proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
14//!   macros and cannot ever exist in code outside of a procedural macro.
15//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//!   By developing foundational libraries like [syn] and [quote] against
17//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//!   becomes easily applicable to many other use cases and we avoid
19//!   reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//!   specific to procedural macros, nothing that uses `proc_macro` can be
23//!   executed from a unit test. In order for helper libraries or components of
24//!   a macro to be testable in isolation, they must be implemented using
25//!   `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//!     let input = proc_macro2::TokenStream::from(input);
43//!
44//!     let output: proc_macro2::TokenStream = {
45//!         /* transform input */
46//!         # input
47//!     };
48//!
49//!     proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.60.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86// Proc-macro2 types in rustdoc of other crates get linked to here.
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.103")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93    clippy::cast_lossless,
94    clippy::cast_possible_truncation,
95    clippy::checked_conversions,
96    clippy::doc_markdown,
97    clippy::elidable_lifetime_names,
98    clippy::incompatible_msrv,
99    clippy::items_after_statements,
100    clippy::iter_without_into_iter,
101    clippy::let_underscore_untyped,
102    clippy::manual_assert,
103    clippy::manual_range_contains,
104    clippy::missing_panics_doc,
105    clippy::missing_safety_doc,
106    clippy::must_use_candidate,
107    clippy::needless_doctest_main,
108    clippy::needless_lifetimes,
109    clippy::new_without_default,
110    clippy::return_self_not_must_use,
111    clippy::shadow_unrelated,
112    clippy::trivially_copy_pass_by_ref,
113    clippy::uninlined_format_args,
114    clippy::unnecessary_wraps,
115    clippy::unused_self,
116    clippy::used_underscore_binding,
117    clippy::vec_init_then_push
118)]
119#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
120
121#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
122compile_error! {"\
123    Something is not right. If you've tried to turn on \
124    procmacro2_semver_exempt, you need to ensure that it \
125    is turned on for the compilation of the proc-macro2 \
126    build script as well.
127"}
128
129#[cfg(all(
130    procmacro2_nightly_testing,
131    feature = "proc-macro",
132    not(proc_macro_span)
133))]
134compile_error! {"\
135    Build script probe failed to compile.
136"}
137
138extern crate alloc;
139
140#[cfg(feature = "proc-macro")]
141extern crate proc_macro;
142
143mod marker;
144mod parse;
145mod probe;
146mod rcvec;
147
148#[cfg(wrap_proc_macro)]
149mod detection;
150
151// Public for proc_macro2::fallback::force() and unforce(), but those are quite
152// a niche use case so we omit it from rustdoc.
153#[doc(hidden)]
154pub mod fallback;
155
156pub mod extra;
157
158#[cfg(not(wrap_proc_macro))]
159use crate::fallback as imp;
160#[path = "wrapper.rs"]
161#[cfg(wrap_proc_macro)]
162mod imp;
163
164#[cfg(span_locations)]
165mod location;
166
167#[cfg(procmacro2_semver_exempt)]
168mod num;
169#[cfg(procmacro2_semver_exempt)]
170#[allow(dead_code)]
171mod rustc_literal_escaper;
172
173use crate::extra::DelimSpan;
174use crate::marker::{ProcMacroAutoTraits, MARKER};
175#[cfg(procmacro2_semver_exempt)]
176use crate::rustc_literal_escaper::MixedUnit;
177use core::cmp::Ordering;
178use core::fmt::{self, Debug, Display};
179use core::hash::{Hash, Hasher};
180#[cfg(span_locations)]
181use core::ops::Range;
182use core::ops::RangeBounds;
183use core::str::FromStr;
184use std::error::Error;
185use std::ffi::CStr;
186#[cfg(span_locations)]
187use std::path::PathBuf;
188
189#[cfg(span_locations)]
190#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
191pub use crate::location::LineColumn;
192
193#[cfg(procmacro2_semver_exempt)]
194#[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
195pub use crate::rustc_literal_escaper::EscapeError;
196
197/// An abstract stream of tokens, or more concretely a sequence of token trees.
198///
199/// This type provides interfaces for iterating over token trees and for
200/// collecting token trees into one stream.
201///
202/// Token stream is both the input and output of `#[proc_macro]`,
203/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
204#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenStream {
    #[inline]
    fn clone(&self) -> TokenStream {
        TokenStream {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
205pub struct TokenStream {
206    inner: imp::TokenStream,
207    _marker: ProcMacroAutoTraits,
208}
209
210/// Error returned from `TokenStream::from_str`.
211pub struct LexError {
212    inner: imp::LexError,
213    _marker: ProcMacroAutoTraits,
214}
215
216impl TokenStream {
217    fn _new(inner: imp::TokenStream) -> Self {
218        TokenStream {
219            inner,
220            _marker: MARKER,
221        }
222    }
223
224    fn _new_fallback(inner: fallback::TokenStream) -> Self {
225        TokenStream {
226            inner: imp::TokenStream::from(inner),
227            _marker: MARKER,
228        }
229    }
230
231    /// Returns an empty `TokenStream` containing no token trees.
232    pub fn new() -> Self {
233        TokenStream::_new(imp::TokenStream::new())
234    }
235
236    /// Checks if this `TokenStream` is empty.
237    pub fn is_empty(&self) -> bool {
238        self.inner.is_empty()
239    }
240}
241
242/// `TokenStream::default()` returns an empty stream,
243/// i.e. this is equivalent with `TokenStream::new()`.
244impl Default for TokenStream {
245    fn default() -> Self {
246        TokenStream::new()
247    }
248}
249
250/// Attempts to break the string into tokens and parse those tokens into a token
251/// stream.
252///
253/// May fail for a number of reasons, for example, if the string contains
254/// unbalanced delimiters or characters not existing in the language.
255///
256/// NOTE: Some errors may cause panics instead of returning `LexError`. We
257/// reserve the right to change these errors into `LexError`s later.
258impl FromStr for TokenStream {
259    type Err = LexError;
260
261    fn from_str(src: &str) -> Result<TokenStream, LexError> {
262        match imp::TokenStream::from_str_checked(src) {
263            Ok(tokens) => Ok(TokenStream::_new(tokens)),
264            Err(lex) => Err(LexError {
265                inner: lex,
266                _marker: MARKER,
267            }),
268        }
269    }
270}
271
272#[cfg(feature = "proc-macro")]
273#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
274impl From<proc_macro::TokenStream> for TokenStream {
275    fn from(inner: proc_macro::TokenStream) -> Self {
276        TokenStream::_new(imp::TokenStream::from(inner))
277    }
278}
279
280#[cfg(feature = "proc-macro")]
281#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
282impl From<TokenStream> for proc_macro::TokenStream {
283    fn from(inner: TokenStream) -> Self {
284        proc_macro::TokenStream::from(inner.inner)
285    }
286}
287
288impl From<TokenTree> for TokenStream {
289    fn from(token: TokenTree) -> Self {
290        TokenStream::_new(imp::TokenStream::from(token))
291    }
292}
293
294impl Extend<TokenTree> for TokenStream {
295    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
296        self.inner.extend(streams);
297    }
298}
299
300impl Extend<TokenStream> for TokenStream {
301    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
302        self.inner
303            .extend(streams.into_iter().map(|stream| stream.inner));
304    }
305}
306
307/// Collects a number of token trees into a single stream.
308impl FromIterator<TokenTree> for TokenStream {
309    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
310        TokenStream::_new(streams.into_iter().collect())
311    }
312}
313impl FromIterator<TokenStream> for TokenStream {
314    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
315        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
316    }
317}
318
319/// Prints the token stream as a string that is supposed to be losslessly
320/// convertible back into the same token stream (modulo spans), except for
321/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
322/// numeric literals.
323impl Display for TokenStream {
324    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
325        Display::fmt(&self.inner, f)
326    }
327}
328
329/// Prints token in a form convenient for debugging.
330impl Debug for TokenStream {
331    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
332        Debug::fmt(&self.inner, f)
333    }
334}
335
336impl LexError {
337    pub fn span(&self) -> Span {
338        Span::_new(self.inner.span())
339    }
340}
341
342impl Debug for LexError {
343    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
344        Debug::fmt(&self.inner, f)
345    }
346}
347
348impl Display for LexError {
349    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
350        Display::fmt(&self.inner, f)
351    }
352}
353
354impl Error for LexError {}
355
356/// A region of source code, along with macro expansion information.
357#[derive(#[automatically_derived]
impl ::core::marker::Copy for Span { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Span {
    #[inline]
    fn clone(&self) -> Span {
        let _: ::core::clone::AssertParamIsClone<imp::Span>;
        let _: ::core::clone::AssertParamIsClone<ProcMacroAutoTraits>;
        *self
    }
}Clone)]
358pub struct Span {
359    inner: imp::Span,
360    _marker: ProcMacroAutoTraits,
361}
362
363impl Span {
364    fn _new(inner: imp::Span) -> Self {
365        Span {
366            inner,
367            _marker: MARKER,
368        }
369    }
370
371    fn _new_fallback(inner: fallback::Span) -> Self {
372        Span {
373            inner: imp::Span::from(inner),
374            _marker: MARKER,
375        }
376    }
377
378    /// The span of the invocation of the current procedural macro.
379    ///
380    /// Identifiers created with this span will be resolved as if they were
381    /// written directly at the macro call location (call-site hygiene) and
382    /// other code at the macro call site will be able to refer to them as well.
383    pub fn call_site() -> Self {
384        Span::_new(imp::Span::call_site())
385    }
386
387    /// The span located at the invocation of the procedural macro, but with
388    /// local variables, labels, and `$crate` resolved at the definition site
389    /// of the macro. This is the same hygiene behavior as `macro_rules`.
390    pub fn mixed_site() -> Self {
391        Span::_new(imp::Span::mixed_site())
392    }
393
394    /// A span that resolves at the macro definition site.
395    ///
396    /// This method is semver exempt and not exposed by default.
397    #[cfg(procmacro2_semver_exempt)]
398    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
399    pub fn def_site() -> Self {
400        Span::_new(imp::Span::def_site())
401    }
402
403    /// Creates a new span with the same line/column information as `self` but
404    /// that resolves symbols as though it were at `other`.
405    pub fn resolved_at(&self, other: Span) -> Span {
406        Span::_new(self.inner.resolved_at(other.inner))
407    }
408
409    /// Creates a new span with the same name resolution behavior as `self` but
410    /// with the line/column information of `other`.
411    pub fn located_at(&self, other: Span) -> Span {
412        Span::_new(self.inner.located_at(other.inner))
413    }
414
415    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
416    ///
417    /// This method is available when building with a nightly compiler, or when
418    /// building with rustc 1.29+ *without* semver exempt features.
419    ///
420    /// # Panics
421    ///
422    /// Panics if called from outside of a procedural macro. Unlike
423    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
424    /// the context of a procedural macro invocation.
425    #[cfg(wrap_proc_macro)]
426    pub fn unwrap(self) -> proc_macro::Span {
427        self.inner.unwrap()
428    }
429
430    // Soft deprecated. Please use Span::unwrap.
431    #[cfg(wrap_proc_macro)]
432    #[doc(hidden)]
433    pub fn unstable(self) -> proc_macro::Span {
434        self.unwrap()
435    }
436
437    /// Returns the span's byte position range in the source file.
438    ///
439    /// This method requires the `"span-locations"` feature to be enabled.
440    ///
441    /// When executing in a procedural macro context, the returned range is only
442    /// accurate if compiled with a nightly toolchain. The stable toolchain does
443    /// not have this information available. When executing outside of a
444    /// procedural macro, such as main.rs or build.rs, the byte range is always
445    /// accurate regardless of toolchain.
446    #[cfg(span_locations)]
447    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
448    pub fn byte_range(&self) -> Range<usize> {
449        self.inner.byte_range()
450    }
451
452    /// Get the starting line/column in the source file for this span.
453    ///
454    /// This method requires the `"span-locations"` feature to be enabled.
455    ///
456    /// When executing in a procedural macro context, the returned line/column
457    /// are only meaningful if compiled with a nightly toolchain. The stable
458    /// toolchain does not have this information available. When executing
459    /// outside of a procedural macro, such as main.rs or build.rs, the
460    /// line/column are always meaningful regardless of toolchain.
461    #[cfg(span_locations)]
462    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
463    pub fn start(&self) -> LineColumn {
464        self.inner.start()
465    }
466
467    /// Get the ending line/column in the source file for this span.
468    ///
469    /// This method requires the `"span-locations"` feature to be enabled.
470    ///
471    /// When executing in a procedural macro context, the returned line/column
472    /// are only meaningful if compiled with a nightly toolchain. The stable
473    /// toolchain does not have this information available. When executing
474    /// outside of a procedural macro, such as main.rs or build.rs, the
475    /// line/column are always meaningful regardless of toolchain.
476    #[cfg(span_locations)]
477    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
478    pub fn end(&self) -> LineColumn {
479        self.inner.end()
480    }
481
482    /// The path to the source file in which this span occurs, for display
483    /// purposes.
484    ///
485    /// This might not correspond to a valid file system path. It might be
486    /// remapped, or might be an artificial path such as `"<macro expansion>"`.
487    #[cfg(span_locations)]
488    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
489    pub fn file(&self) -> String {
490        self.inner.file()
491    }
492
493    /// The path to the source file in which this span occurs on disk.
494    ///
495    /// This is the actual path on disk. It is unaffected by path remapping.
496    ///
497    /// This path should not be embedded in the output of the macro; prefer
498    /// `file()` instead.
499    #[cfg(span_locations)]
500    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
501    pub fn local_file(&self) -> Option<PathBuf> {
502        self.inner.local_file()
503    }
504
505    /// Create a new span encompassing `self` and `other`.
506    ///
507    /// Returns `None` if `self` and `other` are from different files.
508    ///
509    /// Warning: the underlying [`proc_macro::Span::join`] method is
510    /// nightly-only. When called from within a procedural macro not using a
511    /// nightly compiler, this method will always return `None`.
512    pub fn join(&self, other: Span) -> Option<Span> {
513        self.inner.join(other.inner).map(Span::_new)
514    }
515
516    /// Compares two spans to see if they're equal.
517    ///
518    /// This method is semver exempt and not exposed by default.
519    #[cfg(procmacro2_semver_exempt)]
520    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
521    pub fn eq(&self, other: &Span) -> bool {
522        self.inner.eq(&other.inner)
523    }
524
525    /// Returns the source text behind a span. This preserves the original
526    /// source code, including spaces and comments. It only returns a result if
527    /// the span corresponds to real source code.
528    ///
529    /// Note: The observable result of a macro should only rely on the tokens
530    /// and not on this source text. The result of this function is a best
531    /// effort to be used for diagnostics only.
532    pub fn source_text(&self) -> Option<String> {
533        self.inner.source_text()
534    }
535}
536
537/// Prints a span in a form convenient for debugging.
538impl Debug for Span {
539    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
540        Debug::fmt(&self.inner, f)
541    }
542}
543
544/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
545#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenTree {
    #[inline]
    fn clone(&self) -> TokenTree {
        match self {
            TokenTree::Group(__self_0) =>
                TokenTree::Group(::core::clone::Clone::clone(__self_0)),
            TokenTree::Ident(__self_0) =>
                TokenTree::Ident(::core::clone::Clone::clone(__self_0)),
            TokenTree::Punct(__self_0) =>
                TokenTree::Punct(::core::clone::Clone::clone(__self_0)),
            TokenTree::Literal(__self_0) =>
                TokenTree::Literal(::core::clone::Clone::clone(__self_0)),
        }
    }
}Clone)]
546pub enum TokenTree {
547    /// A token stream surrounded by bracket delimiters.
548    Group(Group),
549    /// An identifier.
550    Ident(Ident),
551    /// A single punctuation character (`+`, `,`, `$`, etc.).
552    Punct(Punct),
553    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
554    Literal(Literal),
555}
556
557impl TokenTree {
558    /// Returns the span of this tree, delegating to the `span` method of
559    /// the contained token or a delimited stream.
560    pub fn span(&self) -> Span {
561        match self {
562            TokenTree::Group(t) => t.span(),
563            TokenTree::Ident(t) => t.span(),
564            TokenTree::Punct(t) => t.span(),
565            TokenTree::Literal(t) => t.span(),
566        }
567    }
568
569    /// Configures the span for *only this token*.
570    ///
571    /// Note that if this token is a `Group` then this method will not configure
572    /// the span of each of the internal tokens, this will simply delegate to
573    /// the `set_span` method of each variant.
574    pub fn set_span(&mut self, span: Span) {
575        match self {
576            TokenTree::Group(t) => t.set_span(span),
577            TokenTree::Ident(t) => t.set_span(span),
578            TokenTree::Punct(t) => t.set_span(span),
579            TokenTree::Literal(t) => t.set_span(span),
580        }
581    }
582}
583
584impl From<Group> for TokenTree {
585    fn from(g: Group) -> Self {
586        TokenTree::Group(g)
587    }
588}
589
590impl From<Ident> for TokenTree {
591    fn from(g: Ident) -> Self {
592        TokenTree::Ident(g)
593    }
594}
595
596impl From<Punct> for TokenTree {
597    fn from(g: Punct) -> Self {
598        TokenTree::Punct(g)
599    }
600}
601
602impl From<Literal> for TokenTree {
603    fn from(g: Literal) -> Self {
604        TokenTree::Literal(g)
605    }
606}
607
608/// Prints the token tree as a string that is supposed to be losslessly
609/// convertible back into the same token tree (modulo spans), except for
610/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
611/// numeric literals.
612impl Display for TokenTree {
613    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
614        match self {
615            TokenTree::Group(t) => Display::fmt(t, f),
616            TokenTree::Ident(t) => Display::fmt(t, f),
617            TokenTree::Punct(t) => Display::fmt(t, f),
618            TokenTree::Literal(t) => Display::fmt(t, f),
619        }
620    }
621}
622
623/// Prints token tree in a form convenient for debugging.
624impl Debug for TokenTree {
625    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
626        // Each of these has the name in the struct type in the derived debug,
627        // so don't bother with an extra layer of indirection
628        match self {
629            TokenTree::Group(t) => Debug::fmt(t, f),
630            TokenTree::Ident(t) => {
631                let mut debug = f.debug_struct("Ident");
632                debug.field("sym", &format_args!("{0}", t)format_args!("{}", t));
633                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
634                debug.finish()
635            }
636            TokenTree::Punct(t) => Debug::fmt(t, f),
637            TokenTree::Literal(t) => Debug::fmt(t, f),
638        }
639    }
640}
641
642/// A delimited token stream.
643///
644/// A `Group` internally contains a `TokenStream` which is surrounded by
645/// `Delimiter`s.
646#[derive(#[automatically_derived]
impl ::core::clone::Clone for Group {
    #[inline]
    fn clone(&self) -> Group {
        Group { inner: ::core::clone::Clone::clone(&self.inner) }
    }
}Clone)]
647pub struct Group {
648    inner: imp::Group,
649}
650
651/// Describes how a sequence of token trees is delimited.
652#[derive(#[automatically_derived]
impl ::core::marker::Copy for Delimiter { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Delimiter {
    #[inline]
    fn clone(&self) -> Delimiter { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Delimiter {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Delimiter::Parenthesis => "Parenthesis",
                Delimiter::Brace => "Brace",
                Delimiter::Bracket => "Bracket",
                Delimiter::None => "None",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Delimiter {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Delimiter {
    #[inline]
    fn eq(&self, other: &Delimiter) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
653pub enum Delimiter {
654    /// `( ... )`
655    Parenthesis,
656    /// `{ ... }`
657    Brace,
658    /// `[ ... ]`
659    Bracket,
660    /// `∅ ... ∅`
661    ///
662    /// An invisible delimiter, that may, for example, appear around tokens
663    /// coming from a "macro variable" `$var`. It is important to preserve
664    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
665    /// Invisible delimiters may not survive roundtrip of a token stream through
666    /// a string.
667    ///
668    /// <div class="warning">
669    ///
670    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
671    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
672    /// of a proc_macro macro are preserved, and only in very specific circumstances.
673    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
674    /// operator priorities as indicated above. The other `Delimiter` variants should be used
675    /// instead in this context. This is a rustc bug. For details, see
676    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
677    ///
678    /// </div>
679    None,
680}
681
682impl Group {
683    fn _new(inner: imp::Group) -> Self {
684        Group { inner }
685    }
686
687    fn _new_fallback(inner: fallback::Group) -> Self {
688        Group {
689            inner: imp::Group::from(inner),
690        }
691    }
692
693    /// Creates a new `Group` with the given delimiter and token stream.
694    ///
695    /// This constructor will set the span for this group to
696    /// `Span::call_site()`. To change the span you can use the `set_span`
697    /// method below.
698    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
699        Group {
700            inner: imp::Group::new(delimiter, stream.inner),
701        }
702    }
703
704    /// Returns the punctuation used as the delimiter for this group: a set of
705    /// parentheses, square brackets, or curly braces.
706    pub fn delimiter(&self) -> Delimiter {
707        self.inner.delimiter()
708    }
709
710    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
711    ///
712    /// Note that the returned token stream does not include the delimiter
713    /// returned above.
714    pub fn stream(&self) -> TokenStream {
715        TokenStream::_new(self.inner.stream())
716    }
717
718    /// Returns the span for the delimiters of this token stream, spanning the
719    /// entire `Group`.
720    ///
721    /// ```text
722    /// pub fn span(&self) -> Span {
723    ///            ^^^^^^^
724    /// ```
725    pub fn span(&self) -> Span {
726        Span::_new(self.inner.span())
727    }
728
729    /// Returns the span pointing to the opening delimiter of this group.
730    ///
731    /// ```text
732    /// pub fn span_open(&self) -> Span {
733    ///                 ^
734    /// ```
735    pub fn span_open(&self) -> Span {
736        Span::_new(self.inner.span_open())
737    }
738
739    /// Returns the span pointing to the closing delimiter of this group.
740    ///
741    /// ```text
742    /// pub fn span_close(&self) -> Span {
743    ///                        ^
744    /// ```
745    pub fn span_close(&self) -> Span {
746        Span::_new(self.inner.span_close())
747    }
748
749    /// Returns an object that holds this group's `span_open()` and
750    /// `span_close()` together (in a more compact representation than holding
751    /// those 2 spans individually).
752    pub fn delim_span(&self) -> DelimSpan {
753        DelimSpan::new(&self.inner)
754    }
755
756    /// Configures the span for this `Group`'s delimiters, but not its internal
757    /// tokens.
758    ///
759    /// This method will **not** set the span of all the internal tokens spanned
760    /// by this group, but rather it will only set the span of the delimiter
761    /// tokens at the level of the `Group`.
762    pub fn set_span(&mut self, span: Span) {
763        self.inner.set_span(span.inner);
764    }
765}
766
767/// Prints the group as a string that should be losslessly convertible back
768/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
769/// with `Delimiter::None` delimiters.
770impl Display for Group {
771    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
772        Display::fmt(&self.inner, formatter)
773    }
774}
775
776impl Debug for Group {
777    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
778        Debug::fmt(&self.inner, formatter)
779    }
780}
781
782/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
783///
784/// Multicharacter operators like `+=` are represented as two instances of
785/// `Punct` with different forms of `Spacing` returned.
786#[derive(#[automatically_derived]
impl ::core::clone::Clone for Punct {
    #[inline]
    fn clone(&self) -> Punct {
        Punct {
            ch: ::core::clone::Clone::clone(&self.ch),
            spacing: ::core::clone::Clone::clone(&self.spacing),
            span: ::core::clone::Clone::clone(&self.span),
        }
    }
}Clone)]
787pub struct Punct {
788    ch: char,
789    spacing: Spacing,
790    span: Span,
791}
792
793/// Whether a `Punct` is followed immediately by another `Punct` or followed by
794/// another token or whitespace.
795#[derive(#[automatically_derived]
impl ::core::marker::Copy for Spacing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Spacing {
    #[inline]
    fn clone(&self) -> Spacing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Spacing {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Spacing::Alone => "Alone",
                Spacing::Joint => "Joint",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Spacing {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Spacing {
    #[inline]
    fn eq(&self, other: &Spacing) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
796pub enum Spacing {
797    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
798    Alone,
799    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
800    ///
801    /// Additionally, single quote `'` can join with identifiers to form
802    /// lifetimes `'ident`.
803    Joint,
804}
805
806impl Punct {
807    /// Creates a new `Punct` from the given character and spacing.
808    ///
809    /// The `ch` argument must be a valid punctuation character permitted by the
810    /// language, otherwise the function will panic.
811    ///
812    /// The returned `Punct` will have the default span of `Span::call_site()`
813    /// which can be further configured with the `set_span` method below.
814    pub fn new(ch: char, spacing: Spacing) -> Self {
815        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
816        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
817        {
818            Punct {
819                ch,
820                spacing,
821                span: Span::call_site(),
822            }
823        } else {
824            {
    ::core::panicking::panic_fmt(format_args!("unsupported proc macro punctuation character {0:?}",
            ch));
};panic!("unsupported proc macro punctuation character {:?}", ch);
825        }
826    }
827
828    /// Returns the value of this punctuation character as `char`.
829    pub fn as_char(&self) -> char {
830        self.ch
831    }
832
833    /// Returns the spacing of this punctuation character, indicating whether
834    /// it's immediately followed by another `Punct` in the token stream, so
835    /// they can potentially be combined into a multicharacter operator
836    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
837    /// so the operator has certainly ended.
838    pub fn spacing(&self) -> Spacing {
839        self.spacing
840    }
841
842    /// Returns the span for this punctuation character.
843    pub fn span(&self) -> Span {
844        self.span
845    }
846
847    /// Configure the span for this punctuation character.
848    pub fn set_span(&mut self, span: Span) {
849        self.span = span;
850    }
851}
852
853/// Prints the punctuation character as a string that should be losslessly
854/// convertible back into the same character.
855impl Display for Punct {
856    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
857        Display::fmt(&self.ch, f)
858    }
859}
860
861impl Debug for Punct {
862    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
863        let mut debug = fmt.debug_struct("Punct");
864        debug.field("char", &self.ch);
865        debug.field("spacing", &self.spacing);
866        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
867        debug.finish()
868    }
869}
870
871/// A word of Rust code, which may be a keyword or legal variable name.
872///
873/// An identifier consists of at least one Unicode code point, the first of
874/// which has the XID_Start property and the rest of which have the XID_Continue
875/// property.
876///
877/// - The empty string is not an identifier. Use `Option<Ident>`.
878/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
879///
880/// An identifier constructed with `Ident::new` is permitted to be a Rust
881/// keyword, though parsing one through its [`Parse`] implementation rejects
882/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
883/// behaviour of `Ident::new`.
884///
885/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
886///
887/// # Examples
888///
889/// A new ident can be created from a string using the `Ident::new` function.
890/// A span must be provided explicitly which governs the name resolution
891/// behavior of the resulting identifier.
892///
893/// ```
894/// use proc_macro2::{Ident, Span};
895///
896/// fn main() {
897///     let call_ident = Ident::new("calligraphy", Span::call_site());
898///
899///     println!("{}", call_ident);
900/// }
901/// ```
902///
903/// An ident can be interpolated into a token stream using the `quote!` macro.
904///
905/// ```
906/// use proc_macro2::{Ident, Span};
907/// use quote::quote;
908///
909/// fn main() {
910///     let ident = Ident::new("demo", Span::call_site());
911///
912///     // Create a variable binding whose name is this ident.
913///     let expanded = quote! { let #ident = 10; };
914///
915///     // Create a variable binding with a slightly different name.
916///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
917///     let expanded = quote! { let #temp_ident = 10; };
918/// }
919/// ```
920///
921/// A string representation of the ident is available through the `to_string()`
922/// method.
923///
924/// ```
925/// # use proc_macro2::{Ident, Span};
926/// #
927/// # let ident = Ident::new("another_identifier", Span::call_site());
928/// #
929/// // Examine the ident as a string.
930/// let ident_string = ident.to_string();
931/// if ident_string.len() > 60 {
932///     println!("Very long identifier: {}", ident_string)
933/// }
934/// ```
935#[derive(#[automatically_derived]
impl ::core::clone::Clone for Ident {
    #[inline]
    fn clone(&self) -> Ident {
        Ident {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
936pub struct Ident {
937    inner: imp::Ident,
938    _marker: ProcMacroAutoTraits,
939}
940
941impl Ident {
942    fn _new(inner: imp::Ident) -> Self {
943        Ident {
944            inner,
945            _marker: MARKER,
946        }
947    }
948
949    fn _new_fallback(inner: fallback::Ident) -> Self {
950        Ident {
951            inner: imp::Ident::from(inner),
952            _marker: MARKER,
953        }
954    }
955
956    /// Creates a new `Ident` with the given `string` as well as the specified
957    /// `span`.
958    ///
959    /// The `string` argument must be a valid identifier permitted by the
960    /// language, otherwise the function will panic.
961    ///
962    /// Note that `span`, currently in rustc, configures the hygiene information
963    /// for this identifier.
964    ///
965    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
966    /// hygiene meaning that identifiers created with this span will be resolved
967    /// as if they were written directly at the location of the macro call, and
968    /// other code at the macro call site will be able to refer to them as well.
969    ///
970    /// Later spans like `Span::def_site()` will allow to opt-in to
971    /// "definition-site" hygiene meaning that identifiers created with this
972    /// span will be resolved at the location of the macro definition and other
973    /// code at the macro call site will not be able to refer to them.
974    ///
975    /// Due to the current importance of hygiene this constructor, unlike other
976    /// tokens, requires a `Span` to be specified at construction.
977    ///
978    /// # Panics
979    ///
980    /// Panics if the input string is neither a keyword nor a legal variable
981    /// name. If you are not sure whether the string contains an identifier and
982    /// need to handle an error case, use
983    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
984    ///   style="padding-right:0;">syn::parse_str</code></a><code
985    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
986    /// rather than `Ident::new`.
987    #[track_caller]
988    pub fn new(string: &str, span: Span) -> Self {
989        Ident::_new(imp::Ident::new_checked(string, span.inner))
990    }
991
992    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
993    /// `string` argument must be a valid identifier permitted by the language
994    /// (including keywords, e.g. `fn`). Keywords which are usable in path
995    /// segments (e.g. `self`, `super`) are not supported, and will cause a
996    /// panic.
997    #[track_caller]
998    pub fn new_raw(string: &str, span: Span) -> Self {
999        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
1000    }
1001
1002    /// Returns the span of this `Ident`.
1003    pub fn span(&self) -> Span {
1004        Span::_new(self.inner.span())
1005    }
1006
1007    /// Configures the span of this `Ident`, possibly changing its hygiene
1008    /// context.
1009    pub fn set_span(&mut self, span: Span) {
1010        self.inner.set_span(span.inner);
1011    }
1012}
1013
1014impl PartialEq for Ident {
1015    fn eq(&self, other: &Ident) -> bool {
1016        self.inner == other.inner
1017    }
1018}
1019
1020impl<T> PartialEq<T> for Ident
1021where
1022    T: ?Sized + AsRef<str>,
1023{
1024    fn eq(&self, other: &T) -> bool {
1025        self.inner == other
1026    }
1027}
1028
1029impl Eq for Ident {}
1030
1031impl PartialOrd for Ident {
1032    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1033        Some(self.cmp(other))
1034    }
1035}
1036
1037impl Ord for Ident {
1038    fn cmp(&self, other: &Ident) -> Ordering {
1039        self.to_string().cmp(&other.to_string())
1040    }
1041}
1042
1043impl Hash for Ident {
1044    fn hash<H: Hasher>(&self, hasher: &mut H) {
1045        self.to_string().hash(hasher);
1046    }
1047}
1048
1049/// Prints the identifier as a string that should be losslessly convertible back
1050/// into the same identifier.
1051impl Display for Ident {
1052    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1053        Display::fmt(&self.inner, f)
1054    }
1055}
1056
1057impl Debug for Ident {
1058    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1059        Debug::fmt(&self.inner, f)
1060    }
1061}
1062
1063/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1064/// byte character (`b'a'`), an integer or floating point number with or without
1065/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1066///
1067/// Boolean literals like `true` and `false` do not belong here, they are
1068/// `Ident`s.
1069#[derive(#[automatically_derived]
impl ::core::clone::Clone for Literal {
    #[inline]
    fn clone(&self) -> Literal {
        Literal {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1070pub struct Literal {
1071    inner: imp::Literal,
1072    _marker: ProcMacroAutoTraits,
1073}
1074
1075macro_rules! suffixed_int_literals {
1076    ($($name:ident => $kind:ident,)*) => ($(
1077        /// Creates a new suffixed integer literal with the specified value.
1078        ///
1079        /// This function will create an integer like `1u32` where the integer
1080        /// value specified is the first part of the token and the integral is
1081        /// also suffixed at the end. Literals created from negative numbers may
1082        /// not survive roundtrips through `TokenStream` or strings and may be
1083        /// broken into two tokens (`-` and positive literal).
1084        ///
1085        /// Literals created through this method have the `Span::call_site()`
1086        /// span by default, which can be configured with the `set_span` method
1087        /// below.
1088        pub fn $name(n: $kind) -> Literal {
1089            Literal::_new(imp::Literal::$name(n))
1090        }
1091    )*)
1092}
1093
1094macro_rules! unsuffixed_int_literals {
1095    ($($name:ident => $kind:ident,)*) => ($(
1096        /// Creates a new unsuffixed integer literal with the specified value.
1097        ///
1098        /// This function will create an integer like `1` where the integer
1099        /// value specified is the first part of the token. No suffix is
1100        /// specified on this token, meaning that invocations like
1101        /// `Literal::i8_unsuffixed(1)` are equivalent to
1102        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1103        /// may not survive roundtrips through `TokenStream` or strings and may
1104        /// be broken into two tokens (`-` and positive literal).
1105        ///
1106        /// Literals created through this method have the `Span::call_site()`
1107        /// span by default, which can be configured with the `set_span` method
1108        /// below.
1109        pub fn $name(n: $kind) -> Literal {
1110            Literal::_new(imp::Literal::$name(n))
1111        }
1112    )*)
1113}
1114
1115impl Literal {
1116    fn _new(inner: imp::Literal) -> Self {
1117        Literal {
1118            inner,
1119            _marker: MARKER,
1120        }
1121    }
1122
1123    fn _new_fallback(inner: fallback::Literal) -> Self {
1124        Literal {
1125            inner: imp::Literal::from(inner),
1126            _marker: MARKER,
1127        }
1128    }
1129
1130    n
Literal::_new(imp::Literal::isize_suffixed(n));suffixed_int_literals! {
1131        u8_suffixed => u8,
1132        u16_suffixed => u16,
1133        u32_suffixed => u32,
1134        u64_suffixed => u64,
1135        u128_suffixed => u128,
1136        usize_suffixed => usize,
1137        i8_suffixed => i8,
1138        i16_suffixed => i16,
1139        i32_suffixed => i32,
1140        i64_suffixed => i64,
1141        i128_suffixed => i128,
1142        isize_suffixed => isize,
1143    }
1144
1145    n
Literal::_new(imp::Literal::isize_unsuffixed(n));unsuffixed_int_literals! {
1146        u8_unsuffixed => u8,
1147        u16_unsuffixed => u16,
1148        u32_unsuffixed => u32,
1149        u64_unsuffixed => u64,
1150        u128_unsuffixed => u128,
1151        usize_unsuffixed => usize,
1152        i8_unsuffixed => i8,
1153        i16_unsuffixed => i16,
1154        i32_unsuffixed => i32,
1155        i64_unsuffixed => i64,
1156        i128_unsuffixed => i128,
1157        isize_unsuffixed => isize,
1158    }
1159
1160    /// Creates a new unsuffixed floating-point literal.
1161    ///
1162    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1163    /// the float's value is emitted directly into the token but no suffix is
1164    /// used, so it may be inferred to be a `f64` later in the compiler.
1165    /// Literals created from negative numbers may not survive round-trips
1166    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1167    /// and positive literal).
1168    ///
1169    /// # Panics
1170    ///
1171    /// This function requires that the specified float is finite, for example
1172    /// if it is infinity or NaN this function will panic.
1173    pub fn f64_unsuffixed(f: f64) -> Literal {
1174        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1175        Literal::_new(imp::Literal::f64_unsuffixed(f))
1176    }
1177
1178    /// Creates a new suffixed floating-point literal.
1179    ///
1180    /// This constructor will create a literal like `1.0f64` where the value
1181    /// specified is the preceding part of the token and `f64` is the suffix of
1182    /// the token. This token will always be inferred to be an `f64` in the
1183    /// compiler. Literals created from negative numbers may not survive
1184    /// round-trips through `TokenStream` or strings and may be broken into two
1185    /// tokens (`-` and positive literal).
1186    ///
1187    /// # Panics
1188    ///
1189    /// This function requires that the specified float is finite, for example
1190    /// if it is infinity or NaN this function will panic.
1191    pub fn f64_suffixed(f: f64) -> Literal {
1192        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1193        Literal::_new(imp::Literal::f64_suffixed(f))
1194    }
1195
1196    /// Creates a new unsuffixed floating-point literal.
1197    ///
1198    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1199    /// the float's value is emitted directly into the token but no suffix is
1200    /// used, so it may be inferred to be a `f64` later in the compiler.
1201    /// Literals created from negative numbers may not survive round-trips
1202    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1203    /// and positive literal).
1204    ///
1205    /// # Panics
1206    ///
1207    /// This function requires that the specified float is finite, for example
1208    /// if it is infinity or NaN this function will panic.
1209    pub fn f32_unsuffixed(f: f32) -> Literal {
1210        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1211        Literal::_new(imp::Literal::f32_unsuffixed(f))
1212    }
1213
1214    /// Creates a new suffixed floating-point literal.
1215    ///
1216    /// This constructor will create a literal like `1.0f32` where the value
1217    /// specified is the preceding part of the token and `f32` is the suffix of
1218    /// the token. This token will always be inferred to be an `f32` in the
1219    /// compiler. Literals created from negative numbers may not survive
1220    /// round-trips through `TokenStream` or strings and may be broken into two
1221    /// tokens (`-` and positive literal).
1222    ///
1223    /// # Panics
1224    ///
1225    /// This function requires that the specified float is finite, for example
1226    /// if it is infinity or NaN this function will panic.
1227    pub fn f32_suffixed(f: f32) -> Literal {
1228        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1229        Literal::_new(imp::Literal::f32_suffixed(f))
1230    }
1231
1232    /// String literal.
1233    pub fn string(string: &str) -> Literal {
1234        Literal::_new(imp::Literal::string(string))
1235    }
1236
1237    /// Character literal.
1238    pub fn character(ch: char) -> Literal {
1239        Literal::_new(imp::Literal::character(ch))
1240    }
1241
1242    /// Byte character literal.
1243    pub fn byte_character(byte: u8) -> Literal {
1244        Literal::_new(imp::Literal::byte_character(byte))
1245    }
1246
1247    /// Byte string literal.
1248    pub fn byte_string(bytes: &[u8]) -> Literal {
1249        Literal::_new(imp::Literal::byte_string(bytes))
1250    }
1251
1252    /// C string literal.
1253    pub fn c_string(string: &CStr) -> Literal {
1254        Literal::_new(imp::Literal::c_string(string))
1255    }
1256
1257    /// Returns the span encompassing this literal.
1258    pub fn span(&self) -> Span {
1259        Span::_new(self.inner.span())
1260    }
1261
1262    /// Configures the span associated for this literal.
1263    pub fn set_span(&mut self, span: Span) {
1264        self.inner.set_span(span.inner);
1265    }
1266
1267    /// Returns a `Span` that is a subset of `self.span()` containing only
1268    /// the source bytes in range `range`. Returns `None` if the would-be
1269    /// trimmed span is outside the bounds of `self`.
1270    ///
1271    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1272    /// nightly-only. When called from within a procedural macro not using a
1273    /// nightly compiler, this method will always return `None`.
1274    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1275        self.inner.subspan(range).map(Span::_new)
1276    }
1277
1278    /// Returns the unescaped string value if this is a string literal.
1279    #[cfg(procmacro2_semver_exempt)]
1280    pub fn str_value(&self) -> Result<String, ConversionErrorKind> {
1281        let repr = self.to_string();
1282
1283        if repr.starts_with('"') && repr[1..].ends_with('"') {
1284            let quoted = &repr[1..repr.len() - 1];
1285            let mut value = String::with_capacity(quoted.len());
1286            let mut error = None;
1287            rustc_literal_escaper::unescape_str(quoted, |_range, res| match res {
1288                Ok(ch) => value.push(ch),
1289                Err(err) => {
1290                    if err.is_fatal() {
1291                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1292                    }
1293                }
1294            });
1295            return match error {
1296                Some(error) => Err(error),
1297                None => Ok(value),
1298            };
1299        }
1300
1301        if repr.starts_with('r') {
1302            if let Some(raw) = get_raw(&repr[1..]) {
1303                return Ok(raw.to_owned());
1304            }
1305        }
1306
1307        Err(ConversionErrorKind::InvalidLiteralKind)
1308    }
1309
1310    /// Returns the unescaped string value (including nul terminator) if this is
1311    /// a c-string literal.
1312    #[cfg(procmacro2_semver_exempt)]
1313    pub fn cstr_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1314        let repr = self.to_string();
1315
1316        if repr.starts_with("c\"") && repr[2..].ends_with('"') {
1317            let quoted = &repr[2..repr.len() - 1];
1318            let mut value = Vec::with_capacity(quoted.len());
1319            let mut error = None;
1320            rustc_literal_escaper::unescape_c_str(quoted, |_range, res| match res {
1321                Ok(MixedUnit::Char(ch)) => {
1322                    value.extend_from_slice(ch.get().encode_utf8(&mut [0; 4]).as_bytes());
1323                }
1324                Ok(MixedUnit::HighByte(byte)) => value.push(byte.get()),
1325                Err(err) => {
1326                    if err.is_fatal() {
1327                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1328                    }
1329                }
1330            });
1331            return match error {
1332                Some(error) => Err(error),
1333                None => {
1334                    value.push(b'\0');
1335                    Ok(value)
1336                }
1337            };
1338        }
1339
1340        if repr.starts_with("cr") {
1341            if let Some(raw) = get_raw(&repr[2..]) {
1342                let mut value = Vec::with_capacity(raw.len() + 1);
1343                value.extend_from_slice(raw.as_bytes());
1344                value.push(b'\0');
1345                return Ok(value);
1346            }
1347        }
1348
1349        Err(ConversionErrorKind::InvalidLiteralKind)
1350    }
1351
1352    /// Returns the unescaped string value if this is a byte string literal.
1353    #[cfg(procmacro2_semver_exempt)]
1354    pub fn byte_str_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1355        let repr = self.to_string();
1356
1357        if repr.starts_with("b\"") && repr[2..].ends_with('"') {
1358            let quoted = &repr[2..repr.len() - 1];
1359            let mut value = Vec::with_capacity(quoted.len());
1360            let mut error = None;
1361            rustc_literal_escaper::unescape_byte_str(quoted, |_range, res| match res {
1362                Ok(byte) => value.push(byte),
1363                Err(err) => {
1364                    if err.is_fatal() {
1365                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1366                    }
1367                }
1368            });
1369            return match error {
1370                Some(error) => Err(error),
1371                None => Ok(value),
1372            };
1373        }
1374
1375        if repr.starts_with("br") {
1376            if let Some(raw) = get_raw(&repr[2..]) {
1377                return Ok(raw.as_bytes().to_owned());
1378            }
1379        }
1380
1381        Err(ConversionErrorKind::InvalidLiteralKind)
1382    }
1383
1384    // Intended for the `quote!` macro to use when constructing a proc-macro2
1385    // token out of a macro_rules $:literal token, which is already known to be
1386    // a valid literal. This avoids reparsing/validating the literal's string
1387    // representation. This is not public API other than for quote.
1388    #[doc(hidden)]
1389    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1390        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1391    }
1392}
1393
1394impl FromStr for Literal {
1395    type Err = LexError;
1396
1397    fn from_str(repr: &str) -> Result<Self, LexError> {
1398        match imp::Literal::from_str_checked(repr) {
1399            Ok(lit) => Ok(Literal::_new(lit)),
1400            Err(lex) => Err(LexError {
1401                inner: lex,
1402                _marker: MARKER,
1403            }),
1404        }
1405    }
1406}
1407
1408impl Debug for Literal {
1409    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1410        Debug::fmt(&self.inner, f)
1411    }
1412}
1413
1414impl Display for Literal {
1415    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1416        Display::fmt(&self.inner, f)
1417    }
1418}
1419
1420/// Error when retrieving a string literal's unescaped value.
1421#[cfg(procmacro2_semver_exempt)]
1422#[derive(#[automatically_derived]
impl ::core::fmt::Debug for ConversionErrorKind {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        match self {
            ConversionErrorKind::FailedToUnescape(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "FailedToUnescape", &__self_0),
            ConversionErrorKind::InvalidLiteralKind =>
                ::core::fmt::Formatter::write_str(f, "InvalidLiteralKind"),
        }
    }
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for ConversionErrorKind {
    #[inline]
    fn eq(&self, other: &ConversionErrorKind) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr &&
            match (self, other) {
                (ConversionErrorKind::FailedToUnescape(__self_0),
                    ConversionErrorKind::FailedToUnescape(__arg1_0)) =>
                    __self_0 == __arg1_0,
                _ => true,
            }
    }
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for ConversionErrorKind {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {
        let _: ::core::cmp::AssertParamIsEq<EscapeError>;
    }
}Eq)]
1423pub enum ConversionErrorKind {
1424    /// The literal is of the right string kind, but its contents are malformed
1425    /// in a way that cannot be unescaped to a value.
1426    FailedToUnescape(EscapeError),
1427    /// The literal is not of the string kind whose value was requested, for
1428    /// example byte string vs UTF-8 string.
1429    InvalidLiteralKind,
1430}
1431
1432// ###"..."### -> ...
1433#[cfg(procmacro2_semver_exempt)]
1434fn get_raw(repr: &str) -> Option<&str> {
1435    let pounds = repr.len() - repr.trim_start_matches('#').len();
1436    if repr.len() >= pounds + 1 + 1 + pounds
1437        && repr[pounds..].starts_with('"')
1438        && repr.trim_end_matches('#').len() + pounds == repr.len()
1439        && repr[..repr.len() - pounds].ends_with('"')
1440    {
1441        Some(&repr[pounds + 1..repr.len() - pounds - 1])
1442    } else {
1443        None
1444    }
1445}
1446
1447/// Public implementation details for the `TokenStream` type, such as iterators.
1448pub mod token_stream {
1449    use crate::marker::{ProcMacroAutoTraits, MARKER};
1450    use crate::{imp, TokenTree};
1451    use core::fmt::{self, Debug};
1452
1453    pub use crate::TokenStream;
1454
1455    /// An iterator over `TokenStream`'s `TokenTree`s.
1456    ///
1457    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1458    /// delimited groups, and returns whole groups as token trees.
1459    #[derive(#[automatically_derived]
impl ::core::clone::Clone for IntoIter {
    #[inline]
    fn clone(&self) -> IntoIter {
        IntoIter {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1460    pub struct IntoIter {
1461        inner: imp::TokenTreeIter,
1462        _marker: ProcMacroAutoTraits,
1463    }
1464
1465    impl Iterator for IntoIter {
1466        type Item = TokenTree;
1467
1468        fn next(&mut self) -> Option<TokenTree> {
1469            self.inner.next()
1470        }
1471
1472        fn size_hint(&self) -> (usize, Option<usize>) {
1473            self.inner.size_hint()
1474        }
1475    }
1476
1477    impl Debug for IntoIter {
1478        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1479            f.write_str("TokenStream ")?;
1480            f.debug_list().entries(self.clone()).finish()
1481        }
1482    }
1483
1484    impl IntoIterator for TokenStream {
1485        type Item = TokenTree;
1486        type IntoIter = IntoIter;
1487
1488        fn into_iter(self) -> IntoIter {
1489            IntoIter {
1490                inner: self.inner.into_iter(),
1491                _marker: MARKER,
1492            }
1493        }
1494    }
1495}