. For durations
1791 /// of one second or more, a non-zero value for the `nanos` field must be
1792 /// of the same sign as the `seconds` field. Must be from -999,999,999
1793 /// to +999,999,999 inclusive.
1794 #[prost(int32, tag = "2")]
1795 pub nanos: i32,
1796}
1797/// `FieldMask` represents a set of symbolic field paths, for example:
1798///
1799/// ```text
1800/// paths: "f.a"
1801/// paths: "f.b.d"
1802/// ```
1803///
1804/// Here `f` represents a field in some root message, `a` and `b`
1805/// fields in the message found in `f`, and `d` a field found in the
1806/// message in `f.b`.
1807///
1808/// Field masks are used to specify a subset of fields that should be
1809/// returned by a get operation or modified by an update operation.
1810/// Field masks also have a custom JSON encoding (see below).
1811///
1812/// # Field Masks in Projections
1813///
1814/// When used in the context of a projection, a response message or
1815/// sub-message is filtered by the API to only contain those fields as
1816/// specified in the mask. For example, if the mask in the previous
1817/// example is applied to a response message as follows:
1818///
1819/// ```text
1820/// f {
1821/// a : 22
1822/// b {
1823/// d : 1
1824/// x : 2
1825/// }
1826/// y : 13
1827/// }
1828/// z: 8
1829/// ```
1830///
1831/// The result will not contain specific values for fields x,y and z
1832/// (their value will be set to the default, and omitted in proto text
1833/// output):
1834///
1835/// ```text
1836/// f {
1837/// a : 22
1838/// b {
1839/// d : 1
1840/// }
1841/// }
1842/// ```
1843///
1844/// A repeated field is not allowed except at the last position of a
1845/// paths string.
1846///
1847/// If a FieldMask object is not present in a get operation, the
1848/// operation applies to all fields (as if a FieldMask of all fields
1849/// had been specified).
1850///
1851/// Note that a field mask does not necessarily apply to the
1852/// top-level response message. In case of a REST get operation, the
1853/// field mask applies directly to the response, but in case of a REST
1854/// list operation, the mask instead applies to each individual message
1855/// in the returned resource list. In case of a REST custom method,
1856/// other definitions may be used. Where the mask applies will be
1857/// clearly documented together with its declaration in the API. In
1858/// any case, the effect on the returned resource/resources is required
1859/// behavior for APIs.
1860///
1861/// # Field Masks in Update Operations
1862///
1863/// A field mask in update operations specifies which fields of the
1864/// targeted resource are going to be updated. The API is required
1865/// to only change the values of the fields as specified in the mask
1866/// and leave the others untouched. If a resource is passed in to
1867/// describe the updated values, the API ignores the values of all
1868/// fields not covered by the mask.
1869///
1870/// If a repeated field is specified for an update operation, new values will
1871/// be appended to the existing repeated field in the target resource. Note that
1872/// a repeated field is only allowed in the last position of a `paths` string.
1873///
1874/// If a sub-message is specified in the last position of the field mask for an
1875/// update operation, then new value will be merged into the existing sub-message
1876/// in the target resource.
1877///
1878/// For example, given the target message:
1879///
1880/// ```text
1881/// f {
1882/// b {
1883/// d: 1
1884/// x: 2
1885/// }
1886/// c: \[1\]
1887/// }
1888/// ```
1889///
1890/// And an update message:
1891///
1892/// ```text
1893/// f {
1894/// b {
1895/// d: 10
1896/// }
1897/// c: \[2\]
1898/// }
1899/// ```
1900///
1901/// then if the field mask is:
1902///
1903/// paths: \["f.b", "f.c"\]
1904///
1905/// then the result will be:
1906///
1907/// ```text
1908/// f {
1909/// b {
1910/// d: 10
1911/// x: 2
1912/// }
1913/// c: \[1, 2\]
1914/// }
1915/// ```
1916///
1917/// An implementation may provide options to override this default behavior for
1918/// repeated and message fields.
1919///
1920/// In order to reset a field's value to the default, the field must
1921/// be in the mask and set to the default value in the provided resource.
1922/// Hence, in order to reset all fields of a resource, provide a default
1923/// instance of the resource and set all fields in the mask, or do
1924/// not provide a mask as described below.
1925///
1926/// If a field mask is not present on update, the operation applies to
1927/// all fields (as if a field mask of all fields has been specified).
1928/// Note that in the presence of schema evolution, this may mean that
1929/// fields the client does not know and has therefore not filled into
1930/// the request will be reset to their default. If this is unwanted
1931/// behavior, a specific service may require a client to always specify
1932/// a field mask, producing an error if not.
1933///
1934/// As with get operations, the location of the resource which
1935/// describes the updated values in the request message depends on the
1936/// operation kind. In any case, the effect of the field mask is
1937/// required to be honored by the API.
1938///
1939/// ## Considerations for HTTP REST
1940///
1941/// The HTTP kind of an update operation which uses a field mask must
1942/// be set to PATCH instead of PUT in order to satisfy HTTP semantics
1943/// (PUT must only be used for full updates).
1944///
1945/// # JSON Encoding of Field Masks
1946///
1947/// In JSON, a field mask is encoded as a single string where paths are
1948/// separated by a comma. Fields name in each path are converted
1949/// to/from lower-camel naming conventions.
1950///
1951/// As an example, consider the following message declarations:
1952///
1953/// ```text
1954/// message Profile {
1955/// User user = 1;
1956/// Photo photo = 2;
1957/// }
1958/// message User {
1959/// string display_name = 1;
1960/// string address = 2;
1961/// }
1962/// ```
1963///
1964/// In proto a field mask for `Profile` may look as such:
1965///
1966/// ```text
1967/// mask {
1968/// paths: "user.display_name"
1969/// paths: "photo"
1970/// }
1971/// ```
1972///
1973/// In JSON, the same mask is represented as below:
1974///
1975/// ```text
1976/// {
1977/// mask: "user.displayName,photo"
1978/// }
1979/// ```
1980///
1981/// # Field Masks and Oneof Fields
1982///
1983/// Field masks treat fields in oneofs just as regular fields. Consider the
1984/// following message:
1985///
1986/// ```text
1987/// message SampleMessage {
1988/// oneof test_oneof {
1989/// string name = 4;
1990/// SubMessage sub_message = 9;
1991/// }
1992/// }
1993/// ```
1994///
1995/// The field mask can be:
1996///
1997/// ```text
1998/// mask {
1999/// paths: "name"
2000/// }
2001/// ```
2002///
2003/// Or:
2004///
2005/// ```text
2006/// mask {
2007/// paths: "sub_message"
2008/// }
2009/// ```
2010///
2011/// Note that oneof type names ("test_oneof" in this case) cannot be used in
2012/// paths.
2013///
2014/// ## Field Mask Verification
2015///
2016/// The implementation of any API method which has a FieldMask type field in the
2017/// request should verify the included field paths, and return an
2018/// `INVALID_ARGUMENT` error if any path is unmappable.
2019
2020#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
2021pub struct FieldMask {
2022 /// The set of field mask paths.
2023 #[prost(string, repeated, tag = "1")]
2024 pub paths: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
2025}
2026/// `Struct` represents a structured data value, consisting of fields
2027/// which map to dynamically typed values. In some languages, `Struct`
2028/// might be supported by a native representation. For example, in
2029/// scripting languages like JS a struct is represented as an
2030/// object. The details of that representation are described together
2031/// with the proto support for the language.
2032///
2033/// The JSON representation for `Struct` is JSON object.
2034
2035#[derive(Clone, PartialEq, ::prost::Message)]
2036#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2037pub struct Struct {
2038 /// Unordered map of dynamically typed values.
2039 #[prost(btree_map = "string, message", tag = "1")]
2040 pub fields: ::prost::alloc::collections::BTreeMap<::prost::alloc::string::String, Value>,
2041}
2042/// `Value` represents a dynamically typed value which can be either
2043/// null, a number, a string, a boolean, a recursive struct value, or a
2044/// list of values. A producer of value is expected to set one of these
2045/// variants. Absence of any variant indicates an error.
2046///
2047/// The JSON representation for `Value` is JSON value.
2048
2049#[derive(Clone, PartialEq, ::prost::Message)]
2050pub struct Value {
2051 /// The kind of value.
2052 #[prost(oneof = "value::Kind", tags = "1, 2, 3, 4, 5, 6")]
2053 pub kind: ::core::option::Option<value::Kind>,
2054}
2055/// Nested message and enum types in `Value`.
2056pub mod value {
2057 /// The kind of value.
2058
2059 #[derive(Clone, PartialEq, ::prost::Oneof)]
2060 pub enum Kind {
2061 /// Represents a null value.
2062 #[prost(enumeration = "super::NullValue", tag = "1")]
2063 NullValue(i32),
2064 /// Represents a double value.
2065 #[prost(double, tag = "2")]
2066 NumberValue(f64),
2067 /// Represents a string value.
2068 #[prost(string, tag = "3")]
2069 StringValue(::prost::alloc::string::String),
2070 /// Represents a boolean value.
2071 #[prost(bool, tag = "4")]
2072 BoolValue(bool),
2073 /// Represents a structured value.
2074 #[prost(message, tag = "5")]
2075 StructValue(super::Struct),
2076 /// Represents a repeated `Value`.
2077 #[prost(message, tag = "6")]
2078 ListValue(super::ListValue),
2079 }
2080}
2081/// `ListValue` is a wrapper around a repeated field of values.
2082///
2083/// The JSON representation for `ListValue` is JSON array.
2084
2085#[derive(Clone, PartialEq, ::prost::Message)]
2086pub struct ListValue {
2087 /// Repeated field of dynamically typed values.
2088 #[prost(message, repeated, tag = "1")]
2089 pub values: ::prost::alloc::vec::Vec<Value>,
2090}
2091/// `NullValue` is a singleton enumeration to represent the null value for the
2092/// `Value` type union.
2093///
2094/// The JSON representation for `NullValue` is JSON `null`.
2095
2096#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
2097#[repr(i32)]
2098pub enum NullValue {
2099 /// Null value.
2100 NullValue = 0,
2101}
2102impl NullValue {
2103 /// String value of the enum field names used in the ProtoBuf definition.
2104 ///
2105 /// The values are not transformed in any way and thus are considered stable
2106 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
2107 pub fn as_str_name(&self) -> &'static str {
2108 match self {
2109 Self::NullValue => "NULL_VALUE",
2110 }
2111 }
2112 /// Creates an enum from field names used in the ProtoBuf definition.
2113 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
2114 match value {
2115 "NULL_VALUE" => Some(Self::NullValue),
2116 _ => None,
2117 }
2118 }
2119}
2120/// A Timestamp represents a point in time independent of any time zone or local
2121/// calendar, encoded as a count of seconds and fractions of seconds at
2122/// nanosecond resolution. The count is relative to an epoch at UTC midnight on
2123/// January 1, 1970, in the proleptic Gregorian calendar which extends the
2124/// Gregorian calendar backwards to year one.
2125///
2126/// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
2127/// second table is needed for interpretation, using a [24-hour linear
2128/// smear](<https://developers.google.com/time/smear>).
2129///
2130/// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
2131/// restricting to that range, we ensure that we can convert to and from [RFC
2132/// 3339](<https://www.ietf.org/rfc/rfc3339.txt>) date strings.
2133///
2134/// # Examples
2135///
2136/// Example 1: Compute Timestamp from POSIX `time()`.
2137///
2138/// ```text
2139/// Timestamp timestamp;
2140/// timestamp.set_seconds(time(NULL));
2141/// timestamp.set_nanos(0);
2142/// ```
2143///
2144/// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
2145///
2146/// ```text
2147/// struct timeval tv;
2148/// gettimeofday(&tv, NULL);
2149///
2150/// Timestamp timestamp;
2151/// timestamp.set_seconds(tv.tv_sec);
2152/// timestamp.set_nanos(tv.tv_usec * 1000);
2153/// ```
2154///
2155/// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
2156///
2157/// ```text
2158/// FILETIME ft;
2159/// GetSystemTimeAsFileTime(&ft);
2160/// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
2161///
2162/// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
2163/// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
2164/// Timestamp timestamp;
2165/// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
2166/// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
2167/// ```
2168///
2169/// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
2170///
2171/// ```text
2172/// long millis = System.currentTimeMillis();
2173///
2174/// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
2175/// .setNanos((int) ((millis % 1000) * 1000000)).build();
2176/// ```
2177///
2178/// Example 5: Compute Timestamp from Java `Instant.now()`.
2179///
2180/// ```text
2181/// Instant now = Instant.now();
2182///
2183/// Timestamp timestamp =
2184/// Timestamp.newBuilder().setSeconds(now.getEpochSecond())
2185/// .setNanos(now.getNano()).build();
2186/// ```
2187///
2188/// Example 6: Compute Timestamp from current time in Python.
2189///
2190/// ```text
2191/// timestamp = Timestamp()
2192/// timestamp.GetCurrentTime()
2193/// ```
2194///
2195/// # JSON Mapping
2196///
2197/// In JSON format, the Timestamp type is encoded as a string in the
2198/// [RFC 3339](<https://www.ietf.org/rfc/rfc3339.txt>) format. That is, the
2199/// format is "{year}-{month}-{day}T{hour}:{min}:{sec}\[.{frac_sec}\]Z"
2200/// where {year} is always expressed using four digits while {month}, {day},
2201/// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
2202/// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
2203/// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
2204/// is required. A proto3 JSON serializer should always use UTC (as indicated by
2205/// "Z") when printing the Timestamp type and a proto3 JSON parser should be
2206/// able to accept both UTC and other timezones (as indicated by an offset).
2207///
2208/// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
2209/// 01:30 UTC on January 15, 2017.
2210///
2211/// In JavaScript, one can convert a Date object to this format using the
2212/// standard
2213/// [toISOString()](<https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString>)
2214/// method. In Python, a standard `datetime.datetime` object can be converted
2215/// to this format using
2216/// [`strftime`](<https://docs.python.org/2/library/time.html#time.strftime>) with
2217/// the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
2218/// the Joda Time's [`ISODateTimeFormat.dateTime()`](<http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D>) to obtain a formatter capable of generating timestamps in this format.
2219
2220#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2221pub struct Timestamp {
2222 /// Represents seconds of UTC time since Unix epoch
2223 /// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
2224 /// 9999-12-31T23:59:59Z inclusive.
2225 #[prost(int64, tag = "1")]
2226 pub seconds: i64,
2227 /// Non-negative fractions of a second at nanosecond resolution. Negative
2228 /// second values with fractions must still have non-negative nanos values
2229 /// that count forward in time. Must be from 0 to 999,999,999
2230 /// inclusive.
2231 #[prost(int32, tag = "2")]
2232 pub nanos: i32,
2233}
2234
2235/// A generic empty message that you can re-use to avoid defining duplicated
2236/// empty messages in your APIs. A typical example is to use it as the request
2237/// or the response type of an API method. For instance:
2238///
2239/// service Foo {
2240/// rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
2241/// }
2242///
2243#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2244pub struct Empty {}
2245
2246/// Wrapper message for `double`.
2247///
2248/// The JSON representation for `DoubleValue` is JSON number.
2249///
2250/// Not recommended for use in new APIs, but still useful for legacy APIs and
2251/// has no plan to be removed.
2252#[derive(Clone, Copy, PartialEq, ::prost::Message)]
2253#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2254pub struct DoubleValue {
2255 /// The double value.
2256 #[prost(double, tag = "1")]
2257 pub value: f64,
2258}
2259/// Wrapper message for `float`.
2260///
2261/// The JSON representation for `FloatValue` is JSON number.
2262///
2263/// Not recommended for use in new APIs, but still useful for legacy APIs and
2264/// has no plan to be removed.
2265#[derive(Clone, Copy, PartialEq, ::prost::Message)]
2266#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2267pub struct FloatValue {
2268 /// The float value.
2269 #[prost(float, tag = "1")]
2270 pub value: f32,
2271}
2272/// Wrapper message for `int64`.
2273///
2274/// The JSON representation for `Int64Value` is JSON string.
2275///
2276/// Not recommended for use in new APIs, but still useful for legacy APIs and
2277/// has no plan to be removed.
2278#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2279#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2280pub struct Int64Value {
2281 /// The int64 value.
2282 #[prost(int64, tag = "1")]
2283 pub value: i64,
2284}
2285/// Wrapper message for `uint64`.
2286///
2287/// The JSON representation for `UInt64Value` is JSON string.
2288///
2289/// Not recommended for use in new APIs, but still useful for legacy APIs and
2290/// has no plan to be removed.
2291#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2292#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2293pub struct UInt64Value {
2294 /// The uint64 value.
2295 #[prost(uint64, tag = "1")]
2296 pub value: u64,
2297}
2298/// Wrapper message for `int32`.
2299///
2300/// The JSON representation for `Int32Value` is JSON number.
2301///
2302/// Not recommended for use in new APIs, but still useful for legacy APIs and
2303/// has no plan to be removed.
2304#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2305#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2306pub struct Int32Value {
2307 /// The int32 value.
2308 #[prost(int32, tag = "1")]
2309 pub value: i32,
2310}
2311/// Wrapper message for `uint32`.
2312///
2313/// The JSON representation for `UInt32Value` is JSON number.
2314///
2315/// Not recommended for use in new APIs, but still useful for legacy APIs and
2316/// has no plan to be removed.
2317#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2318#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2319pub struct UInt32Value {
2320 /// The uint32 value.
2321 #[prost(uint32, tag = "1")]
2322 pub value: u32,
2323}
2324/// Wrapper message for `bool`.
2325///
2326/// The JSON representation for `BoolValue` is JSON `true` and `false`.
2327///
2328/// Not recommended for use in new APIs, but still useful for legacy APIs and
2329/// has no plan to be removed.
2330#[derive(Clone, Copy, PartialEq, Eq, Hash, ::prost::Message)]
2331#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2332pub struct BoolValue {
2333 /// The bool value.
2334 #[prost(bool, tag = "1")]
2335 pub value: bool,
2336}
2337/// Wrapper message for `string`.
2338///
2339/// The JSON representation for `StringValue` is JSON string.
2340///
2341/// Not recommended for use in new APIs, but still useful for legacy APIs and
2342/// has no plan to be removed.
2343#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
2344#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
2345pub struct StringValue {
2346 /// The string value.
2347 #[prost(string, tag = "1")]
2348 pub value: ::prost::alloc::string::String,
2349}
2350/// Wrapper message for `bytes`.
2351///
2352/// The JSON representation for `BytesValue` is JSON string.
2353///
2354/// Not recommended for use in new APIs, but still useful for legacy APIs and
2355/// has no plan to be removed.
2356#[derive(Clone, PartialEq, Eq, Hash, ::prost::Message)]
2357pub struct BytesValue {
2358 /// The bytes value.
2359 #[prost(bytes = "bytes", tag = "1")]
2360 pub value: ::prost::bytes::Bytes,
2361}