proof_of_sql/base/math/
i256.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use crate::base::scalar::Scalar;
use ark_ff::BigInteger;
use serde::{Deserialize, Serialize};

/// A 256-bit data type with some conversions implemented that interpret it as a signed integer.
///
/// This should only implement conversions. If anything else is needed, we should strongly consider an alternative design.
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq, Clone, Copy)]
pub struct I256([u64; 4]);
impl I256 {
    /// Computes the wrapping negative of the value. This could perhaps be more efficient.
    fn neg(self) -> Self {
        let mut res = ark_ff::BigInt([0; 4]);
        res.sub_with_borrow(&ark_ff::BigInt(self.0));
        Self(res.0)
    }
    #[must_use]
    /// Conversion into a [Scalar] type. The conversion handles negative values. In other words, `-1` maps to `-S::ONE`.
    ///
    /// NOTE: the behavior of this is undefined if the absolute value is larger than the modulus.
    ///
    /// NOTE: this is not a particularly efficient method. Please either refactor or avoid when performance matters.
    pub fn into_scalar<S: Scalar>(self) -> S {
        if self.0[3] & 0x8000_0000_0000_0000 == 0 {
            self.0.into()
        } else {
            (Into::<S>::into(self.neg().0)).neg()
        }
    }

    #[must_use]
    /// Conversion from a [`num_bigint::BigInt`].
    /// The conversion handles negative values and also wraps when the value is too large for an `I256`.
    ///
    /// NOTE: this is not a particularly efficient method. Please either refactor or avoid when performance matters.
    pub fn from_num_bigint(value: &num_bigint::BigInt) -> Self {
        let (sign, limbs_vec) = value.to_u64_digits();
        let num_limbs = limbs_vec.len().min(4);
        let mut limbs = [0u64; 4];
        limbs[..num_limbs].copy_from_slice(&limbs_vec[..num_limbs]);
        limbs[3] &= 0x7FFF_FFFF_FFFF_FFFF;
        match sign {
            num_bigint::Sign::Minus => Self(limbs).neg(),
            num_bigint::Sign::Plus | num_bigint::Sign::NoSign => Self(limbs),
        }
    }
}
impl From<i32> for I256 {
    fn from(value: i32) -> Self {
        let abs = Self([value.unsigned_abs().into(), 0, 0, 0]);
        if value >= 0 {
            abs
        } else {
            abs.neg()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::I256;
    use crate::base::scalar::{test_scalar::TestScalar, MontScalar, Scalar};
    use ark_ff::MontFp;
    use num_bigint::BigInt;
    use rand::{thread_rng, Rng};

    const ZERO: I256 = I256([0, 0, 0, 0]);
    const ONE: I256 = I256([1, 0, 0, 0]);
    const TWO: I256 = I256([2, 0, 0, 0]);
    const NEG_ONE: I256 = I256([
        0xFFFF_FFFF_FFFF_FFFF,
        0xFFFF_FFFF_FFFF_FFFF,
        0xFFFF_FFFF_FFFF_FFFF,
        0xFFFF_FFFF_FFFF_FFFF,
    ]);
    const NEG_TWO: I256 = I256([
        0xFFFF_FFFF_FFFF_FFFE,
        0xFFFF_FFFF_FFFF_FFFF,
        0xFFFF_FFFF_FFFF_FFFF,
        0xFFFF_FFFF_FFFF_FFFF,
    ]);
    const A_STR: &str =
        "57896044618658097705508390768957273162799202909612615603626436559492530307074";
    const A: I256 = I256([2, 0, 0, 0x7FFF_FFFF_FFFF_FFFF]);
    const NEG_A: I256 = I256([
        0xFFFF_FFFF_FFFF_FFFE,
        0xFFFF_FFFF_FFFF_FFFF,
        0xFFFF_FFFF_FFFF_FFFF,
        0x8000_0000_0000_0000,
    ]);
    const B_STR: &str =
        "44514458406356786875149426309623179975904669798901350226660343085647800511238";
    const B: I256 = I256([
        0x12DE_4D02_71BF_2B06,
        0x2686_80A2_B415_EE31,
        0xBCF3_35CF_A69C_DBE3,
        0x626A_4A65_275E_1D88,
    ]);
    const NEG_B: I256 = I256([
        0xED21_B2FD_8E40_D4FA,
        0xD979_7F5D_4BEA_11CE,
        0x430C_CA30_5963_241C,
        0x9D95_B59A_D8A1_E277,
    ]);
    const C_STR: &str =
        "452312848583266388373324160190187140051835877600158453279131187530910662656";
    const C_SCALAR: TestScalar = MontScalar(MontFp!(
        "452312848583266388373324160190187140051835877600158453279131187530910662656"
    ));
    const C: I256 = I256([
        0x0000_0000_0000_0000,
        0x0000_0000_0000_0000,
        0x0000_0000_0000_0000,
        0x0100_0000_0000_0000,
    ]);
    const NEG_C: I256 = I256([
        0x0000_0000_0000_0000,
        0x0000_0000_0000_0000,
        0x0000_0000_0000_0000,
        0xFF00_0000_0000_0000,
    ]);
    const MODULUS_MINUS_ONE: I256 = I256([
        0x5812_631A_5CF5_D3EC,
        0x14DE_F9DE_A2F7_9CD6,
        0x0000_0000_0000_0000,
        0x1000_0000_0000_0000,
    ]);
    const NEG_MODULUS_PLUS_ONE: I256 = I256([
        0xa7ed_9ce5_a30a_2c14,
        0xEB21_0621_5D08_6329,
        0xFFFF_FFFF_FFFF_FFFF,
        0xEFFF_FFFF_FFFF_FFFF,
    ]);
    const MODULUS_MINUS_TWO: I256 = I256([
        0x5812_631A_5CF5_D3EB,
        0x14DE_F9DE_A2F7_9CD6,
        0x0000_0000_0000_0000,
        0x1000_0000_0000_0000,
    ]);
    const NEG_MODULUS_PLUS_TWO: I256 = I256([
        0xa7ed_9ce5_a30a_2c15,
        0xEB21_0621_5D08_6329,
        0xFFFF_FFFF_FFFF_FFFF,
        0xEFFF_FFFF_FFFF_FFFF,
    ]);

    #[test]
    fn we_can_compute_the_negative_of_i256() {
        assert_eq!(ZERO.neg(), ZERO);
        assert_eq!(ONE.neg(), NEG_ONE);
        assert_eq!(NEG_ONE.neg(), ONE);
        assert_eq!(TWO.neg(), NEG_TWO);
        assert_eq!(NEG_TWO.neg(), TWO);
        assert_eq!(A.neg(), NEG_A);
        assert_eq!(NEG_A.neg(), A);
        assert_eq!(B.neg(), NEG_B);
        assert_eq!(NEG_B.neg(), B);
        assert_eq!(C.neg(), NEG_C);
        assert_eq!(NEG_C.neg(), C);
        assert_eq!(MODULUS_MINUS_ONE.neg(), NEG_MODULUS_PLUS_ONE);
        assert_eq!(NEG_MODULUS_PLUS_ONE.neg(), MODULUS_MINUS_ONE);
        assert_eq!(MODULUS_MINUS_TWO.neg(), NEG_MODULUS_PLUS_TWO);
        assert_eq!(NEG_MODULUS_PLUS_TWO.neg(), MODULUS_MINUS_TWO);

        let mut rng = thread_rng();
        for _ in 0..10 {
            let x = I256([rng.gen(), rng.gen(), rng.gen(), rng.gen()]);
            assert_eq!(x.neg().neg(), x);
        }
    }
    #[test]
    fn we_can_convert_i256_into_scalar() {
        assert_eq!(ZERO.into_scalar::<TestScalar>(), TestScalar::ZERO);
        assert_eq!(ONE.into_scalar::<TestScalar>(), TestScalar::ONE);
        assert_eq!(NEG_ONE.into_scalar::<TestScalar>(), -TestScalar::ONE);
        assert_eq!(TWO.into_scalar::<TestScalar>(), TestScalar::TWO);
        assert_eq!(NEG_TWO.into_scalar::<TestScalar>(), -TestScalar::TWO);
        assert_eq!(C.into_scalar::<TestScalar>(), C_SCALAR);
        assert_eq!(NEG_C.into_scalar::<TestScalar>(), -C_SCALAR);
        assert_eq!(
            MODULUS_MINUS_ONE.into_scalar::<TestScalar>(),
            -TestScalar::ONE
        );
        assert_eq!(
            NEG_MODULUS_PLUS_ONE.into_scalar::<TestScalar>(),
            TestScalar::ONE
        );
        assert_eq!(
            MODULUS_MINUS_TWO.into_scalar::<TestScalar>(),
            -TestScalar::TWO
        );
        assert_eq!(
            NEG_MODULUS_PLUS_TWO.into_scalar::<TestScalar>(),
            TestScalar::TWO
        );

        let mut rng = thread_rng();
        for _ in 0..10 {
            let x = I256([rng.gen(), rng.gen(), rng.gen(), rng.gen()]);
            assert_eq!(
                x.neg().into_scalar::<TestScalar>(),
                -(x.into_scalar::<TestScalar>())
            );
        }
    }
    #[test]
    fn we_can_convert_i256_from_num_bigint() {
        assert_eq!(I256::from_num_bigint(&"0".parse().unwrap()), ZERO);
        assert_eq!(I256::from_num_bigint(&"1".parse().unwrap()), ONE);
        assert_eq!(I256::from_num_bigint(&"-1".parse().unwrap()), NEG_ONE);
        assert_eq!(I256::from_num_bigint(&"2".parse().unwrap()), TWO);
        assert_eq!(I256::from_num_bigint(&"-2".parse().unwrap()), NEG_TWO);
        assert_eq!(I256::from_num_bigint(&A_STR.parse().unwrap()), A);
        assert_eq!(
            I256::from_num_bigint(&-A_STR.parse::<BigInt>().unwrap()),
            NEG_A
        );
        assert_eq!(I256::from_num_bigint(&B_STR.parse().unwrap()), B);
        assert_eq!(
            I256::from_num_bigint(&-B_STR.parse::<BigInt>().unwrap()),
            NEG_B
        );
        assert_eq!(I256::from_num_bigint(&C_STR.parse().unwrap()), C);
        assert_eq!(
            I256::from_num_bigint(&-C_STR.parse::<BigInt>().unwrap()),
            NEG_C
        );

        let mut rng = thread_rng();
        for _ in 0..10 {
            let x =
                (BigInt::from(rng.gen::<i128>().abs()) << 128) + BigInt::from(rng.gen::<u128>());
            let y = &x + (BigInt::from(rng.gen::<u128>()) << 255);
            assert_eq!(I256::from_num_bigint(&y), I256::from_num_bigint(&x));
            assert_eq!(I256::from_num_bigint(&-&y), I256::from_num_bigint(&-x));
            assert_eq!(I256::from_num_bigint(&y), I256::from_num_bigint(&-y).neg());
        }
    }
    #[test]
    fn we_can_convert_i256_from_i32() {
        assert_eq!(I256::from(0), ZERO);
        assert_eq!(I256::from(1), ONE);
        assert_eq!(I256::from(-1), NEG_ONE);
        assert_eq!(I256::from(2), TWO);
        assert_eq!(I256::from(-2), NEG_TWO);
    }
    #[test]
    fn we_can_convert_i256_between_type_compatibly() {
        let mut rng = thread_rng();
        for _ in 0..10 {
            let int32: i32 = rng.gen();
            let neg_int32 = -int32;
            let scalar = TestScalar::from(int32);
            let neg_scalar = -scalar;
            let bigint = BigInt::from(int32);
            let neg_bigint = -&bigint;
            let int256_from_i32 = I256::from(int32);
            let neg_int256_from_i32 = I256::from(neg_int32);
            let int256_from_bigint = I256::from_num_bigint(&bigint);
            let neg_int256_from_bigint = I256::from_num_bigint(&neg_bigint);
            assert_eq!(int256_from_i32, int256_from_bigint);
            assert_eq!(neg_int256_from_i32, neg_int256_from_bigint);
            assert_eq!(neg_int256_from_i32, int256_from_i32.neg());
            assert_eq!(int256_from_i32.into_scalar::<TestScalar>(), scalar);
            assert_eq!(neg_int256_from_i32.into_scalar::<TestScalar>(), neg_scalar);
        }
    }
}