proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
14//!   macros and cannot ever exist in code outside of a procedural macro.
15//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//!   By developing foundational libraries like [syn] and [quote] against
17//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//!   becomes easily applicable to many other use cases and we avoid
19//!   reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//!   specific to procedural macros, nothing that uses `proc_macro` can be
23//!   executed from a unit test. In order for helper libraries or components of
24//!   a macro to be testable in isolation, they must be implemented using
25//!   `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//!     let input = proc_macro2::TokenStream::from(input);
43//!
44//!     let output: proc_macro2::TokenStream = {
45//!         /* transform input */
46//!         # input
47//!     };
48//!
49//!     proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.68.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86#![no_std]
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.105")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93    clippy::cast_lossless,
94    clippy::cast_possible_truncation,
95    clippy::checked_conversions,
96    clippy::doc_markdown,
97    clippy::elidable_lifetime_names,
98    clippy::incompatible_msrv,
99    clippy::items_after_statements,
100    clippy::iter_without_into_iter,
101    clippy::let_underscore_untyped,
102    clippy::manual_assert,
103    clippy::manual_range_contains,
104    clippy::missing_panics_doc,
105    clippy::missing_safety_doc,
106    clippy::must_use_candidate,
107    clippy::needless_doctest_main,
108    clippy::needless_lifetimes,
109    clippy::new_without_default,
110    clippy::return_self_not_must_use,
111    clippy::shadow_unrelated,
112    clippy::trivially_copy_pass_by_ref,
113    clippy::uninlined_format_args,
114    clippy::unnecessary_wraps,
115    clippy::unused_self,
116    clippy::used_underscore_binding,
117    clippy::vec_init_then_push
118)]
119#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
120
121#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
122compile_error! {"\
123    Something is not right. If you've tried to turn on \
124    procmacro2_semver_exempt, you need to ensure that it \
125    is turned on for the compilation of the proc-macro2 \
126    build script as well.
127"}
128
129#[cfg(all(
130    procmacro2_nightly_testing,
131    feature = "proc-macro",
132    not(proc_macro_span)
133))]
134compile_error! {"\
135    Build script probe failed to compile.
136"}
137
138extern crate alloc;
139extern crate std;
140
141#[cfg(feature = "proc-macro")]
142extern crate proc_macro;
143
144mod marker;
145mod parse;
146mod probe;
147mod rcvec;
148
149#[cfg(wrap_proc_macro)]
150mod detection;
151
152// Public for proc_macro2::fallback::force() and unforce(), but those are quite
153// a niche use case so we omit it from rustdoc.
154#[doc(hidden)]
155pub mod fallback;
156
157pub mod extra;
158
159#[cfg(not(wrap_proc_macro))]
160use crate::fallback as imp;
161#[path = "wrapper.rs"]
162#[cfg(wrap_proc_macro)]
163mod imp;
164
165#[cfg(span_locations)]
166mod location;
167
168#[cfg(procmacro2_semver_exempt)]
169mod num;
170#[cfg(procmacro2_semver_exempt)]
171#[allow(dead_code)]
172mod rustc_literal_escaper;
173
174use crate::extra::DelimSpan;
175use crate::marker::{ProcMacroAutoTraits, MARKER};
176#[cfg(procmacro2_semver_exempt)]
177use crate::rustc_literal_escaper::MixedUnit;
178#[cfg(procmacro2_semver_exempt)]
179use alloc::borrow::ToOwned as _;
180use alloc::string::{String, ToString as _};
181#[cfg(procmacro2_semver_exempt)]
182use alloc::vec::Vec;
183use core::cmp::Ordering;
184use core::ffi::CStr;
185use core::fmt::{self, Debug, Display};
186use core::hash::{Hash, Hasher};
187#[cfg(span_locations)]
188use core::ops::Range;
189use core::ops::RangeBounds;
190use core::str::FromStr;
191use std::error::Error;
192#[cfg(span_locations)]
193use std::path::PathBuf;
194
195#[cfg(span_locations)]
196#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
197pub use crate::location::LineColumn;
198
199#[cfg(procmacro2_semver_exempt)]
200#[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
201pub use crate::rustc_literal_escaper::EscapeError;
202
203/// An abstract stream of tokens, or more concretely a sequence of token trees.
204///
205/// This type provides interfaces for iterating over token trees and for
206/// collecting token trees into one stream.
207///
208/// Token stream is both the input and output of `#[proc_macro]`,
209/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
210#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenStream {
    #[inline]
    fn clone(&self) -> TokenStream {
        TokenStream {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
211pub struct TokenStream {
212    inner: imp::TokenStream,
213    _marker: ProcMacroAutoTraits,
214}
215
216/// Error returned from `TokenStream::from_str`.
217pub struct LexError {
218    inner: imp::LexError,
219    _marker: ProcMacroAutoTraits,
220}
221
222impl TokenStream {
223    fn _new(inner: imp::TokenStream) -> Self {
224        TokenStream {
225            inner,
226            _marker: MARKER,
227        }
228    }
229
230    fn _new_fallback(inner: fallback::TokenStream) -> Self {
231        TokenStream {
232            inner: imp::TokenStream::from(inner),
233            _marker: MARKER,
234        }
235    }
236
237    /// Returns an empty `TokenStream` containing no token trees.
238    pub fn new() -> Self {
239        TokenStream::_new(imp::TokenStream::new())
240    }
241
242    /// Checks if this `TokenStream` is empty.
243    pub fn is_empty(&self) -> bool {
244        self.inner.is_empty()
245    }
246}
247
248/// `TokenStream::default()` returns an empty stream,
249/// i.e. this is equivalent with `TokenStream::new()`.
250impl Default for TokenStream {
251    fn default() -> Self {
252        TokenStream::new()
253    }
254}
255
256/// Attempts to break the string into tokens and parse those tokens into a token
257/// stream.
258///
259/// May fail for a number of reasons, for example, if the string contains
260/// unbalanced delimiters or characters not existing in the language.
261///
262/// NOTE: Some errors may cause panics instead of returning `LexError`. We
263/// reserve the right to change these errors into `LexError`s later.
264impl FromStr for TokenStream {
265    type Err = LexError;
266
267    fn from_str(src: &str) -> Result<TokenStream, LexError> {
268        match imp::TokenStream::from_str_checked(src) {
269            Ok(tokens) => Ok(TokenStream::_new(tokens)),
270            Err(lex) => Err(LexError {
271                inner: lex,
272                _marker: MARKER,
273            }),
274        }
275    }
276}
277
278#[cfg(feature = "proc-macro")]
279#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
280impl From<proc_macro::TokenStream> for TokenStream {
281    fn from(inner: proc_macro::TokenStream) -> Self {
282        TokenStream::_new(imp::TokenStream::from(inner))
283    }
284}
285
286#[cfg(feature = "proc-macro")]
287#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
288impl From<TokenStream> for proc_macro::TokenStream {
289    fn from(inner: TokenStream) -> Self {
290        proc_macro::TokenStream::from(inner.inner)
291    }
292}
293
294impl From<TokenTree> for TokenStream {
295    fn from(token: TokenTree) -> Self {
296        TokenStream::_new(imp::TokenStream::from(token))
297    }
298}
299
300impl Extend<TokenTree> for TokenStream {
301    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, tokens: I) {
302        self.inner.extend(tokens);
303    }
304}
305
306impl Extend<TokenStream> for TokenStream {
307    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
308        self.inner
309            .extend(streams.into_iter().map(|stream| stream.inner));
310    }
311}
312
313impl Extend<Group> for TokenStream {
314    fn extend<I: IntoIterator<Item = Group>>(&mut self, tokens: I) {
315        self.inner.extend(tokens.into_iter().map(TokenTree::Group));
316    }
317}
318
319impl Extend<Ident> for TokenStream {
320    fn extend<I: IntoIterator<Item = Ident>>(&mut self, tokens: I) {
321        self.inner.extend(tokens.into_iter().map(TokenTree::Ident));
322    }
323}
324
325impl Extend<Punct> for TokenStream {
326    fn extend<I: IntoIterator<Item = Punct>>(&mut self, tokens: I) {
327        self.inner.extend(tokens.into_iter().map(TokenTree::Punct));
328    }
329}
330
331impl Extend<Literal> for TokenStream {
332    fn extend<I: IntoIterator<Item = Literal>>(&mut self, tokens: I) {
333        self.inner
334            .extend(tokens.into_iter().map(TokenTree::Literal));
335    }
336}
337
338/// Collects a number of token trees into a single stream.
339impl FromIterator<TokenTree> for TokenStream {
340    fn from_iter<I: IntoIterator<Item = TokenTree>>(tokens: I) -> Self {
341        TokenStream::_new(tokens.into_iter().collect())
342    }
343}
344
345impl FromIterator<TokenStream> for TokenStream {
346    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
347        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
348    }
349}
350
351/// Prints the token stream as a string that is supposed to be losslessly
352/// convertible back into the same token stream (modulo spans), except for
353/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
354/// numeric literals.
355impl Display for TokenStream {
356    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
357        Display::fmt(&self.inner, f)
358    }
359}
360
361/// Prints token in a form convenient for debugging.
362impl Debug for TokenStream {
363    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
364        Debug::fmt(&self.inner, f)
365    }
366}
367
368impl LexError {
369    pub fn span(&self) -> Span {
370        Span::_new(self.inner.span())
371    }
372}
373
374impl Debug for LexError {
375    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
376        Debug::fmt(&self.inner, f)
377    }
378}
379
380impl Display for LexError {
381    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
382        Display::fmt(&self.inner, f)
383    }
384}
385
386impl Error for LexError {}
387
388/// A region of source code, along with macro expansion information.
389#[derive(#[automatically_derived]
impl ::core::marker::Copy for Span { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Span {
    #[inline]
    fn clone(&self) -> Span {
        let _: ::core::clone::AssertParamIsClone<imp::Span>;
        let _: ::core::clone::AssertParamIsClone<ProcMacroAutoTraits>;
        *self
    }
}Clone)]
390pub struct Span {
391    inner: imp::Span,
392    _marker: ProcMacroAutoTraits,
393}
394
395impl Span {
396    fn _new(inner: imp::Span) -> Self {
397        Span {
398            inner,
399            _marker: MARKER,
400        }
401    }
402
403    fn _new_fallback(inner: fallback::Span) -> Self {
404        Span {
405            inner: imp::Span::from(inner),
406            _marker: MARKER,
407        }
408    }
409
410    /// The span of the invocation of the current procedural macro.
411    ///
412    /// Identifiers created with this span will be resolved as if they were
413    /// written directly at the macro call location (call-site hygiene) and
414    /// other code at the macro call site will be able to refer to them as well.
415    pub fn call_site() -> Self {
416        Span::_new(imp::Span::call_site())
417    }
418
419    /// The span located at the invocation of the procedural macro, but with
420    /// local variables, labels, and `$crate` resolved at the definition site
421    /// of the macro. This is the same hygiene behavior as `macro_rules`.
422    pub fn mixed_site() -> Self {
423        Span::_new(imp::Span::mixed_site())
424    }
425
426    /// A span that resolves at the macro definition site.
427    ///
428    /// This method is semver exempt and not exposed by default.
429    #[cfg(procmacro2_semver_exempt)]
430    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
431    pub fn def_site() -> Self {
432        Span::_new(imp::Span::def_site())
433    }
434
435    /// Creates a new span with the same line/column information as `self` but
436    /// that resolves symbols as though it were at `other`.
437    pub fn resolved_at(&self, other: Span) -> Span {
438        Span::_new(self.inner.resolved_at(other.inner))
439    }
440
441    /// Creates a new span with the same name resolution behavior as `self` but
442    /// with the line/column information of `other`.
443    pub fn located_at(&self, other: Span) -> Span {
444        Span::_new(self.inner.located_at(other.inner))
445    }
446
447    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
448    ///
449    /// This method is available when building with a nightly compiler, or when
450    /// building with rustc 1.29+ *without* semver exempt features.
451    ///
452    /// # Panics
453    ///
454    /// Panics if called from outside of a procedural macro. Unlike
455    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
456    /// the context of a procedural macro invocation.
457    #[cfg(wrap_proc_macro)]
458    pub fn unwrap(self) -> proc_macro::Span {
459        self.inner.unwrap()
460    }
461
462    // Soft deprecated. Please use Span::unwrap.
463    #[cfg(wrap_proc_macro)]
464    #[doc(hidden)]
465    pub fn unstable(self) -> proc_macro::Span {
466        self.unwrap()
467    }
468
469    /// Returns the span's byte position range in the source file.
470    ///
471    /// This method requires the `"span-locations"` feature to be enabled.
472    ///
473    /// When executing in a procedural macro context, the returned range is only
474    /// accurate if compiled with a nightly toolchain. The stable toolchain does
475    /// not have this information available. When executing outside of a
476    /// procedural macro, such as main.rs or build.rs, the byte range is always
477    /// accurate regardless of toolchain.
478    #[cfg(span_locations)]
479    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
480    pub fn byte_range(&self) -> Range<usize> {
481        self.inner.byte_range()
482    }
483
484    /// Get the starting line/column in the source file for this span.
485    ///
486    /// This method requires the `"span-locations"` feature to be enabled.
487    ///
488    /// When executing in a procedural macro context, the returned line/column
489    /// are only meaningful if compiled with a nightly toolchain. The stable
490    /// toolchain does not have this information available. When executing
491    /// outside of a procedural macro, such as main.rs or build.rs, the
492    /// line/column are always meaningful regardless of toolchain.
493    #[cfg(span_locations)]
494    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
495    pub fn start(&self) -> LineColumn {
496        self.inner.start()
497    }
498
499    /// Get the ending line/column in the source file for this span.
500    ///
501    /// This method requires the `"span-locations"` feature to be enabled.
502    ///
503    /// When executing in a procedural macro context, the returned line/column
504    /// are only meaningful if compiled with a nightly toolchain. The stable
505    /// toolchain does not have this information available. When executing
506    /// outside of a procedural macro, such as main.rs or build.rs, the
507    /// line/column are always meaningful regardless of toolchain.
508    #[cfg(span_locations)]
509    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
510    pub fn end(&self) -> LineColumn {
511        self.inner.end()
512    }
513
514    /// The path to the source file in which this span occurs, for display
515    /// purposes.
516    ///
517    /// This might not correspond to a valid file system path. It might be
518    /// remapped, or might be an artificial path such as `"<macro expansion>"`.
519    #[cfg(span_locations)]
520    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
521    pub fn file(&self) -> String {
522        self.inner.file()
523    }
524
525    /// The path to the source file in which this span occurs on disk.
526    ///
527    /// This is the actual path on disk. It is unaffected by path remapping.
528    ///
529    /// This path should not be embedded in the output of the macro; prefer
530    /// `file()` instead.
531    #[cfg(span_locations)]
532    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
533    pub fn local_file(&self) -> Option<PathBuf> {
534        self.inner.local_file()
535    }
536
537    /// Create a new span encompassing `self` and `other`.
538    ///
539    /// Returns `None` if `self` and `other` are from different files.
540    ///
541    /// Warning: the underlying [`proc_macro::Span::join`] method is
542    /// nightly-only. When called from within a procedural macro not using a
543    /// nightly compiler, this method will always return `None`.
544    pub fn join(&self, other: Span) -> Option<Span> {
545        self.inner.join(other.inner).map(Span::_new)
546    }
547
548    /// Compares two spans to see if they're equal.
549    ///
550    /// This method is semver exempt and not exposed by default.
551    #[cfg(procmacro2_semver_exempt)]
552    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
553    pub fn eq(&self, other: &Span) -> bool {
554        self.inner.eq(&other.inner)
555    }
556
557    /// Returns the source text behind a span. This preserves the original
558    /// source code, including spaces and comments. It only returns a result if
559    /// the span corresponds to real source code.
560    ///
561    /// Note: The observable result of a macro should only rely on the tokens
562    /// and not on this source text. The result of this function is a best
563    /// effort to be used for diagnostics only.
564    pub fn source_text(&self) -> Option<String> {
565        self.inner.source_text()
566    }
567}
568
569/// Prints a span in a form convenient for debugging.
570impl Debug for Span {
571    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
572        Debug::fmt(&self.inner, f)
573    }
574}
575
576/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
577#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenTree {
    #[inline]
    fn clone(&self) -> TokenTree {
        match self {
            TokenTree::Group(__self_0) =>
                TokenTree::Group(::core::clone::Clone::clone(__self_0)),
            TokenTree::Ident(__self_0) =>
                TokenTree::Ident(::core::clone::Clone::clone(__self_0)),
            TokenTree::Punct(__self_0) =>
                TokenTree::Punct(::core::clone::Clone::clone(__self_0)),
            TokenTree::Literal(__self_0) =>
                TokenTree::Literal(::core::clone::Clone::clone(__self_0)),
        }
    }
}Clone)]
578pub enum TokenTree {
579    /// A token stream surrounded by bracket delimiters.
580    Group(Group),
581    /// An identifier.
582    Ident(Ident),
583    /// A single punctuation character (`+`, `,`, `$`, etc.).
584    Punct(Punct),
585    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
586    Literal(Literal),
587}
588
589impl TokenTree {
590    /// Returns the span of this tree, delegating to the `span` method of
591    /// the contained token or a delimited stream.
592    pub fn span(&self) -> Span {
593        match self {
594            TokenTree::Group(t) => t.span(),
595            TokenTree::Ident(t) => t.span(),
596            TokenTree::Punct(t) => t.span(),
597            TokenTree::Literal(t) => t.span(),
598        }
599    }
600
601    /// Configures the span for *only this token*.
602    ///
603    /// Note that if this token is a `Group` then this method will not configure
604    /// the span of each of the internal tokens, this will simply delegate to
605    /// the `set_span` method of each variant.
606    pub fn set_span(&mut self, span: Span) {
607        match self {
608            TokenTree::Group(t) => t.set_span(span),
609            TokenTree::Ident(t) => t.set_span(span),
610            TokenTree::Punct(t) => t.set_span(span),
611            TokenTree::Literal(t) => t.set_span(span),
612        }
613    }
614}
615
616impl From<Group> for TokenTree {
617    fn from(g: Group) -> Self {
618        TokenTree::Group(g)
619    }
620}
621
622impl From<Ident> for TokenTree {
623    fn from(g: Ident) -> Self {
624        TokenTree::Ident(g)
625    }
626}
627
628impl From<Punct> for TokenTree {
629    fn from(g: Punct) -> Self {
630        TokenTree::Punct(g)
631    }
632}
633
634impl From<Literal> for TokenTree {
635    fn from(g: Literal) -> Self {
636        TokenTree::Literal(g)
637    }
638}
639
640/// Prints the token tree as a string that is supposed to be losslessly
641/// convertible back into the same token tree (modulo spans), except for
642/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
643/// numeric literals.
644impl Display for TokenTree {
645    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
646        match self {
647            TokenTree::Group(t) => Display::fmt(t, f),
648            TokenTree::Ident(t) => Display::fmt(t, f),
649            TokenTree::Punct(t) => Display::fmt(t, f),
650            TokenTree::Literal(t) => Display::fmt(t, f),
651        }
652    }
653}
654
655/// Prints token tree in a form convenient for debugging.
656impl Debug for TokenTree {
657    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
658        // Each of these has the name in the struct type in the derived debug,
659        // so don't bother with an extra layer of indirection
660        match self {
661            TokenTree::Group(t) => Debug::fmt(t, f),
662            TokenTree::Ident(t) => {
663                let mut debug = f.debug_struct("Ident");
664                debug.field("sym", &format_args!("{0}", t)format_args!("{}", t));
665                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
666                debug.finish()
667            }
668            TokenTree::Punct(t) => Debug::fmt(t, f),
669            TokenTree::Literal(t) => Debug::fmt(t, f),
670        }
671    }
672}
673
674/// A delimited token stream.
675///
676/// A `Group` internally contains a `TokenStream` which is surrounded by
677/// `Delimiter`s.
678#[derive(#[automatically_derived]
impl ::core::clone::Clone for Group {
    #[inline]
    fn clone(&self) -> Group {
        Group { inner: ::core::clone::Clone::clone(&self.inner) }
    }
}Clone)]
679pub struct Group {
680    inner: imp::Group,
681}
682
683/// Describes how a sequence of token trees is delimited.
684#[derive(#[automatically_derived]
impl ::core::marker::Copy for Delimiter { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Delimiter {
    #[inline]
    fn clone(&self) -> Delimiter { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Delimiter {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Delimiter::Parenthesis => "Parenthesis",
                Delimiter::Brace => "Brace",
                Delimiter::Bracket => "Bracket",
                Delimiter::None => "None",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Delimiter {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Delimiter {
    #[inline]
    fn eq(&self, other: &Delimiter) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
685pub enum Delimiter {
686    /// `( ... )`
687    Parenthesis,
688    /// `{ ... }`
689    Brace,
690    /// `[ ... ]`
691    Bracket,
692    /// `∅ ... ∅`
693    ///
694    /// An invisible delimiter, that may, for example, appear around tokens
695    /// coming from a "macro variable" `$var`. It is important to preserve
696    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
697    /// Invisible delimiters may not survive roundtrip of a token stream through
698    /// a string.
699    ///
700    /// <div class="warning">
701    ///
702    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
703    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
704    /// of a proc_macro macro are preserved, and only in very specific circumstances.
705    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
706    /// operator priorities as indicated above. The other `Delimiter` variants should be used
707    /// instead in this context. This is a rustc bug. For details, see
708    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
709    ///
710    /// </div>
711    None,
712}
713
714impl Group {
715    fn _new(inner: imp::Group) -> Self {
716        Group { inner }
717    }
718
719    fn _new_fallback(inner: fallback::Group) -> Self {
720        Group {
721            inner: imp::Group::from(inner),
722        }
723    }
724
725    /// Creates a new `Group` with the given delimiter and token stream.
726    ///
727    /// This constructor will set the span for this group to
728    /// `Span::call_site()`. To change the span you can use the `set_span`
729    /// method below.
730    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
731        Group {
732            inner: imp::Group::new(delimiter, stream.inner),
733        }
734    }
735
736    /// Returns the punctuation used as the delimiter for this group: a set of
737    /// parentheses, square brackets, or curly braces.
738    pub fn delimiter(&self) -> Delimiter {
739        self.inner.delimiter()
740    }
741
742    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
743    ///
744    /// Note that the returned token stream does not include the delimiter
745    /// returned above.
746    pub fn stream(&self) -> TokenStream {
747        TokenStream::_new(self.inner.stream())
748    }
749
750    /// Returns the span for the delimiters of this token stream, spanning the
751    /// entire `Group`.
752    ///
753    /// ```text
754    /// pub fn span(&self) -> Span {
755    ///            ^^^^^^^
756    /// ```
757    pub fn span(&self) -> Span {
758        Span::_new(self.inner.span())
759    }
760
761    /// Returns the span pointing to the opening delimiter of this group.
762    ///
763    /// ```text
764    /// pub fn span_open(&self) -> Span {
765    ///                 ^
766    /// ```
767    pub fn span_open(&self) -> Span {
768        Span::_new(self.inner.span_open())
769    }
770
771    /// Returns the span pointing to the closing delimiter of this group.
772    ///
773    /// ```text
774    /// pub fn span_close(&self) -> Span {
775    ///                        ^
776    /// ```
777    pub fn span_close(&self) -> Span {
778        Span::_new(self.inner.span_close())
779    }
780
781    /// Returns an object that holds this group's `span_open()` and
782    /// `span_close()` together (in a more compact representation than holding
783    /// those 2 spans individually).
784    pub fn delim_span(&self) -> DelimSpan {
785        DelimSpan::new(&self.inner)
786    }
787
788    /// Configures the span for this `Group`'s delimiters, but not its internal
789    /// tokens.
790    ///
791    /// This method will **not** set the span of all the internal tokens spanned
792    /// by this group, but rather it will only set the span of the delimiter
793    /// tokens at the level of the `Group`.
794    pub fn set_span(&mut self, span: Span) {
795        self.inner.set_span(span.inner);
796    }
797}
798
799/// Prints the group as a string that should be losslessly convertible back
800/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
801/// with `Delimiter::None` delimiters.
802impl Display for Group {
803    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
804        Display::fmt(&self.inner, formatter)
805    }
806}
807
808impl Debug for Group {
809    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
810        Debug::fmt(&self.inner, formatter)
811    }
812}
813
814/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
815///
816/// Multicharacter operators like `+=` are represented as two instances of
817/// `Punct` with different forms of `Spacing` returned.
818#[derive(#[automatically_derived]
impl ::core::clone::Clone for Punct {
    #[inline]
    fn clone(&self) -> Punct {
        Punct {
            ch: ::core::clone::Clone::clone(&self.ch),
            spacing: ::core::clone::Clone::clone(&self.spacing),
            span: ::core::clone::Clone::clone(&self.span),
        }
    }
}Clone)]
819pub struct Punct {
820    ch: char,
821    spacing: Spacing,
822    span: Span,
823}
824
825/// Whether a `Punct` is followed immediately by another `Punct` or followed by
826/// another token or whitespace.
827#[derive(#[automatically_derived]
impl ::core::marker::Copy for Spacing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Spacing {
    #[inline]
    fn clone(&self) -> Spacing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Spacing {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Spacing::Alone => "Alone",
                Spacing::Joint => "Joint",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Spacing {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Spacing {
    #[inline]
    fn eq(&self, other: &Spacing) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
828pub enum Spacing {
829    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
830    Alone,
831    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
832    ///
833    /// Additionally, single quote `'` can join with identifiers to form
834    /// lifetimes `'ident`.
835    Joint,
836}
837
838impl Punct {
839    /// Creates a new `Punct` from the given character and spacing.
840    ///
841    /// The `ch` argument must be a valid punctuation character permitted by the
842    /// language, otherwise the function will panic.
843    ///
844    /// The returned `Punct` will have the default span of `Span::call_site()`
845    /// which can be further configured with the `set_span` method below.
846    pub fn new(ch: char, spacing: Spacing) -> Self {
847        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
848        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
849        {
850            Punct {
851                ch,
852                spacing,
853                span: Span::call_site(),
854            }
855        } else {
856            {
    ::core::panicking::panic_fmt(format_args!("unsupported proc macro punctuation character {0:?}",
            ch));
};panic!("unsupported proc macro punctuation character {:?}", ch);
857        }
858    }
859
860    /// Returns the value of this punctuation character as `char`.
861    pub fn as_char(&self) -> char {
862        self.ch
863    }
864
865    /// Returns the spacing of this punctuation character, indicating whether
866    /// it's immediately followed by another `Punct` in the token stream, so
867    /// they can potentially be combined into a multicharacter operator
868    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
869    /// so the operator has certainly ended.
870    pub fn spacing(&self) -> Spacing {
871        self.spacing
872    }
873
874    /// Returns the span for this punctuation character.
875    pub fn span(&self) -> Span {
876        self.span
877    }
878
879    /// Configure the span for this punctuation character.
880    pub fn set_span(&mut self, span: Span) {
881        self.span = span;
882    }
883}
884
885/// Prints the punctuation character as a string that should be losslessly
886/// convertible back into the same character.
887impl Display for Punct {
888    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
889        Display::fmt(&self.ch, f)
890    }
891}
892
893impl Debug for Punct {
894    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
895        let mut debug = fmt.debug_struct("Punct");
896        debug.field("char", &self.ch);
897        debug.field("spacing", &self.spacing);
898        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
899        debug.finish()
900    }
901}
902
903/// A word of Rust code, which may be a keyword or legal variable name.
904///
905/// An identifier consists of at least one Unicode code point, the first of
906/// which has the XID_Start property and the rest of which have the XID_Continue
907/// property.
908///
909/// - The empty string is not an identifier. Use `Option<Ident>`.
910/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
911///
912/// An identifier constructed with `Ident::new` is permitted to be a Rust
913/// keyword, though parsing one through its [`Parse`] implementation rejects
914/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
915/// behaviour of `Ident::new`.
916///
917/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
918///
919/// # Examples
920///
921/// A new ident can be created from a string using the `Ident::new` function.
922/// A span must be provided explicitly which governs the name resolution
923/// behavior of the resulting identifier.
924///
925/// ```
926/// use proc_macro2::{Ident, Span};
927///
928/// fn main() {
929///     let call_ident = Ident::new("calligraphy", Span::call_site());
930///
931///     println!("{}", call_ident);
932/// }
933/// ```
934///
935/// An ident can be interpolated into a token stream using the `quote!` macro.
936///
937/// ```
938/// use proc_macro2::{Ident, Span};
939/// use quote::quote;
940///
941/// fn main() {
942///     let ident = Ident::new("demo", Span::call_site());
943///
944///     // Create a variable binding whose name is this ident.
945///     let expanded = quote! { let #ident = 10; };
946///
947///     // Create a variable binding with a slightly different name.
948///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
949///     let expanded = quote! { let #temp_ident = 10; };
950/// }
951/// ```
952///
953/// A string representation of the ident is available through the `to_string()`
954/// method.
955///
956/// ```
957/// # use proc_macro2::{Ident, Span};
958/// #
959/// # let ident = Ident::new("another_identifier", Span::call_site());
960/// #
961/// // Examine the ident as a string.
962/// let ident_string = ident.to_string();
963/// if ident_string.len() > 60 {
964///     println!("Very long identifier: {}", ident_string)
965/// }
966/// ```
967#[derive(#[automatically_derived]
impl ::core::clone::Clone for Ident {
    #[inline]
    fn clone(&self) -> Ident {
        Ident {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
968pub struct Ident {
969    inner: imp::Ident,
970    _marker: ProcMacroAutoTraits,
971}
972
973impl Ident {
974    fn _new(inner: imp::Ident) -> Self {
975        Ident {
976            inner,
977            _marker: MARKER,
978        }
979    }
980
981    fn _new_fallback(inner: fallback::Ident) -> Self {
982        Ident {
983            inner: imp::Ident::from(inner),
984            _marker: MARKER,
985        }
986    }
987
988    /// Creates a new `Ident` with the given `string` as well as the specified
989    /// `span`.
990    ///
991    /// The `string` argument must be a valid identifier permitted by the
992    /// language, otherwise the function will panic.
993    ///
994    /// Note that `span`, currently in rustc, configures the hygiene information
995    /// for this identifier.
996    ///
997    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
998    /// hygiene meaning that identifiers created with this span will be resolved
999    /// as if they were written directly at the location of the macro call, and
1000    /// other code at the macro call site will be able to refer to them as well.
1001    ///
1002    /// Later spans like `Span::def_site()` will allow to opt-in to
1003    /// "definition-site" hygiene meaning that identifiers created with this
1004    /// span will be resolved at the location of the macro definition and other
1005    /// code at the macro call site will not be able to refer to them.
1006    ///
1007    /// Due to the current importance of hygiene this constructor, unlike other
1008    /// tokens, requires a `Span` to be specified at construction.
1009    ///
1010    /// # Panics
1011    ///
1012    /// Panics if the input string is neither a keyword nor a legal variable
1013    /// name. If you are not sure whether the string contains an identifier and
1014    /// need to handle an error case, use
1015    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
1016    ///   style="padding-right:0;">syn::parse_str</code></a><code
1017    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
1018    /// rather than `Ident::new`.
1019    #[track_caller]
1020    pub fn new(string: &str, span: Span) -> Self {
1021        Ident::_new(imp::Ident::new_checked(string, span.inner))
1022    }
1023
1024    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
1025    /// `string` argument must be a valid identifier permitted by the language
1026    /// (including keywords, e.g. `fn`). Keywords which are usable in path
1027    /// segments (e.g. `self`, `super`) are not supported, and will cause a
1028    /// panic.
1029    #[track_caller]
1030    pub fn new_raw(string: &str, span: Span) -> Self {
1031        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
1032    }
1033
1034    /// Returns the span of this `Ident`.
1035    pub fn span(&self) -> Span {
1036        Span::_new(self.inner.span())
1037    }
1038
1039    /// Configures the span of this `Ident`, possibly changing its hygiene
1040    /// context.
1041    pub fn set_span(&mut self, span: Span) {
1042        self.inner.set_span(span.inner);
1043    }
1044}
1045
1046impl PartialEq for Ident {
1047    fn eq(&self, other: &Ident) -> bool {
1048        self.inner == other.inner
1049    }
1050}
1051
1052impl<T> PartialEq<T> for Ident
1053where
1054    T: ?Sized + AsRef<str>,
1055{
1056    fn eq(&self, other: &T) -> bool {
1057        self.inner == other
1058    }
1059}
1060
1061impl Eq for Ident {}
1062
1063impl PartialOrd for Ident {
1064    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1065        Some(self.cmp(other))
1066    }
1067}
1068
1069impl Ord for Ident {
1070    fn cmp(&self, other: &Ident) -> Ordering {
1071        self.to_string().cmp(&other.to_string())
1072    }
1073}
1074
1075impl Hash for Ident {
1076    fn hash<H: Hasher>(&self, hasher: &mut H) {
1077        self.to_string().hash(hasher);
1078    }
1079}
1080
1081/// Prints the identifier as a string that should be losslessly convertible back
1082/// into the same identifier.
1083impl Display for Ident {
1084    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1085        Display::fmt(&self.inner, f)
1086    }
1087}
1088
1089impl Debug for Ident {
1090    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1091        Debug::fmt(&self.inner, f)
1092    }
1093}
1094
1095/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1096/// byte character (`b'a'`), an integer or floating point number with or without
1097/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1098///
1099/// Boolean literals like `true` and `false` do not belong here, they are
1100/// `Ident`s.
1101#[derive(#[automatically_derived]
impl ::core::clone::Clone for Literal {
    #[inline]
    fn clone(&self) -> Literal {
        Literal {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1102pub struct Literal {
1103    inner: imp::Literal,
1104    _marker: ProcMacroAutoTraits,
1105}
1106
1107macro_rules! suffixed_int_literals {
1108    ($($name:ident => $kind:ident,)*) => ($(
1109        /// Creates a new suffixed integer literal with the specified value.
1110        ///
1111        /// This function will create an integer like `1u32` where the integer
1112        /// value specified is the first part of the token and the integral is
1113        /// also suffixed at the end. Literals created from negative numbers may
1114        /// not survive roundtrips through `TokenStream` or strings and may be
1115        /// broken into two tokens (`-` and positive literal).
1116        ///
1117        /// Literals created through this method have the `Span::call_site()`
1118        /// span by default, which can be configured with the `set_span` method
1119        /// below.
1120        pub fn $name(n: $kind) -> Literal {
1121            Literal::_new(imp::Literal::$name(n))
1122        }
1123    )*)
1124}
1125
1126macro_rules! unsuffixed_int_literals {
1127    ($($name:ident => $kind:ident,)*) => ($(
1128        /// Creates a new unsuffixed integer literal with the specified value.
1129        ///
1130        /// This function will create an integer like `1` where the integer
1131        /// value specified is the first part of the token. No suffix is
1132        /// specified on this token, meaning that invocations like
1133        /// `Literal::i8_unsuffixed(1)` are equivalent to
1134        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1135        /// may not survive roundtrips through `TokenStream` or strings and may
1136        /// be broken into two tokens (`-` and positive literal).
1137        ///
1138        /// Literals created through this method have the `Span::call_site()`
1139        /// span by default, which can be configured with the `set_span` method
1140        /// below.
1141        pub fn $name(n: $kind) -> Literal {
1142            Literal::_new(imp::Literal::$name(n))
1143        }
1144    )*)
1145}
1146
1147impl Literal {
1148    fn _new(inner: imp::Literal) -> Self {
1149        Literal {
1150            inner,
1151            _marker: MARKER,
1152        }
1153    }
1154
1155    fn _new_fallback(inner: fallback::Literal) -> Self {
1156        Literal {
1157            inner: imp::Literal::from(inner),
1158            _marker: MARKER,
1159        }
1160    }
1161
1162    n
Literal
Literal::_new(imp::Literal::isize_suffixed(n));suffixed_int_literals! {
1163        u8_suffixed => u8,
1164        u16_suffixed => u16,
1165        u32_suffixed => u32,
1166        u64_suffixed => u64,
1167        u128_suffixed => u128,
1168        usize_suffixed => usize,
1169        i8_suffixed => i8,
1170        i16_suffixed => i16,
1171        i32_suffixed => i32,
1172        i64_suffixed => i64,
1173        i128_suffixed => i128,
1174        isize_suffixed => isize,
1175    }
1176
1177    n
Literal
Literal::_new(imp::Literal::isize_unsuffixed(n));unsuffixed_int_literals! {
1178        u8_unsuffixed => u8,
1179        u16_unsuffixed => u16,
1180        u32_unsuffixed => u32,
1181        u64_unsuffixed => u64,
1182        u128_unsuffixed => u128,
1183        usize_unsuffixed => usize,
1184        i8_unsuffixed => i8,
1185        i16_unsuffixed => i16,
1186        i32_unsuffixed => i32,
1187        i64_unsuffixed => i64,
1188        i128_unsuffixed => i128,
1189        isize_unsuffixed => isize,
1190    }
1191
1192    /// Creates a new unsuffixed floating-point literal.
1193    ///
1194    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1195    /// the float's value is emitted directly into the token but no suffix is
1196    /// used, so it may be inferred to be a `f64` later in the compiler.
1197    /// Literals created from negative numbers may not survive round-trips
1198    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1199    /// and positive literal).
1200    ///
1201    /// # Panics
1202    ///
1203    /// This function requires that the specified float is finite, for example
1204    /// if it is infinity or NaN this function will panic.
1205    pub fn f64_unsuffixed(f: f64) -> Literal {
1206        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1207        Literal::_new(imp::Literal::f64_unsuffixed(f))
1208    }
1209
1210    /// Creates a new suffixed floating-point literal.
1211    ///
1212    /// This constructor will create a literal like `1.0f64` where the value
1213    /// specified is the preceding part of the token and `f64` is the suffix of
1214    /// the token. This token will always be inferred to be an `f64` in the
1215    /// compiler. Literals created from negative numbers may not survive
1216    /// round-trips through `TokenStream` or strings and may be broken into two
1217    /// tokens (`-` and positive literal).
1218    ///
1219    /// # Panics
1220    ///
1221    /// This function requires that the specified float is finite, for example
1222    /// if it is infinity or NaN this function will panic.
1223    pub fn f64_suffixed(f: f64) -> Literal {
1224        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1225        Literal::_new(imp::Literal::f64_suffixed(f))
1226    }
1227
1228    /// Creates a new unsuffixed floating-point literal.
1229    ///
1230    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1231    /// the float's value is emitted directly into the token but no suffix is
1232    /// used, so it may be inferred to be a `f64` later in the compiler.
1233    /// Literals created from negative numbers may not survive round-trips
1234    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1235    /// and positive literal).
1236    ///
1237    /// # Panics
1238    ///
1239    /// This function requires that the specified float is finite, for example
1240    /// if it is infinity or NaN this function will panic.
1241    pub fn f32_unsuffixed(f: f32) -> Literal {
1242        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1243        Literal::_new(imp::Literal::f32_unsuffixed(f))
1244    }
1245
1246    /// Creates a new suffixed floating-point literal.
1247    ///
1248    /// This constructor will create a literal like `1.0f32` where the value
1249    /// specified is the preceding part of the token and `f32` is the suffix of
1250    /// the token. This token will always be inferred to be an `f32` in the
1251    /// compiler. Literals created from negative numbers may not survive
1252    /// round-trips through `TokenStream` or strings and may be broken into two
1253    /// tokens (`-` and positive literal).
1254    ///
1255    /// # Panics
1256    ///
1257    /// This function requires that the specified float is finite, for example
1258    /// if it is infinity or NaN this function will panic.
1259    pub fn f32_suffixed(f: f32) -> Literal {
1260        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1261        Literal::_new(imp::Literal::f32_suffixed(f))
1262    }
1263
1264    /// String literal.
1265    pub fn string(string: &str) -> Literal {
1266        Literal::_new(imp::Literal::string(string))
1267    }
1268
1269    /// Character literal.
1270    pub fn character(ch: char) -> Literal {
1271        Literal::_new(imp::Literal::character(ch))
1272    }
1273
1274    /// Byte character literal.
1275    pub fn byte_character(byte: u8) -> Literal {
1276        Literal::_new(imp::Literal::byte_character(byte))
1277    }
1278
1279    /// Byte string literal.
1280    pub fn byte_string(bytes: &[u8]) -> Literal {
1281        Literal::_new(imp::Literal::byte_string(bytes))
1282    }
1283
1284    /// C string literal.
1285    pub fn c_string(string: &CStr) -> Literal {
1286        Literal::_new(imp::Literal::c_string(string))
1287    }
1288
1289    /// Returns the span encompassing this literal.
1290    pub fn span(&self) -> Span {
1291        Span::_new(self.inner.span())
1292    }
1293
1294    /// Configures the span associated for this literal.
1295    pub fn set_span(&mut self, span: Span) {
1296        self.inner.set_span(span.inner);
1297    }
1298
1299    /// Returns a `Span` that is a subset of `self.span()` containing only
1300    /// the source bytes in range `range`. Returns `None` if the would-be
1301    /// trimmed span is outside the bounds of `self`.
1302    ///
1303    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1304    /// nightly-only. When called from within a procedural macro not using a
1305    /// nightly compiler, this method will always return `None`.
1306    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1307        self.inner.subspan(range).map(Span::_new)
1308    }
1309
1310    /// Returns the unescaped string value if this is a string literal.
1311    #[cfg(procmacro2_semver_exempt)]
1312    pub fn str_value(&self) -> Result<String, ConversionErrorKind> {
1313        let repr = self.to_string();
1314
1315        if repr.starts_with('"') && repr[1..].ends_with('"') {
1316            let quoted = &repr[1..repr.len() - 1];
1317            let mut value = String::with_capacity(quoted.len());
1318            let mut error = None;
1319            rustc_literal_escaper::unescape_str(quoted, |_range, res| match res {
1320                Ok(ch) => value.push(ch),
1321                Err(err) => {
1322                    if err.is_fatal() {
1323                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1324                    }
1325                }
1326            });
1327            return match error {
1328                Some(error) => Err(error),
1329                None => Ok(value),
1330            };
1331        }
1332
1333        if repr.starts_with('r') {
1334            if let Some(raw) = get_raw(&repr[1..]) {
1335                return Ok(raw.to_owned());
1336            }
1337        }
1338
1339        Err(ConversionErrorKind::InvalidLiteralKind)
1340    }
1341
1342    /// Returns the unescaped string value (including nul terminator) if this is
1343    /// a c-string literal.
1344    #[cfg(procmacro2_semver_exempt)]
1345    pub fn cstr_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1346        let repr = self.to_string();
1347
1348        if repr.starts_with("c\"") && repr[2..].ends_with('"') {
1349            let quoted = &repr[2..repr.len() - 1];
1350            let mut value = Vec::with_capacity(quoted.len());
1351            let mut error = None;
1352            rustc_literal_escaper::unescape_c_str(quoted, |_range, res| match res {
1353                Ok(MixedUnit::Char(ch)) => {
1354                    value.extend_from_slice(ch.get().encode_utf8(&mut [0; 4]).as_bytes());
1355                }
1356                Ok(MixedUnit::HighByte(byte)) => value.push(byte.get()),
1357                Err(err) => {
1358                    if err.is_fatal() {
1359                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1360                    }
1361                }
1362            });
1363            return match error {
1364                Some(error) => Err(error),
1365                None => {
1366                    value.push(b'\0');
1367                    Ok(value)
1368                }
1369            };
1370        }
1371
1372        if repr.starts_with("cr") {
1373            if let Some(raw) = get_raw(&repr[2..]) {
1374                let mut value = Vec::with_capacity(raw.len() + 1);
1375                value.extend_from_slice(raw.as_bytes());
1376                value.push(b'\0');
1377                return Ok(value);
1378            }
1379        }
1380
1381        Err(ConversionErrorKind::InvalidLiteralKind)
1382    }
1383
1384    /// Returns the unescaped string value if this is a byte string literal.
1385    #[cfg(procmacro2_semver_exempt)]
1386    pub fn byte_str_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1387        let repr = self.to_string();
1388
1389        if repr.starts_with("b\"") && repr[2..].ends_with('"') {
1390            let quoted = &repr[2..repr.len() - 1];
1391            let mut value = Vec::with_capacity(quoted.len());
1392            let mut error = None;
1393            rustc_literal_escaper::unescape_byte_str(quoted, |_range, res| match res {
1394                Ok(byte) => value.push(byte),
1395                Err(err) => {
1396                    if err.is_fatal() {
1397                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1398                    }
1399                }
1400            });
1401            return match error {
1402                Some(error) => Err(error),
1403                None => Ok(value),
1404            };
1405        }
1406
1407        if repr.starts_with("br") {
1408            if let Some(raw) = get_raw(&repr[2..]) {
1409                return Ok(raw.as_bytes().to_owned());
1410            }
1411        }
1412
1413        Err(ConversionErrorKind::InvalidLiteralKind)
1414    }
1415
1416    // Intended for the `quote!` macro to use when constructing a proc-macro2
1417    // token out of a macro_rules $:literal token, which is already known to be
1418    // a valid literal. This avoids reparsing/validating the literal's string
1419    // representation. This is not public API other than for quote.
1420    #[doc(hidden)]
1421    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1422        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1423    }
1424}
1425
1426impl FromStr for Literal {
1427    type Err = LexError;
1428
1429    fn from_str(repr: &str) -> Result<Self, LexError> {
1430        match imp::Literal::from_str_checked(repr) {
1431            Ok(lit) => Ok(Literal::_new(lit)),
1432            Err(lex) => Err(LexError {
1433                inner: lex,
1434                _marker: MARKER,
1435            }),
1436        }
1437    }
1438}
1439
1440impl Debug for Literal {
1441    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1442        Debug::fmt(&self.inner, f)
1443    }
1444}
1445
1446impl Display for Literal {
1447    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1448        Display::fmt(&self.inner, f)
1449    }
1450}
1451
1452/// Error when retrieving a string literal's unescaped value.
1453#[cfg(procmacro2_semver_exempt)]
1454#[derive(#[automatically_derived]
impl ::core::fmt::Debug for ConversionErrorKind {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        match self {
            ConversionErrorKind::FailedToUnescape(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "FailedToUnescape", &__self_0),
            ConversionErrorKind::InvalidLiteralKind =>
                ::core::fmt::Formatter::write_str(f, "InvalidLiteralKind"),
        }
    }
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for ConversionErrorKind {
    #[inline]
    fn eq(&self, other: &ConversionErrorKind) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr &&
            match (self, other) {
                (ConversionErrorKind::FailedToUnescape(__self_0),
                    ConversionErrorKind::FailedToUnescape(__arg1_0)) =>
                    __self_0 == __arg1_0,
                _ => true,
            }
    }
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for ConversionErrorKind {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {
        let _: ::core::cmp::AssertParamIsEq<EscapeError>;
    }
}Eq)]
1455pub enum ConversionErrorKind {
1456    /// The literal is of the right string kind, but its contents are malformed
1457    /// in a way that cannot be unescaped to a value.
1458    FailedToUnescape(EscapeError),
1459    /// The literal is not of the string kind whose value was requested, for
1460    /// example byte string vs UTF-8 string.
1461    InvalidLiteralKind,
1462}
1463
1464// ###"..."### -> ...
1465#[cfg(procmacro2_semver_exempt)]
1466fn get_raw(repr: &str) -> Option<&str> {
1467    let pounds = repr.len() - repr.trim_start_matches('#').len();
1468    if repr.len() >= pounds + 1 + 1 + pounds
1469        && repr[pounds..].starts_with('"')
1470        && repr.trim_end_matches('#').len() + pounds == repr.len()
1471        && repr[..repr.len() - pounds].ends_with('"')
1472    {
1473        Some(&repr[pounds + 1..repr.len() - pounds - 1])
1474    } else {
1475        None
1476    }
1477}
1478
1479/// Public implementation details for the `TokenStream` type, such as iterators.
1480pub mod token_stream {
1481    use crate::marker::{ProcMacroAutoTraits, MARKER};
1482    use crate::{imp, TokenTree};
1483    use core::fmt::{self, Debug};
1484
1485    pub use crate::TokenStream;
1486
1487    /// An iterator over `TokenStream`'s `TokenTree`s.
1488    ///
1489    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1490    /// delimited groups, and returns whole groups as token trees.
1491    #[derive(#[automatically_derived]
impl ::core::clone::Clone for IntoIter {
    #[inline]
    fn clone(&self) -> IntoIter {
        IntoIter {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1492    pub struct IntoIter {
1493        inner: imp::TokenTreeIter,
1494        _marker: ProcMacroAutoTraits,
1495    }
1496
1497    impl Iterator for IntoIter {
1498        type Item = TokenTree;
1499
1500        fn next(&mut self) -> Option<TokenTree> {
1501            self.inner.next()
1502        }
1503
1504        fn size_hint(&self) -> (usize, Option<usize>) {
1505            self.inner.size_hint()
1506        }
1507    }
1508
1509    impl Debug for IntoIter {
1510        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1511            f.write_str("TokenStream ")?;
1512            f.debug_list().entries(self.clone()).finish()
1513        }
1514    }
1515
1516    impl IntoIterator for TokenStream {
1517        type Item = TokenTree;
1518        type IntoIter = IntoIter;
1519
1520        fn into_iter(self) -> IntoIter {
1521            IntoIter {
1522                inner: self.inner.into_iter(),
1523                _marker: MARKER,
1524            }
1525        }
1526    }
1527}