1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
use super::{G1Affine, G2Affine, PublicParameters, GT};
use crate::base::impl_serde_for_ark_serde_unchecked;
use ark_ec::pairing::{Pairing, PairingOutput};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use itertools::MultiUnzip;
use num_traits::One;
/// The transparent setup information that the prover must know to create a proof.
/// This is public knowledge and must match with the verifier's setup information.
/// See Section 3.3 of https://eprint.iacr.org/2020/1274.pdf for details.
///
///
/// Note:
/// We use nu = m and k = m-i or m-j.
/// This indexing is more convenient for coding because lengths of the arrays used are typically 2^k rather than 2^i or 2^j.
pub struct ProverSetup<'a> {
/// `Gamma_1[k]` = Γ_1,(m-k) in the Dory paper.
pub(super) Gamma_1: Vec<&'a [G1Affine]>,
/// `Gamma_2[k]` = Γ_2,(m-k) in the Dory paper.
pub(super) Gamma_2: Vec<&'a [G2Affine]>,
/// `H_1` = H_1 in the Dory paper. This could be used for blinding, but is currently only used in the Fold-Scalars algorithm.
pub(super) H_1: G1Affine,
/// `H_2` = H_2 in the Dory paper. This could be used for blinding, but is currently only used in the Fold-Scalars algorithm.
pub(super) H_2: G2Affine,
/// `Gamma_2_fin` = Gamma_2,fin in the Dory paper.
pub(super) Gamma_2_fin: G2Affine,
/// `max_nu` is the maximum nu that this setup will work for
pub(super) max_nu: usize,
/// The handle to the `blitzar` Gamma_1 instances.
#[cfg(feature = "blitzar")]
blitzar_handle:
blitzar::compute::MsmHandle<blitzar::compute::ElementP2<ark_bls12_381::g1::Config>>,
}
impl<'a> ProverSetup<'a> {
/// Create a new `ProverSetup` from the public parameters.
pub(super) fn new(
Gamma_1: &'a [G1Affine],
Gamma_2: &'a [G2Affine],
H_1: G1Affine,
H_2: G2Affine,
Gamma_2_fin: G2Affine,
max_nu: usize,
) -> Self {
assert_eq!(Gamma_1.len(), 1 << max_nu);
assert_eq!(Gamma_2.len(), 1 << max_nu);
#[cfg(feature = "blitzar")]
let blitzar_handle = blitzar::compute::MsmHandle::new(&Vec::from_iter(
Gamma_1.iter().copied().map(Into::into),
));
let (Gamma_1, Gamma_2): (Vec<_>, Vec<_>) = (0..max_nu + 1)
.map(|k| (&Gamma_1[..1 << k], &Gamma_2[..1 << k]))
.unzip();
ProverSetup {
Gamma_1,
Gamma_2,
H_1,
H_2,
Gamma_2_fin,
max_nu,
#[cfg(feature = "blitzar")]
blitzar_handle,
}
}
#[cfg(feature = "blitzar")]
#[tracing::instrument(name = "ProverSetup::blitzar_msm", level = "debug", skip_all)]
pub(super) fn blitzar_msm(
&self,
res: &mut [blitzar::compute::ElementP2<ark_bls12_381::g1::Config>],
element_num_bytes: u32,
scalars: &[u8],
) {
self.blitzar_handle.msm(res, element_num_bytes, scalars)
}
}
impl<'a> From<&'a PublicParameters> for ProverSetup<'a> {
fn from(value: &'a PublicParameters) -> Self {
Self::new(
&value.Gamma_1,
&value.Gamma_2,
value.H_1,
value.H_2,
value.Gamma_2_fin,
value.max_nu,
)
}
}
/// The transparent setup information that the verifier must know to verify a proof.
/// This is public knowledge and must match with the prover's setup information.
/// See Section 3.3 of https://eprint.iacr.org/2020/1274.pdf for details.
///
///
/// Note:
/// We use nu = m and k = m-i or m-j.
/// This indexing is more convenient for coding because lengths of the arrays used are typically 2^k rather than 2^i or 2^j.
#[derive(CanonicalSerialize, CanonicalDeserialize, PartialEq, Eq, Debug, Clone)]
pub struct VerifierSetup {
/// `Delta_1L[k]` = Δ_1L,(m-k) in the Dory paper, so `Delta_1L[0]` is unused. Note, this is the same as `Delta_2L`.
pub(super) Delta_1L: Vec<GT>,
/// `Delta_1R[k]` = Δ_1R,(m-k) in the Dory paper, so `Delta_1R[0]` is unused.
pub(super) Delta_1R: Vec<GT>,
/// `Delta_2L[k]` = Δ_2L,(m-k) in the Dory paper, so `Delta_2L[0]` is unused. Note, this is the same as `Delta_1L`.
pub(super) Delta_2L: Vec<GT>,
/// `Delta_2R[k]` = Δ_2R,(m-k) in the Dory paper, so `Delta_2R[0]` is unused.
pub(super) Delta_2R: Vec<GT>,
/// `chi[k]` = χ,(m-k) in the Dory paper.
pub(super) chi: Vec<GT>,
/// `Gamma_1_0` is the Γ_1 used in Scalar-Product algorithm in the Dory paper.
pub(super) Gamma_1_0: G1Affine,
/// `Gamma_2_0` is the Γ_2 used in Scalar-Product algorithm in the Dory paper.
pub(super) Gamma_2_0: G2Affine,
/// `H_1` = H_1 in the Dory paper. This could be used for blinding, but is currently only used in the Fold-Scalars algorithm.
pub(super) H_1: G1Affine,
/// `H_2` = H_2 in the Dory paper. This could be used for blinding, but is currently only used in the Fold-Scalars algorithm.
pub(super) H_2: G2Affine,
/// `H_T` = H_T in the Dory paper.
pub(super) H_T: GT,
/// `Gamma_2_fin` = Gamma_2,fin in the Dory paper.
pub(super) Gamma_2_fin: G2Affine,
/// `max_nu` is the maximum nu that this setup will work for
pub(super) max_nu: usize,
}
impl_serde_for_ark_serde_unchecked!(VerifierSetup);
impl VerifierSetup {
/// Create a new `VerifierSetup` from the public parameters.
pub(super) fn new(
Gamma_1_nu: &[G1Affine],
Gamma_2_nu: &[G2Affine],
H_1: G1Affine,
H_2: G2Affine,
Gamma_2_fin: G2Affine,
max_nu: usize,
) -> Self {
assert_eq!(Gamma_1_nu.len(), 1 << max_nu);
assert_eq!(Gamma_2_nu.len(), 1 << max_nu);
let (Delta_1L_2L, Delta_1R, Delta_2R, chi): (Vec<_>, Vec<_>, Vec<_>, Vec<_>) = (0..max_nu
+ 1)
.map(|k| {
if k == 0 {
(
PairingOutput(One::one()),
PairingOutput(One::one()),
PairingOutput(One::one()),
Pairing::pairing(Gamma_1_nu[0], Gamma_2_nu[0]),
)
} else {
(
Pairing::multi_pairing(
&Gamma_1_nu[..1 << (k - 1)],
&Gamma_2_nu[..1 << (k - 1)],
),
Pairing::multi_pairing(
&Gamma_1_nu[1 << (k - 1)..1 << k],
&Gamma_2_nu[..1 << (k - 1)],
),
Pairing::multi_pairing(
&Gamma_1_nu[..1 << (k - 1)],
&Gamma_2_nu[1 << (k - 1)..1 << k],
),
Pairing::multi_pairing(&Gamma_1_nu[..1 << k], &Gamma_2_nu[..1 << k]),
)
}
})
.multiunzip();
Self {
Delta_1L: Delta_1L_2L.clone(),
Delta_1R,
Delta_2L: Delta_1L_2L,
Delta_2R,
chi,
Gamma_1_0: Gamma_1_nu[0],
Gamma_2_0: Gamma_2_nu[0],
H_1,
H_2,
H_T: Pairing::pairing(H_1, H_2),
Gamma_2_fin,
max_nu,
}
}
}
impl From<&PublicParameters> for VerifierSetup {
fn from(value: &PublicParameters) -> Self {
Self::new(
&value.Gamma_1,
&value.Gamma_2,
value.H_1,
value.H_2,
value.Gamma_2_fin,
value.max_nu,
)
}
}