1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
use std::{
io::{Read, Result},
process::{Child, ChildStderr, ChildStdin, ChildStdout, Command, ExitStatus, Output},
};
#[cfg(unix)]
use nix::{
sys::signal::{kill, Signal},
unistd::Pid,
};
crate::generic_wrap::Wrap!(
StdCommandWrap,
Command,
StdCommandWrapper,
Child,
StdChildWrapper,
StdChild // |child| StdChild(child)
);
/// Wrapper for `std::process::Child`.
///
/// This trait exposes most of the functionality of the underlying [`Child`]. It is implemented for
/// [`StdChild`] (a thin wrapper around [`Child`]) (because implementing directly on [`Child`] would
/// loop) and by wrappers.
///
/// The required methods are `inner`, `inner_mut`, and `into_inner`. That provides access to the
/// underlying `Child` and allows the wrapper to be dropped and the `Child` to be used directly if
/// necessary.
///
/// It also makes it possible for all the other methods to have default implementations. Some are
/// direct passthroughs to the underlying `Child`, while others are more complex.
///
/// Here's a simple example of a wrapper:
///
/// ```rust
/// use process_wrap::std::*;
/// use std::process::Child;
///
/// #[derive(Debug)]
/// pub struct YourChildWrapper(Child);
///
/// impl StdChildWrapper for YourChildWrapper {
/// fn inner(&self) -> &Child {
/// &self.0
/// }
///
/// fn inner_mut(&mut self) -> &mut Child {
/// &mut self.0
/// }
///
/// fn into_inner(self: Box<Self>) -> Child {
/// (*self).0
/// }
/// }
/// ```
pub trait StdChildWrapper: std::fmt::Debug + Send + Sync {
/// Obtain a reference to the underlying `Child`.
fn inner(&self) -> &Child;
/// Obtain a mutable reference to the underlying `Child`.
fn inner_mut(&mut self) -> &mut Child;
/// Consume the wrapper and return the underlying `Child`.
///
/// Note that this may disrupt whatever the wrappers were doing. However, wrappers must ensure
/// that the `Child` is in a consistent state when this is called or they are dropped, so that
/// this is always safe.
fn into_inner(self: Box<Self>) -> Child;
/// Obtain the `Child`'s stdin.
///
/// By default this is a passthrough to the underlying `Child`.
fn stdin(&mut self) -> &mut Option<ChildStdin> {
&mut self.inner_mut().stdin
}
/// Obtain the `Child`'s stdout.
///
/// By default this is a passthrough to the underlying `Child`.
fn stdout(&mut self) -> &mut Option<ChildStdout> {
&mut self.inner_mut().stdout
}
/// Obtain the `Child`'s stderr.
///
/// By default this is a passthrough to the underlying `Child`.
fn stderr(&mut self) -> &mut Option<ChildStderr> {
&mut self.inner_mut().stderr
}
/// Obtain the `Child`'s process ID.
///
/// In general this should be the PID of the top-level spawned process that was spawned
/// However, that may vary depending on what a wrapper does.
fn id(&self) -> u32 {
self.inner().id()
}
/// Kill the `Child` and wait for it to exit.
///
/// By default this calls `start_kill()` and then `wait()`, which is the same way it is done on
/// the underlying `Child`, but that way implementing either or both of those methods will use
/// them when calling `kill()`, instead of requiring a stub implementation.
fn kill(&mut self) -> Result<()> {
self.start_kill()?;
self.wait()?;
Ok(())
}
/// Kill the `Child` without waiting for it to exit.
///
/// By default this is:
/// - on Unix, sending a `SIGKILL` signal to the process;
/// - otherwise, a passthrough to the underlying `kill()` method.
///
/// The `start_kill()` method doesn't exist on std's `Child`, and was introduced by Tokio. This
/// library uses it to provide a consistent API across both std and Tokio (and because it's a
/// generally useful API).
fn start_kill(&mut self) -> Result<()> {
#[cfg(unix)]
{
self.signal(Signal::SIGKILL)
}
#[cfg(not(unix))]
{
self.inner_mut().kill()
}
}
/// Check if the `Child` has exited without blocking, and if so, return its exit status.
///
/// Wrappers must ensure that repeatedly calling this (or other wait methods) after the child
/// has exited will always return the same result.
///
/// By default this is a passthrough to the underlying `Child`.
fn try_wait(&mut self) -> Result<Option<ExitStatus>> {
self.inner_mut().try_wait()
}
/// Wait for the `Child` to exit and return its exit status.
///
/// Wrappers must ensure that repeatedly calling this (or other wait methods) after the child
/// has exited will always return the same result.
///
/// By default this is a passthrough to the underlying `Child`.
fn wait(&mut self) -> Result<ExitStatus> {
self.inner_mut().wait()
}
/// Wait for the `Child` to exit and return its exit status and outputs.
///
/// Note that this method reads the child's stdout and stderr to completion into memory.
///
/// On Unix, this reads from stdout and stderr simultaneously. On other platforms, it reads from
/// stdout first, then stderr (pull requests welcome to improve this).
///
/// By default this is a reimplementation of the std method, so that it can use the wrapper's
/// `wait()` method instead of the underlying `Child`'s `wait()`.
fn wait_with_output(mut self: Box<Self>) -> Result<Output>
where
Self: 'static,
{
drop(self.stdin().take());
let (mut stdout, mut stderr) = (Vec::new(), Vec::new());
match (self.stdout().take(), self.stderr().take()) {
(None, None) => {}
(Some(mut out), None) => {
let res = out.read_to_end(&mut stdout);
res.unwrap();
}
(None, Some(mut err)) => {
let res = err.read_to_end(&mut stderr);
res.unwrap();
}
(Some(out), Some(err)) => {
let res = read2(out, &mut stdout, err, &mut stderr);
res.unwrap();
}
}
let status = self.wait()?;
Ok(Output {
status,
stdout,
stderr,
})
}
/// Send a signal to the `Child`.
///
/// This method is only available on Unix. It doesn't exist on std's `Child`, nor on Tokio's. It
/// was introduced by command-group to abstract over the signal behaviour between process groups
/// and unwrapped processes.
#[cfg(unix)]
fn signal(&self, sig: Signal) -> Result<()> {
kill(
Pid::from_raw(i32::try_from(self.id()).map_err(std::io::Error::other)?),
sig,
)
.map_err(std::io::Error::from)
}
}
/// A thin wrapper around [`Child`].
///
/// This is used only because implementing [`StdChildWrapper`] directly on std's [`Child`] creates
/// loops in the type system. It is not intended to be used directly, but only to be used internally
/// by the library.
#[derive(Debug)]
pub struct StdChild(pub Child);
impl StdChildWrapper for StdChild {
fn inner(&self) -> &Child {
&self.0
}
fn inner_mut(&mut self) -> &mut Child {
&mut self.0
}
fn into_inner(self: Box<Self>) -> Child {
(*self).0
}
}
#[cfg(unix)]
fn read2(
mut out_r: ChildStdout,
out_v: &mut Vec<u8>,
mut err_r: ChildStderr,
err_v: &mut Vec<u8>,
) -> Result<()> {
use nix::{
errno::Errno,
libc,
poll::{poll, PollFd, PollFlags},
};
use std::{
io::Error,
os::fd::{AsRawFd, BorrowedFd, RawFd},
};
let out_fd = out_r.as_raw_fd();
let err_fd = err_r.as_raw_fd();
set_nonblocking(out_fd, true)?;
set_nonblocking(err_fd, true)?;
// SAFETY: these are dropped at the same time as all other FDs here
let out_bfd = unsafe { BorrowedFd::borrow_raw(out_fd) };
let err_bfd = unsafe { BorrowedFd::borrow_raw(err_fd) };
let mut fds = [
PollFd::new(&out_bfd, PollFlags::POLLIN),
PollFd::new(&err_bfd, PollFlags::POLLIN),
];
loop {
poll(&mut fds, -1)?;
if fds[0].revents().is_some() && read(&mut out_r, out_v)? {
set_nonblocking(err_fd, false)?;
return err_r.read_to_end(err_v).map(drop);
}
if fds[1].revents().is_some() && read(&mut err_r, err_v)? {
set_nonblocking(out_fd, false)?;
return out_r.read_to_end(out_v).map(drop);
}
}
fn read(r: &mut impl Read, dst: &mut Vec<u8>) -> Result<bool> {
match r.read_to_end(dst) {
Ok(_) => Ok(true),
Err(e) => {
if e.raw_os_error() == Some(libc::EWOULDBLOCK)
|| e.raw_os_error() == Some(libc::EAGAIN)
{
Ok(false)
} else {
Err(e)
}
}
}
}
#[cfg(target_os = "linux")]
fn set_nonblocking(fd: RawFd, nonblocking: bool) -> Result<()> {
let v = nonblocking as libc::c_int;
let res = unsafe { libc::ioctl(fd, libc::FIONBIO, &v) };
Errno::result(res).map_err(Error::from).map(drop)
}
#[cfg(not(target_os = "linux"))]
fn set_nonblocking(fd: RawFd, nonblocking: bool) -> Result<()> {
use nix::fcntl::{fcntl, FcntlArg, OFlag};
let mut flags = OFlag::from_bits_truncate(fcntl(fd, FcntlArg::F_GETFL)?);
flags.set(OFlag::O_NONBLOCK, nonblocking);
fcntl(fd, FcntlArg::F_SETFL(flags))
.map_err(Error::from)
.map(drop)
}
}
// if you're reading this code and despairing, we'd love
// your contribution of a proper read2 for your platform!
#[cfg(not(unix))]
fn read2(
mut out_r: ChildStdout,
out_v: &mut Vec<u8>,
mut err_r: ChildStderr,
err_v: &mut Vec<u8>,
) -> Result<()> {
out_r.read_to_end(out_v)?;
err_r.read_to_end(err_v)?;
Ok(())
}