1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use std::{
	future::Future,
	io::Result,
	process::{ExitStatus, Output},
};

use futures::future::try_join3;
#[cfg(unix)]
use nix::{
	sys::signal::{kill, Signal},
	unistd::Pid,
};
use tokio::{
	io::{AsyncRead, AsyncReadExt},
	process::{Child, ChildStderr, ChildStdin, ChildStdout, Command},
};

crate::generic_wrap::Wrap!(
	TokioCommandWrap,
	Command,
	TokioCommandWrapper,
	Child,
	TokioChildWrapper,
	|child| child
);

/// Wrapper for `tokio::process::Child`.
///
/// This trait exposes most of the functionality of the underlying [`Child`]. It is implemented for
/// [`Child`] and by wrappers.
///
/// The required methods are `inner`, `inner_mut`, and `into_inner`. That provides access to the
/// underlying `Child` and allows the wrapper to be dropped and the `Child` to be used directly if
/// necessary.
///
/// It also makes it possible for all the other methods to have default implementations. Some are
/// direct passthroughs to the underlying `Child`, while others are more complex.
///
/// Here's a simple example of a wrapper:
///
/// ```rust
/// use process_wrap::tokio::*;
/// use tokio::process::Child;
///
/// #[derive(Debug)]
/// pub struct YourChildWrapper(Child);
///
/// impl TokioChildWrapper for YourChildWrapper {
///     fn inner(&self) -> &Child {
///         &self.0
///     }
///
///     fn inner_mut(&mut self) -> &mut Child {
///         &mut self.0
///     }
///
///     fn into_inner(self: Box<Self>) -> Child {
///         (*self).0
///     }
/// }
/// ```
pub trait TokioChildWrapper: std::fmt::Debug + Send + Sync {
	/// Obtain a reference to the underlying `Child`.
	fn inner(&self) -> &Child;

	/// Obtain a mutable reference to the underlying `Child`.
	fn inner_mut(&mut self) -> &mut Child;

	/// Consume the wrapper and return the underlying `Child`.
	///
	/// Note that this may disrupt whatever the wrappers were doing. However, wrappers must ensure
	/// that the `Child` is in a consistent state when this is called or they are dropped, so that
	/// this is always safe.
	fn into_inner(self: Box<Self>) -> Child;

	/// Obtain the `Child`'s stdin.
	///
	/// By default this is a passthrough to the underlying `Child`.
	fn stdin(&mut self) -> &mut Option<ChildStdin> {
		&mut self.inner_mut().stdin
	}

	/// Obtain the `Child`'s stdout.
	///
	/// By default this is a passthrough to the underlying `Child`.
	fn stdout(&mut self) -> &mut Option<ChildStdout> {
		&mut self.inner_mut().stdout
	}

	/// Obtain the `Child`'s stderr.
	///
	/// By default this is a passthrough to the underlying `Child`.
	fn stderr(&mut self) -> &mut Option<ChildStderr> {
		&mut self.inner_mut().stderr
	}

	/// Obtain the `Child`'s process ID.
	///
	/// In general this should be the PID of the top-level spawned process that was spawned
	/// However, that may vary depending on what a wrapper does.
	///
	/// Returns an `Option` to resemble Tokio's API, but isn't expected to be `None` in practice.
	fn id(&self) -> Option<u32> {
		self.inner().id()
	}

	/// Kill the `Child` and wait for it to exit.
	///
	/// By default this calls `start_kill()` and then `wait()`, which is the same way it is done on
	/// the underlying `Child`, but that way implementing either or both of those methods will use
	/// them when calling `kill()`, instead of requiring a stub implementation.
	fn kill(&mut self) -> Box<dyn Future<Output = Result<()>> + '_> {
		Box::new(async {
			self.start_kill()?;
			Box::into_pin(self.wait()).await?;
			Ok(())
		})
	}

	/// Kill the `Child` without waiting for it to exit.
	///
	/// By default this is a passthrough to the underlying `Child`, which:
	/// - on Unix, sends a `SIGKILL` signal to the process;
	/// - otherwise, passes through to the `kill()` method.
	fn start_kill(&mut self) -> Result<()> {
		self.inner_mut().start_kill()
	}

	/// Check if the `Child` has exited without waiting, and if it has, return its exit status.
	///
	/// Wrappers must ensure that repeatedly calling this (or other wait methods) after the child
	/// has exited will always return the same result.
	///
	/// By default this is a passthrough to the underlying `Child`.
	fn try_wait(&mut self) -> Result<Option<ExitStatus>> {
		self.inner_mut().try_wait()
	}

	/// Wait for the `Child` to exit and return its exit status.
	///
	/// Wrappers must ensure that repeatedly calling this (or other wait methods) after the child
	/// has exited will always return the same result.
	///
	/// By default this is a passthrough to the underlying `Child`.
	fn wait(&mut self) -> Box<dyn Future<Output = Result<ExitStatus>> + '_> {
		Box::new(self.inner_mut().wait())
	}

	/// Wait for the `Child` to exit and return its exit status and outputs.
	///
	/// Note that this method reads the child's stdout and stderr to completion into memory.
	///
	/// By default this is a reimplementation of the Tokio method, so that it can use the wrapper's
	/// `wait()` method instead of the underlying `Child`'s `wait()`.
	fn wait_with_output(mut self: Box<Self>) -> Box<dyn Future<Output = Result<Output>>>
	where
		Self: 'static,
	{
		Box::new(async move {
			async fn read_to_end<A: AsyncRead + Unpin>(io: &mut Option<A>) -> Result<Vec<u8>> {
				let mut vec = Vec::new();
				if let Some(io) = io.as_mut() {
					io.read_to_end(&mut vec).await?;
				}
				Ok(vec)
			}

			let mut stdout_pipe = self.stdout().take();
			let mut stderr_pipe = self.stderr().take();

			let stdout_fut = read_to_end(&mut stdout_pipe);
			let stderr_fut = read_to_end(&mut stderr_pipe);

			let (status, stdout, stderr) =
				try_join3(Box::into_pin(self.wait()), stdout_fut, stderr_fut).await?;

			// Drop happens after `try_join` due to <https://github.com/tokio-rs/tokio/issues/4309>
			drop(stdout_pipe);
			drop(stderr_pipe);

			Ok(Output {
				status,
				stdout,
				stderr,
			})
		})
	}

	/// Send a signal to the `Child`.
	///
	/// This method is only available on Unix. It doesn't exist on Tokio's `Child`, nor on std's. It
	/// was introduced by command-group to abstract over the signal behaviour between process groups
	/// and unwrapped processes.
	#[cfg(unix)]
	fn signal(&self, sig: i32) -> Result<()> {
		if let Some(id) = self.id() {
			kill(
				Pid::from_raw(i32::try_from(id).map_err(std::io::Error::other)?),
				Signal::try_from(sig)?,
			)
			.map_err(std::io::Error::from)
		} else {
			Ok(())
		}
	}
}

impl TokioChildWrapper for Child {
	fn inner(&self) -> &Child {
		self
	}
	fn inner_mut(&mut self) -> &mut Child {
		self
	}
	fn into_inner(self: Box<Self>) -> Child {
		*self
	}
}