1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
//! Simple utility for scheduling efficient regular progress updates synchronously on long running, singlethreaded tasks.
//!
//! Adjusts the interval at which updates are provided automatically based on the length of time taken since the last printout.
//!
//! As opposed to a naive implementation that checks the system clock at regular, predetermined intervals, this only checks
//! the system clock exactly once per progress readout. It then observes the time elapsed since the last readout, and uses
//! that to estimate how many more ticks to wait until it should observe the clock again for the next one. As a result, this
//! implementation is extremely efficient, while still being able to give regular updates at a desired time interval.
//!
//! If the execution time of individual steps is too chaotic, then the progress updates may become unpredictable and irregular.
//! However, the observer's operation is largely resilient to even a moderate amount of irregularity in execution time.
//!
//! ```
//! use std::time::Duration;
//! use progress_observer::prelude::*;
//! use rand::prelude::*;
//!
//! // compute pi by generating random points within a square, and checking if they fall within a circle
//!
//! fn pi(total: u64, in_circle: u64) -> f64 {
//!     in_circle as f64 / total as f64 * 4.0
//! }
//!
//! let mut rng = thread_rng();
//! let mut in_circle: u64 = 0;
//! let mut observer = Observer::new(Duration::from_secs_f64(0.5));
//! let n: u64 = 10_000_000;
//! for i in 1..n {
//!     let (x, y): (f64, f64) = rng.gen();
//!     if x * x + y * y <= 1.0 {
//!         in_circle += 1;
//!     }
//!     if observer.tick() {
//!         reprint!("pi = {}", pi(i, in_circle));
//!     }
//! }
//! println!("pi = {}", pi(n, in_circle))
//! ```
//!
//! ```
//! use std::time::Duration;
//! use std::io::{stdout, Write};
//! use progress_observer::prelude::*;
//! use rand::prelude::*;
//!
//! // use the observer as an iterator
//!
//! fn pi(total: usize, in_circle: u64) -> f64 {
//!     in_circle as f64 / total as f64 * 4.0
//! }
//!
//! let mut rng = thread_rng();
//! let mut in_circle: u64 = 0;
//! let n = 10_000_000;
//! for (i, should_print) in
//!     Observer::new(Duration::from_secs_f64(0.5))
//!     .take(n)
//!     .enumerate()
//! {
//!     let (x, y): (f64, f64) = rng.gen();
//!     if x * x + y * y <= 1.0 {
//!         in_circle += 1;
//!     }
//!     if should_print {
//!         reprint!("pi = {}", pi(i, in_circle));
//!     }
//! }
//! println!("pi = {}", pi(n, in_circle))
//! ```
#![feature(div_duration)]
use std::time::{Duration, Instant};

pub mod prelude {
    pub use super::{reprint, Observer, Options};
}

/// Utility macro for re-printing over the same terminal line.
/// Useful when used in tandem with a progress observer.
///
/// ```
/// use progress_observer::prelude::*;
/// use std::time::Duration;
///
/// // benchmark how many integers you can add per second
///
/// let mut count: u128 = 0;
///
/// for should_print in Observer::new(Duration::from_secs(1)).take(100_000_000) {
///     count += 1;
///     if should_print {
///         reprint!("{count}");
///         count = 0;
///     }
/// }
/// ```
#[macro_export]
macro_rules! reprint {
    ($($tk:tt)*) => {
        {
            print!("\r{}", format!($($tk)*));
            ::std::io::Write::flush(&mut ::std::io::stdout()).unwrap();
        }
    };
}

/// Regular progress update observer.
pub struct Observer {
    frequency_target: Duration,

    checkpoint_size: u64,
    max_checkpoint_size: Option<u64>,
    delay: u64,
    max_scale_factor: f64,
    run_for: Option<Duration>,

    next_checkpoint: u64,
    last_observation: Instant,
    first_observation: Instant,
    ticks: u64,
    finished: bool,
}

/// Optional parameters for creating a new progress observer.
pub struct Options {
    /// Number of ticks before sending the first report.
    ///
    /// The default value of 1 is sometimes quite small, and in combination with the default max_scale_factor of 2,
    /// it can take several dozen iterations before the typical checkpoint size settles to an appropriate value.
    /// These unnecessary extra rapid prints can cause the beginning of your observed timeframe to be crowded with
    /// the expensive syscalls and calculations that might be associated with your operation.
    /// Setting this value to an approximate estimate of the number of iterations you expect to pass within
    /// the time frame specified by your frequency target will prevent this frontloading of printouts.
    pub first_checkpoint: u64,

    /// Specify a maximum number of ticks to wait for in between observations.
    ///
    /// In some instances, such as during particularly chaotic computations, the observer
    /// could erroneously derive an exceedingly large size for the next potential checkpoint. In those situations,
    /// you might want to specify a maximum number of ticks between progress reports, so that
    /// the observer doesn't get stuck waiting indefinitely after a bad next checkpoint estimate.
    pub max_checkpoint_size: Option<u64>,

    /// Delay observations for this many initial ticks.
    ///
    /// Sometimes your computation needs time to "warm up", where the first 1 or 2 iterations may take significantly
    /// longer to process than all subsequent ones. This may throw off the checkpoint estimation. Specify this
    /// argument to ignore the first n ticks processed, only beginning to record progress after they have elapsed.
    pub delay: u64,

    /// Maximum factor that subsequent checkpoints are allowed to increase in size by.
    ///
    /// Intended to prevent sudden large jumps in checkpoint size between reports. The default value of 2 is generally fine for most cases.
    /// Panics if the factor is set less than 1.
    pub max_scale_factor: f64,

    /// Specify a maximum duration to run the observer for.
    ///
    /// After the duration has passed, the observer will return `None` from `Iterator::next`.
    /// Setting this value has no effect if using `Observer::tick` directly.
    pub run_for: Option<Duration>,
}

impl Default for Options {
    fn default() -> Self {
        Self {
            first_checkpoint: 1,
            max_checkpoint_size: None,
            delay: 0,
            max_scale_factor: 2.0,
            run_for: None,
        }
    }
}

impl Observer {
    /// Create an `Observer` with the specified options.
    ///
    /// See the [`Options`] struct for more details on the options that may be specified.
    ///
    /// ```
    /// use std::time::Duration;
    /// use std::iter::once;
    /// use progress_observer::prelude::*;
    ///
    /// // compute the ratio of prime numbers between 1 and n
    ///
    /// fn is_prime(n: u64) -> bool {
    ///     once(2)
    ///         .chain((3..=((n as f32).sqrt() as u64)).step_by(2))
    ///         .find(|i| n % i == 0)
    ///         .is_none()
    /// }
    ///
    /// let mut primes = 0;
    /// for (n, should_print) in
    ///     Observer::new_with(Duration::from_secs(1), Options {
    ///         max_checkpoint_size: Some(200_000),
    ///         ..Default::default()
    ///     })
    ///     .take(10_000_000)
    ///     .enumerate()
    /// {
    ///    if is_prime(n as u64) {
    ///        primes += 1;
    ///    }
    ///    if should_print {
    ///        println!("{primes} / {n} = {:.4}", primes as f64 / n as f64);
    ///    }
    /// }
    /// ```
    pub fn new_with(
        frequency_target: Duration,
        Options {
            first_checkpoint: checkpoint_size,
            max_checkpoint_size,
            delay,
            max_scale_factor,
            run_for,
        }: Options,
    ) -> Self {
        if max_scale_factor < 1.0 {
            panic!("max_scale_factor of {max_scale_factor} is less than 1.0");
        }
        Self {
            frequency_target,

            checkpoint_size,
            max_checkpoint_size,
            delay,
            max_scale_factor,
            run_for,

            next_checkpoint: checkpoint_size,
            last_observation: Instant::now(),
            first_observation: Instant::now(),
            ticks: 0,
            finished: false,
        }
    }

    /// Create an `Observer` with a specified starting checkpoint.
    ///
    /// Setting just the starting checkpoint alone is often desirable, so this convenience
    /// method is provided to allow setting it without having to specify a full `Options` struct.
    ///
    /// See the [`Options`] struct for more details on what values to set the starting checkpoint to.
    ///
    /// ```
    /// use std::time::Duration;
    /// use std::iter::once;
    /// use progress_observer::prelude::*;
    ///
    /// // compute the ratio of prime numbers between 1 and n
    ///
    /// fn is_prime(n: u64) -> bool {
    ///     once(2)
    ///         .chain((3..=((n as f32).sqrt() as u64)).step_by(2))
    ///         .find(|i| n % i == 0)
    ///         .is_none()
    /// }
    ///
    /// let mut primes = 0;
    /// for (n, should_print) in
    ///     Observer::new_starting_at(Duration::from_secs(1), 300_000)
    ///     .take(10_000_000)
    ///     .enumerate()
    /// {
    ///    if is_prime(n as u64) {
    ///        primes += 1;
    ///    }
    ///    if should_print {
    ///        println!("{primes} / {n} = {:.4}", primes as f64 / n as f64);
    ///    }
    /// }
    /// ```
    pub fn new_starting_at(frequency_target: Duration, first_checkpoint: u64) -> Self {
        Self::new_with(
            frequency_target,
            Options {
                first_checkpoint,
                ..Default::default()
            },
        )
    }

    /// Create a new `Observer` with the specified frequency target and default options.
    ///
    /// The observer will attempt to adjust its reports to match the specified target; if you
    /// specify 1 second, it will attempt to display progress updates in 1 second intervals.
    ///
    /// ```
    /// use std::time::Duration;
    /// use std::iter::once;
    /// use progress_observer::prelude::*;
    ///
    /// // compute the ratio of prime numbers between 1 and n
    ///
    /// fn is_prime(n: u64) -> bool {
    ///     once(2)
    ///         .chain((3..=((n as f32).sqrt() as u64)).step_by(2))
    ///         .find(|i| n % i == 0)
    ///         .is_none()
    /// }
    ///
    /// let mut primes = 0;
    /// for (n, should_print) in
    ///     Observer::new(Duration::from_secs(1))
    ///     .take(10_000_000)
    ///     .enumerate()
    /// {
    ///    if is_prime(n as u64) {
    ///        primes += 1;
    ///    }
    ///    if should_print {
    ///        println!("{primes} / {n} = {:.4}", primes as f64 / n as f64);
    ///    }
    /// }
    /// ```
    pub fn new(frequency_target: Duration) -> Self {
        Self::new_with(frequency_target, Options::default())
    }

    /// Tick the observer by n iterations at once.
    ///
    /// ```
    /// use std::time::Duration;
    /// use std::iter::once;
    /// use progress_observer::prelude::*;
    ///
    /// // compute the ratio of prime numbers between 1 and n
    ///
    /// fn is_prime(n: u64) -> bool {
    ///     once(2)
    ///         .chain((3..=((n as f32).sqrt() as u64)).step_by(2))
    ///         .find(|i| n % i == 0)
    ///         .is_none()
    /// }
    ///
    /// let mut primes = 0;
    /// let mut observer = Observer::new(Duration::from_secs(1));
    /// for n in 0..10_000_000 {
    ///    if is_prime(n as u64) {
    ///        primes += 1;
    ///    }
    ///    if observer.tick_n(1) {
    ///        println!("{primes} / {n} = {:.4}", primes as f64 / n as f64);
    ///    }
    /// }
    /// ```
    pub fn tick_n(&mut self, mut n: u64) -> bool {
        if self.delay > 0 {
            let adjustment = n.min(self.delay);
            self.delay -= adjustment;
            n -= adjustment;
            if self.delay > 0 {
                return false;
            } else {
                self.last_observation = Instant::now();
                self.first_observation = Instant::now();
            }
        }
        self.ticks += n;
        if self.ticks >= self.next_checkpoint {
            let observation_time = Instant::now();
            if self.run_for.is_some_and(|run_for| {
                observation_time.duration_since(self.first_observation) > run_for
            }) {
                self.finished = true;
            }
            let time_since_observation = observation_time.duration_since(self.last_observation);
            let checkpoint_ratio = time_since_observation.div_duration_f64(self.frequency_target);
            let checkpoint_size = self.checkpoint_size as f64;
            self.checkpoint_size = ((checkpoint_size / checkpoint_ratio) as u64)
                .max(1)
                .min((checkpoint_size * self.max_scale_factor) as u64);
            if let Some(max_size) = self.max_checkpoint_size {
                self.checkpoint_size = self.checkpoint_size.min(max_size);
            }
            self.next_checkpoint += self.checkpoint_size;
            self.last_observation = observation_time;
            true
        } else {
            false
        }
    }

    /// Tick the observer by 1 iteration.
    ///
    /// The `tick` method will report a `true` value every time it thinks a progress update
    /// should occur. This is based on the passed frequency_target when the observer is created.
    ///
    /// ```
    /// use std::time::Duration;
    /// use std::iter::once;
    /// use progress_observer::prelude::*;
    ///
    /// // compute the ratio of prime numbers between 1 and n
    ///
    /// fn is_prime(n: u64) -> bool {
    ///     once(2)
    ///         .chain((3..=((n as f32).sqrt() as u64)).step_by(2))
    ///         .find(|i| n % i == 0)
    ///         .is_none()
    /// }
    ///
    /// let mut primes = 0;
    /// let mut observer = Observer::new(Duration::from_secs(1));
    /// for n in 0..10_000_000 {
    ///    if is_prime(n as u64) {
    ///        primes += 1;
    ///    }
    ///    if observer.tick() {
    ///        println!("{primes} / {n} = {:.4}", primes as f64 / n as f64);
    ///    }
    /// }
    /// ```
    pub fn tick(&mut self) -> bool {
        self.tick_n(1)
    }
}

impl Iterator for Observer {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        (!self.finished).then(|| self.tick())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn reprint() {
        let mut count: u64 = 0;
        for should_print in Observer::new(Duration::from_secs(1)).take(1_000_000_000) {
            count += 1;
            if should_print {
                reprint!("{count: <20}");
                count = 0;
            }
        }
    }

    #[test]
    fn delay() {
        for (i, should_print) in Observer::new_with(
            Duration::from_secs(1),
            Options {
                max_checkpoint_size: Some(2),
                delay: 5,
                ..Default::default()
            },
        )
        .enumerate()
        .take(10)
        {
            println!("{i}: {should_print}");
        }
    }

    #[test]
    fn run_for() {
        for (i, should_print) in Observer::new_with(
            Duration::from_secs_f32(0.1),
            Options {
                run_for: Some(Duration::from_secs(5)),
                ..Default::default()
            },
        )
        .enumerate()
        {
            if should_print {
                reprint!("{i}");
            }
        }
    }
}