proc_macro2/lib.rs
1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//! main.rs.** Types from `proc_macro` are entirely specific to procedural
14//! macros and cannot ever exist in code outside of a procedural macro.
15//! Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//! By developing foundational libraries like [syn] and [quote] against
17//! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//! becomes easily applicable to many other use cases and we avoid
19//! reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//! specific to procedural macros, nothing that uses `proc_macro` can be
23//! executed from a unit test. In order for helper libraries or components of
24//! a macro to be testable in isolation, they must be implemented using
25//! `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//! let input = proc_macro2::TokenStream::from(input);
43//!
44//! let output: proc_macro2::TokenStream = {
45//! /* transform input */
46//! # input
47//! };
48//!
49//! proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86// Proc-macro2 types in rustdoc of other crates get linked to here.
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.99")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93 clippy::cast_lossless,
94 clippy::cast_possible_truncation,
95 clippy::checked_conversions,
96 clippy::doc_markdown,
97 clippy::elidable_lifetime_names,
98 clippy::incompatible_msrv,
99 clippy::items_after_statements,
100 clippy::iter_without_into_iter,
101 clippy::let_underscore_untyped,
102 clippy::manual_assert,
103 clippy::manual_range_contains,
104 clippy::missing_panics_doc,
105 clippy::missing_safety_doc,
106 clippy::must_use_candidate,
107 clippy::needless_doctest_main,
108 clippy::needless_lifetimes,
109 clippy::new_without_default,
110 clippy::return_self_not_must_use,
111 clippy::shadow_unrelated,
112 clippy::trivially_copy_pass_by_ref,
113 clippy::unnecessary_wraps,
114 clippy::unused_self,
115 clippy::used_underscore_binding,
116 clippy::vec_init_then_push
117)]
118#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
119
120#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
121compile_error! {"\
122 Something is not right. If you've tried to turn on \
123 procmacro2_semver_exempt, you need to ensure that it \
124 is turned on for the compilation of the proc-macro2 \
125 build script as well.
126"}
127
128#[cfg(all(
129 procmacro2_nightly_testing,
130 feature = "proc-macro",
131 not(proc_macro_span)
132))]
133compile_error! {"\
134 Build script probe failed to compile.
135"}
136
137extern crate alloc;
138
139#[cfg(feature = "proc-macro")]
140extern crate proc_macro;
141
142mod marker;
143mod parse;
144mod rcvec;
145
146#[cfg(wrap_proc_macro)]
147mod detection;
148
149// Public for proc_macro2::fallback::force() and unforce(), but those are quite
150// a niche use case so we omit it from rustdoc.
151#[doc(hidden)]
152pub mod fallback;
153
154pub mod extra;
155
156#[cfg(not(wrap_proc_macro))]
157use crate::fallback as imp;
158#[path = "wrapper.rs"]
159#[cfg(wrap_proc_macro)]
160mod imp;
161
162#[cfg(span_locations)]
163mod location;
164
165use crate::extra::DelimSpan;
166use crate::marker::{ProcMacroAutoTraits, MARKER};
167use core::cmp::Ordering;
168use core::fmt::{self, Debug, Display};
169use core::hash::{Hash, Hasher};
170#[cfg(span_locations)]
171use core::ops::Range;
172use core::ops::RangeBounds;
173use core::str::FromStr;
174use std::error::Error;
175use std::ffi::CStr;
176#[cfg(procmacro2_semver_exempt)]
177use std::path::PathBuf;
178
179#[cfg(span_locations)]
180#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
181pub use crate::location::LineColumn;
182
183/// An abstract stream of tokens, or more concretely a sequence of token trees.
184///
185/// This type provides interfaces for iterating over token trees and for
186/// collecting token trees into one stream.
187///
188/// Token stream is both the input and output of `#[proc_macro]`,
189/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
190#[derive(Clone)]
191pub struct TokenStream {
192 inner: imp::TokenStream,
193 _marker: ProcMacroAutoTraits,
194}
195
196/// Error returned from `TokenStream::from_str`.
197pub struct LexError {
198 inner: imp::LexError,
199 _marker: ProcMacroAutoTraits,
200}
201
202impl TokenStream {
203 fn _new(inner: imp::TokenStream) -> Self {
204 TokenStream {
205 inner,
206 _marker: MARKER,
207 }
208 }
209
210 fn _new_fallback(inner: fallback::TokenStream) -> Self {
211 TokenStream {
212 inner: imp::TokenStream::from(inner),
213 _marker: MARKER,
214 }
215 }
216
217 /// Returns an empty `TokenStream` containing no token trees.
218 pub fn new() -> Self {
219 TokenStream::_new(imp::TokenStream::new())
220 }
221
222 /// Checks if this `TokenStream` is empty.
223 pub fn is_empty(&self) -> bool {
224 self.inner.is_empty()
225 }
226}
227
228/// `TokenStream::default()` returns an empty stream,
229/// i.e. this is equivalent with `TokenStream::new()`.
230impl Default for TokenStream {
231 fn default() -> Self {
232 TokenStream::new()
233 }
234}
235
236/// Attempts to break the string into tokens and parse those tokens into a token
237/// stream.
238///
239/// May fail for a number of reasons, for example, if the string contains
240/// unbalanced delimiters or characters not existing in the language.
241///
242/// NOTE: Some errors may cause panics instead of returning `LexError`. We
243/// reserve the right to change these errors into `LexError`s later.
244impl FromStr for TokenStream {
245 type Err = LexError;
246
247 fn from_str(src: &str) -> Result<TokenStream, LexError> {
248 match imp::TokenStream::from_str_checked(src) {
249 Ok(tokens) => Ok(TokenStream::_new(tokens)),
250 Err(lex) => Err(LexError {
251 inner: lex,
252 _marker: MARKER,
253 }),
254 }
255 }
256}
257
258#[cfg(feature = "proc-macro")]
259#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
260impl From<proc_macro::TokenStream> for TokenStream {
261 fn from(inner: proc_macro::TokenStream) -> Self {
262 TokenStream::_new(imp::TokenStream::from(inner))
263 }
264}
265
266#[cfg(feature = "proc-macro")]
267#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
268impl From<TokenStream> for proc_macro::TokenStream {
269 fn from(inner: TokenStream) -> Self {
270 proc_macro::TokenStream::from(inner.inner)
271 }
272}
273
274impl From<TokenTree> for TokenStream {
275 fn from(token: TokenTree) -> Self {
276 TokenStream::_new(imp::TokenStream::from(token))
277 }
278}
279
280impl Extend<TokenTree> for TokenStream {
281 fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
282 self.inner.extend(streams);
283 }
284}
285
286impl Extend<TokenStream> for TokenStream {
287 fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
288 self.inner
289 .extend(streams.into_iter().map(|stream| stream.inner));
290 }
291}
292
293/// Collects a number of token trees into a single stream.
294impl FromIterator<TokenTree> for TokenStream {
295 fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
296 TokenStream::_new(streams.into_iter().collect())
297 }
298}
299impl FromIterator<TokenStream> for TokenStream {
300 fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
301 TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
302 }
303}
304
305/// Prints the token stream as a string that is supposed to be losslessly
306/// convertible back into the same token stream (modulo spans), except for
307/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
308/// numeric literals.
309impl Display for TokenStream {
310 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
311 Display::fmt(&self.inner, f)
312 }
313}
314
315/// Prints token in a form convenient for debugging.
316impl Debug for TokenStream {
317 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
318 Debug::fmt(&self.inner, f)
319 }
320}
321
322impl LexError {
323 pub fn span(&self) -> Span {
324 Span::_new(self.inner.span())
325 }
326}
327
328impl Debug for LexError {
329 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
330 Debug::fmt(&self.inner, f)
331 }
332}
333
334impl Display for LexError {
335 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
336 Display::fmt(&self.inner, f)
337 }
338}
339
340impl Error for LexError {}
341
342/// A region of source code, along with macro expansion information.
343#[derive(Copy, Clone)]
344pub struct Span {
345 inner: imp::Span,
346 _marker: ProcMacroAutoTraits,
347}
348
349impl Span {
350 fn _new(inner: imp::Span) -> Self {
351 Span {
352 inner,
353 _marker: MARKER,
354 }
355 }
356
357 fn _new_fallback(inner: fallback::Span) -> Self {
358 Span {
359 inner: imp::Span::from(inner),
360 _marker: MARKER,
361 }
362 }
363
364 /// The span of the invocation of the current procedural macro.
365 ///
366 /// Identifiers created with this span will be resolved as if they were
367 /// written directly at the macro call location (call-site hygiene) and
368 /// other code at the macro call site will be able to refer to them as well.
369 pub fn call_site() -> Self {
370 Span::_new(imp::Span::call_site())
371 }
372
373 /// The span located at the invocation of the procedural macro, but with
374 /// local variables, labels, and `$crate` resolved at the definition site
375 /// of the macro. This is the same hygiene behavior as `macro_rules`.
376 pub fn mixed_site() -> Self {
377 Span::_new(imp::Span::mixed_site())
378 }
379
380 /// A span that resolves at the macro definition site.
381 ///
382 /// This method is semver exempt and not exposed by default.
383 #[cfg(procmacro2_semver_exempt)]
384 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
385 pub fn def_site() -> Self {
386 Span::_new(imp::Span::def_site())
387 }
388
389 /// Creates a new span with the same line/column information as `self` but
390 /// that resolves symbols as though it were at `other`.
391 pub fn resolved_at(&self, other: Span) -> Span {
392 Span::_new(self.inner.resolved_at(other.inner))
393 }
394
395 /// Creates a new span with the same name resolution behavior as `self` but
396 /// with the line/column information of `other`.
397 pub fn located_at(&self, other: Span) -> Span {
398 Span::_new(self.inner.located_at(other.inner))
399 }
400
401 /// Convert `proc_macro2::Span` to `proc_macro::Span`.
402 ///
403 /// This method is available when building with a nightly compiler, or when
404 /// building with rustc 1.29+ *without* semver exempt features.
405 ///
406 /// # Panics
407 ///
408 /// Panics if called from outside of a procedural macro. Unlike
409 /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
410 /// the context of a procedural macro invocation.
411 #[cfg(wrap_proc_macro)]
412 pub fn unwrap(self) -> proc_macro::Span {
413 self.inner.unwrap()
414 }
415
416 // Soft deprecated. Please use Span::unwrap.
417 #[cfg(wrap_proc_macro)]
418 #[doc(hidden)]
419 pub fn unstable(self) -> proc_macro::Span {
420 self.unwrap()
421 }
422
423 /// Returns the span's byte position range in the source file.
424 ///
425 /// This method requires the `"span-locations"` feature to be enabled.
426 ///
427 /// When executing in a procedural macro context, the returned range is only
428 /// accurate if compiled with a nightly toolchain. The stable toolchain does
429 /// not have this information available. When executing outside of a
430 /// procedural macro, such as main.rs or build.rs, the byte range is always
431 /// accurate regardless of toolchain.
432 #[cfg(span_locations)]
433 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
434 pub fn byte_range(&self) -> Range<usize> {
435 self.inner.byte_range()
436 }
437
438 /// Get the starting line/column in the source file for this span.
439 ///
440 /// This method requires the `"span-locations"` feature to be enabled.
441 ///
442 /// When executing in a procedural macro context, the returned line/column
443 /// are only meaningful if compiled with a nightly toolchain. The stable
444 /// toolchain does not have this information available. When executing
445 /// outside of a procedural macro, such as main.rs or build.rs, the
446 /// line/column are always meaningful regardless of toolchain.
447 #[cfg(span_locations)]
448 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
449 pub fn start(&self) -> LineColumn {
450 self.inner.start()
451 }
452
453 /// Get the ending line/column in the source file for this span.
454 ///
455 /// This method requires the `"span-locations"` feature to be enabled.
456 ///
457 /// When executing in a procedural macro context, the returned line/column
458 /// are only meaningful if compiled with a nightly toolchain. The stable
459 /// toolchain does not have this information available. When executing
460 /// outside of a procedural macro, such as main.rs or build.rs, the
461 /// line/column are always meaningful regardless of toolchain.
462 #[cfg(span_locations)]
463 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
464 pub fn end(&self) -> LineColumn {
465 self.inner.end()
466 }
467
468 /// The path to the source file in which this span occurs, for display
469 /// purposes.
470 ///
471 /// This might not correspond to a valid file system path. It might be
472 /// remapped, or might be an artificial path such as `"<macro expansion>"`.
473 ///
474 /// This method is semver exempt and not exposed by default.
475 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
476 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
477 pub fn file(&self) -> String {
478 self.inner.file()
479 }
480
481 /// The path to the source file in which this span occurs on disk.
482 ///
483 /// This is the actual path on disk. It is unaffected by path remapping.
484 ///
485 /// This path should not be embedded in the output of the macro; prefer
486 /// `file()` instead.
487 ///
488 /// This method is semver exempt and not exposed by default.
489 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
490 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
491 pub fn local_file(&self) -> Option<PathBuf> {
492 self.inner.local_file()
493 }
494
495 /// Create a new span encompassing `self` and `other`.
496 ///
497 /// Returns `None` if `self` and `other` are from different files.
498 ///
499 /// Warning: the underlying [`proc_macro::Span::join`] method is
500 /// nightly-only. When called from within a procedural macro not using a
501 /// nightly compiler, this method will always return `None`.
502 pub fn join(&self, other: Span) -> Option<Span> {
503 self.inner.join(other.inner).map(Span::_new)
504 }
505
506 /// Compares two spans to see if they're equal.
507 ///
508 /// This method is semver exempt and not exposed by default.
509 #[cfg(procmacro2_semver_exempt)]
510 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
511 pub fn eq(&self, other: &Span) -> bool {
512 self.inner.eq(&other.inner)
513 }
514
515 /// Returns the source text behind a span. This preserves the original
516 /// source code, including spaces and comments. It only returns a result if
517 /// the span corresponds to real source code.
518 ///
519 /// Note: The observable result of a macro should only rely on the tokens
520 /// and not on this source text. The result of this function is a best
521 /// effort to be used for diagnostics only.
522 pub fn source_text(&self) -> Option<String> {
523 self.inner.source_text()
524 }
525}
526
527/// Prints a span in a form convenient for debugging.
528impl Debug for Span {
529 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
530 Debug::fmt(&self.inner, f)
531 }
532}
533
534/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
535#[derive(Clone)]
536pub enum TokenTree {
537 /// A token stream surrounded by bracket delimiters.
538 Group(Group),
539 /// An identifier.
540 Ident(Ident),
541 /// A single punctuation character (`+`, `,`, `$`, etc.).
542 Punct(Punct),
543 /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
544 Literal(Literal),
545}
546
547impl TokenTree {
548 /// Returns the span of this tree, delegating to the `span` method of
549 /// the contained token or a delimited stream.
550 pub fn span(&self) -> Span {
551 match self {
552 TokenTree::Group(t) => t.span(),
553 TokenTree::Ident(t) => t.span(),
554 TokenTree::Punct(t) => t.span(),
555 TokenTree::Literal(t) => t.span(),
556 }
557 }
558
559 /// Configures the span for *only this token*.
560 ///
561 /// Note that if this token is a `Group` then this method will not configure
562 /// the span of each of the internal tokens, this will simply delegate to
563 /// the `set_span` method of each variant.
564 pub fn set_span(&mut self, span: Span) {
565 match self {
566 TokenTree::Group(t) => t.set_span(span),
567 TokenTree::Ident(t) => t.set_span(span),
568 TokenTree::Punct(t) => t.set_span(span),
569 TokenTree::Literal(t) => t.set_span(span),
570 }
571 }
572}
573
574impl From<Group> for TokenTree {
575 fn from(g: Group) -> Self {
576 TokenTree::Group(g)
577 }
578}
579
580impl From<Ident> for TokenTree {
581 fn from(g: Ident) -> Self {
582 TokenTree::Ident(g)
583 }
584}
585
586impl From<Punct> for TokenTree {
587 fn from(g: Punct) -> Self {
588 TokenTree::Punct(g)
589 }
590}
591
592impl From<Literal> for TokenTree {
593 fn from(g: Literal) -> Self {
594 TokenTree::Literal(g)
595 }
596}
597
598/// Prints the token tree as a string that is supposed to be losslessly
599/// convertible back into the same token tree (modulo spans), except for
600/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
601/// numeric literals.
602impl Display for TokenTree {
603 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
604 match self {
605 TokenTree::Group(t) => Display::fmt(t, f),
606 TokenTree::Ident(t) => Display::fmt(t, f),
607 TokenTree::Punct(t) => Display::fmt(t, f),
608 TokenTree::Literal(t) => Display::fmt(t, f),
609 }
610 }
611}
612
613/// Prints token tree in a form convenient for debugging.
614impl Debug for TokenTree {
615 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
616 // Each of these has the name in the struct type in the derived debug,
617 // so don't bother with an extra layer of indirection
618 match self {
619 TokenTree::Group(t) => Debug::fmt(t, f),
620 TokenTree::Ident(t) => {
621 let mut debug = f.debug_struct("Ident");
622 debug.field("sym", &format_args!("{}", t));
623 imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
624 debug.finish()
625 }
626 TokenTree::Punct(t) => Debug::fmt(t, f),
627 TokenTree::Literal(t) => Debug::fmt(t, f),
628 }
629 }
630}
631
632/// A delimited token stream.
633///
634/// A `Group` internally contains a `TokenStream` which is surrounded by
635/// `Delimiter`s.
636#[derive(Clone)]
637pub struct Group {
638 inner: imp::Group,
639}
640
641/// Describes how a sequence of token trees is delimited.
642#[derive(Copy, Clone, Debug, Eq, PartialEq)]
643pub enum Delimiter {
644 /// `( ... )`
645 Parenthesis,
646 /// `{ ... }`
647 Brace,
648 /// `[ ... ]`
649 Bracket,
650 /// `∅ ... ∅`
651 ///
652 /// An invisible delimiter, that may, for example, appear around tokens
653 /// coming from a "macro variable" `$var`. It is important to preserve
654 /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
655 /// Invisible delimiters may not survive roundtrip of a token stream through
656 /// a string.
657 ///
658 /// <div class="warning">
659 ///
660 /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
661 /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
662 /// of a proc_macro macro are preserved, and only in very specific circumstances.
663 /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
664 /// operator priorities as indicated above. The other `Delimiter` variants should be used
665 /// instead in this context. This is a rustc bug. For details, see
666 /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
667 ///
668 /// </div>
669 None,
670}
671
672impl Group {
673 fn _new(inner: imp::Group) -> Self {
674 Group { inner }
675 }
676
677 fn _new_fallback(inner: fallback::Group) -> Self {
678 Group {
679 inner: imp::Group::from(inner),
680 }
681 }
682
683 /// Creates a new `Group` with the given delimiter and token stream.
684 ///
685 /// This constructor will set the span for this group to
686 /// `Span::call_site()`. To change the span you can use the `set_span`
687 /// method below.
688 pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
689 Group {
690 inner: imp::Group::new(delimiter, stream.inner),
691 }
692 }
693
694 /// Returns the punctuation used as the delimiter for this group: a set of
695 /// parentheses, square brackets, or curly braces.
696 pub fn delimiter(&self) -> Delimiter {
697 self.inner.delimiter()
698 }
699
700 /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
701 ///
702 /// Note that the returned token stream does not include the delimiter
703 /// returned above.
704 pub fn stream(&self) -> TokenStream {
705 TokenStream::_new(self.inner.stream())
706 }
707
708 /// Returns the span for the delimiters of this token stream, spanning the
709 /// entire `Group`.
710 ///
711 /// ```text
712 /// pub fn span(&self) -> Span {
713 /// ^^^^^^^
714 /// ```
715 pub fn span(&self) -> Span {
716 Span::_new(self.inner.span())
717 }
718
719 /// Returns the span pointing to the opening delimiter of this group.
720 ///
721 /// ```text
722 /// pub fn span_open(&self) -> Span {
723 /// ^
724 /// ```
725 pub fn span_open(&self) -> Span {
726 Span::_new(self.inner.span_open())
727 }
728
729 /// Returns the span pointing to the closing delimiter of this group.
730 ///
731 /// ```text
732 /// pub fn span_close(&self) -> Span {
733 /// ^
734 /// ```
735 pub fn span_close(&self) -> Span {
736 Span::_new(self.inner.span_close())
737 }
738
739 /// Returns an object that holds this group's `span_open()` and
740 /// `span_close()` together (in a more compact representation than holding
741 /// those 2 spans individually).
742 pub fn delim_span(&self) -> DelimSpan {
743 DelimSpan::new(&self.inner)
744 }
745
746 /// Configures the span for this `Group`'s delimiters, but not its internal
747 /// tokens.
748 ///
749 /// This method will **not** set the span of all the internal tokens spanned
750 /// by this group, but rather it will only set the span of the delimiter
751 /// tokens at the level of the `Group`.
752 pub fn set_span(&mut self, span: Span) {
753 self.inner.set_span(span.inner);
754 }
755}
756
757/// Prints the group as a string that should be losslessly convertible back
758/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
759/// with `Delimiter::None` delimiters.
760impl Display for Group {
761 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
762 Display::fmt(&self.inner, formatter)
763 }
764}
765
766impl Debug for Group {
767 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
768 Debug::fmt(&self.inner, formatter)
769 }
770}
771
772/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
773///
774/// Multicharacter operators like `+=` are represented as two instances of
775/// `Punct` with different forms of `Spacing` returned.
776#[derive(Clone)]
777pub struct Punct {
778 ch: char,
779 spacing: Spacing,
780 span: Span,
781}
782
783/// Whether a `Punct` is followed immediately by another `Punct` or followed by
784/// another token or whitespace.
785#[derive(Copy, Clone, Debug, Eq, PartialEq)]
786pub enum Spacing {
787 /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
788 Alone,
789 /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
790 ///
791 /// Additionally, single quote `'` can join with identifiers to form
792 /// lifetimes `'ident`.
793 Joint,
794}
795
796impl Punct {
797 /// Creates a new `Punct` from the given character and spacing.
798 ///
799 /// The `ch` argument must be a valid punctuation character permitted by the
800 /// language, otherwise the function will panic.
801 ///
802 /// The returned `Punct` will have the default span of `Span::call_site()`
803 /// which can be further configured with the `set_span` method below.
804 pub fn new(ch: char, spacing: Spacing) -> Self {
805 if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
806 | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
807 {
808 Punct {
809 ch,
810 spacing,
811 span: Span::call_site(),
812 }
813 } else {
814 panic!("unsupported proc macro punctuation character {:?}", ch);
815 }
816 }
817
818 /// Returns the value of this punctuation character as `char`.
819 pub fn as_char(&self) -> char {
820 self.ch
821 }
822
823 /// Returns the spacing of this punctuation character, indicating whether
824 /// it's immediately followed by another `Punct` in the token stream, so
825 /// they can potentially be combined into a multicharacter operator
826 /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
827 /// so the operator has certainly ended.
828 pub fn spacing(&self) -> Spacing {
829 self.spacing
830 }
831
832 /// Returns the span for this punctuation character.
833 pub fn span(&self) -> Span {
834 self.span
835 }
836
837 /// Configure the span for this punctuation character.
838 pub fn set_span(&mut self, span: Span) {
839 self.span = span;
840 }
841}
842
843/// Prints the punctuation character as a string that should be losslessly
844/// convertible back into the same character.
845impl Display for Punct {
846 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
847 Display::fmt(&self.ch, f)
848 }
849}
850
851impl Debug for Punct {
852 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
853 let mut debug = fmt.debug_struct("Punct");
854 debug.field("char", &self.ch);
855 debug.field("spacing", &self.spacing);
856 imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
857 debug.finish()
858 }
859}
860
861/// A word of Rust code, which may be a keyword or legal variable name.
862///
863/// An identifier consists of at least one Unicode code point, the first of
864/// which has the XID_Start property and the rest of which have the XID_Continue
865/// property.
866///
867/// - The empty string is not an identifier. Use `Option<Ident>`.
868/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
869///
870/// An identifier constructed with `Ident::new` is permitted to be a Rust
871/// keyword, though parsing one through its [`Parse`] implementation rejects
872/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
873/// behaviour of `Ident::new`.
874///
875/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
876///
877/// # Examples
878///
879/// A new ident can be created from a string using the `Ident::new` function.
880/// A span must be provided explicitly which governs the name resolution
881/// behavior of the resulting identifier.
882///
883/// ```
884/// use proc_macro2::{Ident, Span};
885///
886/// fn main() {
887/// let call_ident = Ident::new("calligraphy", Span::call_site());
888///
889/// println!("{}", call_ident);
890/// }
891/// ```
892///
893/// An ident can be interpolated into a token stream using the `quote!` macro.
894///
895/// ```
896/// use proc_macro2::{Ident, Span};
897/// use quote::quote;
898///
899/// fn main() {
900/// let ident = Ident::new("demo", Span::call_site());
901///
902/// // Create a variable binding whose name is this ident.
903/// let expanded = quote! { let #ident = 10; };
904///
905/// // Create a variable binding with a slightly different name.
906/// let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
907/// let expanded = quote! { let #temp_ident = 10; };
908/// }
909/// ```
910///
911/// A string representation of the ident is available through the `to_string()`
912/// method.
913///
914/// ```
915/// # use proc_macro2::{Ident, Span};
916/// #
917/// # let ident = Ident::new("another_identifier", Span::call_site());
918/// #
919/// // Examine the ident as a string.
920/// let ident_string = ident.to_string();
921/// if ident_string.len() > 60 {
922/// println!("Very long identifier: {}", ident_string)
923/// }
924/// ```
925#[derive(Clone)]
926pub struct Ident {
927 inner: imp::Ident,
928 _marker: ProcMacroAutoTraits,
929}
930
931impl Ident {
932 fn _new(inner: imp::Ident) -> Self {
933 Ident {
934 inner,
935 _marker: MARKER,
936 }
937 }
938
939 fn _new_fallback(inner: fallback::Ident) -> Self {
940 Ident {
941 inner: imp::Ident::from(inner),
942 _marker: MARKER,
943 }
944 }
945
946 /// Creates a new `Ident` with the given `string` as well as the specified
947 /// `span`.
948 ///
949 /// The `string` argument must be a valid identifier permitted by the
950 /// language, otherwise the function will panic.
951 ///
952 /// Note that `span`, currently in rustc, configures the hygiene information
953 /// for this identifier.
954 ///
955 /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
956 /// hygiene meaning that identifiers created with this span will be resolved
957 /// as if they were written directly at the location of the macro call, and
958 /// other code at the macro call site will be able to refer to them as well.
959 ///
960 /// Later spans like `Span::def_site()` will allow to opt-in to
961 /// "definition-site" hygiene meaning that identifiers created with this
962 /// span will be resolved at the location of the macro definition and other
963 /// code at the macro call site will not be able to refer to them.
964 ///
965 /// Due to the current importance of hygiene this constructor, unlike other
966 /// tokens, requires a `Span` to be specified at construction.
967 ///
968 /// # Panics
969 ///
970 /// Panics if the input string is neither a keyword nor a legal variable
971 /// name. If you are not sure whether the string contains an identifier and
972 /// need to handle an error case, use
973 /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
974 /// style="padding-right:0;">syn::parse_str</code></a><code
975 /// style="padding-left:0;">::<Ident></code>
976 /// rather than `Ident::new`.
977 #[track_caller]
978 pub fn new(string: &str, span: Span) -> Self {
979 Ident::_new(imp::Ident::new_checked(string, span.inner))
980 }
981
982 /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
983 /// `string` argument must be a valid identifier permitted by the language
984 /// (including keywords, e.g. `fn`). Keywords which are usable in path
985 /// segments (e.g. `self`, `super`) are not supported, and will cause a
986 /// panic.
987 #[track_caller]
988 pub fn new_raw(string: &str, span: Span) -> Self {
989 Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
990 }
991
992 /// Returns the span of this `Ident`.
993 pub fn span(&self) -> Span {
994 Span::_new(self.inner.span())
995 }
996
997 /// Configures the span of this `Ident`, possibly changing its hygiene
998 /// context.
999 pub fn set_span(&mut self, span: Span) {
1000 self.inner.set_span(span.inner);
1001 }
1002}
1003
1004impl PartialEq for Ident {
1005 fn eq(&self, other: &Ident) -> bool {
1006 self.inner == other.inner
1007 }
1008}
1009
1010impl<T> PartialEq<T> for Ident
1011where
1012 T: ?Sized + AsRef<str>,
1013{
1014 fn eq(&self, other: &T) -> bool {
1015 self.inner == other
1016 }
1017}
1018
1019impl Eq for Ident {}
1020
1021impl PartialOrd for Ident {
1022 fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1023 Some(self.cmp(other))
1024 }
1025}
1026
1027impl Ord for Ident {
1028 fn cmp(&self, other: &Ident) -> Ordering {
1029 self.to_string().cmp(&other.to_string())
1030 }
1031}
1032
1033impl Hash for Ident {
1034 fn hash<H: Hasher>(&self, hasher: &mut H) {
1035 self.to_string().hash(hasher);
1036 }
1037}
1038
1039/// Prints the identifier as a string that should be losslessly convertible back
1040/// into the same identifier.
1041impl Display for Ident {
1042 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1043 Display::fmt(&self.inner, f)
1044 }
1045}
1046
1047impl Debug for Ident {
1048 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1049 Debug::fmt(&self.inner, f)
1050 }
1051}
1052
1053/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1054/// byte character (`b'a'`), an integer or floating point number with or without
1055/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1056///
1057/// Boolean literals like `true` and `false` do not belong here, they are
1058/// `Ident`s.
1059#[derive(Clone)]
1060pub struct Literal {
1061 inner: imp::Literal,
1062 _marker: ProcMacroAutoTraits,
1063}
1064
1065macro_rules! suffixed_int_literals {
1066 ($($name:ident => $kind:ident,)*) => ($(
1067 /// Creates a new suffixed integer literal with the specified value.
1068 ///
1069 /// This function will create an integer like `1u32` where the integer
1070 /// value specified is the first part of the token and the integral is
1071 /// also suffixed at the end. Literals created from negative numbers may
1072 /// not survive roundtrips through `TokenStream` or strings and may be
1073 /// broken into two tokens (`-` and positive literal).
1074 ///
1075 /// Literals created through this method have the `Span::call_site()`
1076 /// span by default, which can be configured with the `set_span` method
1077 /// below.
1078 pub fn $name(n: $kind) -> Literal {
1079 Literal::_new(imp::Literal::$name(n))
1080 }
1081 )*)
1082}
1083
1084macro_rules! unsuffixed_int_literals {
1085 ($($name:ident => $kind:ident,)*) => ($(
1086 /// Creates a new unsuffixed integer literal with the specified value.
1087 ///
1088 /// This function will create an integer like `1` where the integer
1089 /// value specified is the first part of the token. No suffix is
1090 /// specified on this token, meaning that invocations like
1091 /// `Literal::i8_unsuffixed(1)` are equivalent to
1092 /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1093 /// may not survive roundtrips through `TokenStream` or strings and may
1094 /// be broken into two tokens (`-` and positive literal).
1095 ///
1096 /// Literals created through this method have the `Span::call_site()`
1097 /// span by default, which can be configured with the `set_span` method
1098 /// below.
1099 pub fn $name(n: $kind) -> Literal {
1100 Literal::_new(imp::Literal::$name(n))
1101 }
1102 )*)
1103}
1104
1105impl Literal {
1106 fn _new(inner: imp::Literal) -> Self {
1107 Literal {
1108 inner,
1109 _marker: MARKER,
1110 }
1111 }
1112
1113 fn _new_fallback(inner: fallback::Literal) -> Self {
1114 Literal {
1115 inner: imp::Literal::from(inner),
1116 _marker: MARKER,
1117 }
1118 }
1119
1120 suffixed_int_literals! {
1121 u8_suffixed => u8,
1122 u16_suffixed => u16,
1123 u32_suffixed => u32,
1124 u64_suffixed => u64,
1125 u128_suffixed => u128,
1126 usize_suffixed => usize,
1127 i8_suffixed => i8,
1128 i16_suffixed => i16,
1129 i32_suffixed => i32,
1130 i64_suffixed => i64,
1131 i128_suffixed => i128,
1132 isize_suffixed => isize,
1133 }
1134
1135 unsuffixed_int_literals! {
1136 u8_unsuffixed => u8,
1137 u16_unsuffixed => u16,
1138 u32_unsuffixed => u32,
1139 u64_unsuffixed => u64,
1140 u128_unsuffixed => u128,
1141 usize_unsuffixed => usize,
1142 i8_unsuffixed => i8,
1143 i16_unsuffixed => i16,
1144 i32_unsuffixed => i32,
1145 i64_unsuffixed => i64,
1146 i128_unsuffixed => i128,
1147 isize_unsuffixed => isize,
1148 }
1149
1150 /// Creates a new unsuffixed floating-point literal.
1151 ///
1152 /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1153 /// the float's value is emitted directly into the token but no suffix is
1154 /// used, so it may be inferred to be a `f64` later in the compiler.
1155 /// Literals created from negative numbers may not survive round-trips
1156 /// through `TokenStream` or strings and may be broken into two tokens (`-`
1157 /// and positive literal).
1158 ///
1159 /// # Panics
1160 ///
1161 /// This function requires that the specified float is finite, for example
1162 /// if it is infinity or NaN this function will panic.
1163 pub fn f64_unsuffixed(f: f64) -> Literal {
1164 assert!(f.is_finite());
1165 Literal::_new(imp::Literal::f64_unsuffixed(f))
1166 }
1167
1168 /// Creates a new suffixed floating-point literal.
1169 ///
1170 /// This constructor will create a literal like `1.0f64` where the value
1171 /// specified is the preceding part of the token and `f64` is the suffix of
1172 /// the token. This token will always be inferred to be an `f64` in the
1173 /// compiler. Literals created from negative numbers may not survive
1174 /// round-trips through `TokenStream` or strings and may be broken into two
1175 /// tokens (`-` and positive literal).
1176 ///
1177 /// # Panics
1178 ///
1179 /// This function requires that the specified float is finite, for example
1180 /// if it is infinity or NaN this function will panic.
1181 pub fn f64_suffixed(f: f64) -> Literal {
1182 assert!(f.is_finite());
1183 Literal::_new(imp::Literal::f64_suffixed(f))
1184 }
1185
1186 /// Creates a new unsuffixed floating-point literal.
1187 ///
1188 /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1189 /// the float's value is emitted directly into the token but no suffix is
1190 /// used, so it may be inferred to be a `f64` later in the compiler.
1191 /// Literals created from negative numbers may not survive round-trips
1192 /// through `TokenStream` or strings and may be broken into two tokens (`-`
1193 /// and positive literal).
1194 ///
1195 /// # Panics
1196 ///
1197 /// This function requires that the specified float is finite, for example
1198 /// if it is infinity or NaN this function will panic.
1199 pub fn f32_unsuffixed(f: f32) -> Literal {
1200 assert!(f.is_finite());
1201 Literal::_new(imp::Literal::f32_unsuffixed(f))
1202 }
1203
1204 /// Creates a new suffixed floating-point literal.
1205 ///
1206 /// This constructor will create a literal like `1.0f32` where the value
1207 /// specified is the preceding part of the token and `f32` is the suffix of
1208 /// the token. This token will always be inferred to be an `f32` in the
1209 /// compiler. Literals created from negative numbers may not survive
1210 /// round-trips through `TokenStream` or strings and may be broken into two
1211 /// tokens (`-` and positive literal).
1212 ///
1213 /// # Panics
1214 ///
1215 /// This function requires that the specified float is finite, for example
1216 /// if it is infinity or NaN this function will panic.
1217 pub fn f32_suffixed(f: f32) -> Literal {
1218 assert!(f.is_finite());
1219 Literal::_new(imp::Literal::f32_suffixed(f))
1220 }
1221
1222 /// String literal.
1223 pub fn string(string: &str) -> Literal {
1224 Literal::_new(imp::Literal::string(string))
1225 }
1226
1227 /// Character literal.
1228 pub fn character(ch: char) -> Literal {
1229 Literal::_new(imp::Literal::character(ch))
1230 }
1231
1232 /// Byte character literal.
1233 pub fn byte_character(byte: u8) -> Literal {
1234 Literal::_new(imp::Literal::byte_character(byte))
1235 }
1236
1237 /// Byte string literal.
1238 pub fn byte_string(bytes: &[u8]) -> Literal {
1239 Literal::_new(imp::Literal::byte_string(bytes))
1240 }
1241
1242 /// C string literal.
1243 pub fn c_string(string: &CStr) -> Literal {
1244 Literal::_new(imp::Literal::c_string(string))
1245 }
1246
1247 /// Returns the span encompassing this literal.
1248 pub fn span(&self) -> Span {
1249 Span::_new(self.inner.span())
1250 }
1251
1252 /// Configures the span associated for this literal.
1253 pub fn set_span(&mut self, span: Span) {
1254 self.inner.set_span(span.inner);
1255 }
1256
1257 /// Returns a `Span` that is a subset of `self.span()` containing only
1258 /// the source bytes in range `range`. Returns `None` if the would-be
1259 /// trimmed span is outside the bounds of `self`.
1260 ///
1261 /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1262 /// nightly-only. When called from within a procedural macro not using a
1263 /// nightly compiler, this method will always return `None`.
1264 pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1265 self.inner.subspan(range).map(Span::_new)
1266 }
1267
1268 // Intended for the `quote!` macro to use when constructing a proc-macro2
1269 // token out of a macro_rules $:literal token, which is already known to be
1270 // a valid literal. This avoids reparsing/validating the literal's string
1271 // representation. This is not public API other than for quote.
1272 #[doc(hidden)]
1273 pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1274 Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1275 }
1276}
1277
1278impl FromStr for Literal {
1279 type Err = LexError;
1280
1281 fn from_str(repr: &str) -> Result<Self, LexError> {
1282 match imp::Literal::from_str_checked(repr) {
1283 Ok(lit) => Ok(Literal::_new(lit)),
1284 Err(lex) => Err(LexError {
1285 inner: lex,
1286 _marker: MARKER,
1287 }),
1288 }
1289 }
1290}
1291
1292impl Debug for Literal {
1293 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1294 Debug::fmt(&self.inner, f)
1295 }
1296}
1297
1298impl Display for Literal {
1299 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1300 Display::fmt(&self.inner, f)
1301 }
1302}
1303
1304/// Public implementation details for the `TokenStream` type, such as iterators.
1305pub mod token_stream {
1306 use crate::marker::{ProcMacroAutoTraits, MARKER};
1307 use crate::{imp, TokenTree};
1308 use core::fmt::{self, Debug};
1309
1310 pub use crate::TokenStream;
1311
1312 /// An iterator over `TokenStream`'s `TokenTree`s.
1313 ///
1314 /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1315 /// delimited groups, and returns whole groups as token trees.
1316 #[derive(Clone)]
1317 pub struct IntoIter {
1318 inner: imp::TokenTreeIter,
1319 _marker: ProcMacroAutoTraits,
1320 }
1321
1322 impl Iterator for IntoIter {
1323 type Item = TokenTree;
1324
1325 fn next(&mut self) -> Option<TokenTree> {
1326 self.inner.next()
1327 }
1328
1329 fn size_hint(&self) -> (usize, Option<usize>) {
1330 self.inner.size_hint()
1331 }
1332 }
1333
1334 impl Debug for IntoIter {
1335 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1336 f.write_str("TokenStream ")?;
1337 f.debug_list().entries(self.clone()).finish()
1338 }
1339 }
1340
1341 impl IntoIterator for TokenStream {
1342 type Item = TokenTree;
1343 type IntoIter = IntoIter;
1344
1345 fn into_iter(self) -> IntoIter {
1346 IntoIter {
1347 inner: self.inner.into_iter(),
1348 _marker: MARKER,
1349 }
1350 }
1351 }
1352}