proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
14//!   macros and cannot ever exist in code outside of a procedural macro.
15//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//!   By developing foundational libraries like [syn] and [quote] against
17//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//!   becomes easily applicable to many other use cases and we avoid
19//!   reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//!   specific to procedural macros, nothing that uses `proc_macro` can be
23//!   executed from a unit test. In order for helper libraries or components of
24//!   a macro to be testable in isolation, they must be implemented using
25//!   `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//!     let input = proc_macro2::TokenStream::from(input);
43//!
44//!     let output: proc_macro2::TokenStream = {
45//!         /* transform input */
46//!         # input
47//!     };
48//!
49//!     proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.60.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86// Proc-macro2 types in rustdoc of other crates get linked to here.
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.102")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93    clippy::cast_lossless,
94    clippy::cast_possible_truncation,
95    clippy::checked_conversions,
96    clippy::doc_markdown,
97    clippy::elidable_lifetime_names,
98    clippy::incompatible_msrv,
99    clippy::items_after_statements,
100    clippy::iter_without_into_iter,
101    clippy::let_underscore_untyped,
102    clippy::manual_assert,
103    clippy::manual_range_contains,
104    clippy::missing_panics_doc,
105    clippy::missing_safety_doc,
106    clippy::must_use_candidate,
107    clippy::needless_doctest_main,
108    clippy::needless_lifetimes,
109    clippy::new_without_default,
110    clippy::return_self_not_must_use,
111    clippy::shadow_unrelated,
112    clippy::trivially_copy_pass_by_ref,
113    clippy::uninlined_format_args,
114    clippy::unnecessary_wraps,
115    clippy::unused_self,
116    clippy::used_underscore_binding,
117    clippy::vec_init_then_push
118)]
119#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
120
121#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
122compile_error! {"\
123    Something is not right. If you've tried to turn on \
124    procmacro2_semver_exempt, you need to ensure that it \
125    is turned on for the compilation of the proc-macro2 \
126    build script as well.
127"}
128
129#[cfg(all(
130    procmacro2_nightly_testing,
131    feature = "proc-macro",
132    not(proc_macro_span)
133))]
134compile_error! {"\
135    Build script probe failed to compile.
136"}
137
138extern crate alloc;
139
140#[cfg(feature = "proc-macro")]
141extern crate proc_macro;
142
143mod marker;
144mod parse;
145mod probe;
146mod rcvec;
147
148#[cfg(wrap_proc_macro)]
149mod detection;
150
151// Public for proc_macro2::fallback::force() and unforce(), but those are quite
152// a niche use case so we omit it from rustdoc.
153#[doc(hidden)]
154pub mod fallback;
155
156pub mod extra;
157
158#[cfg(not(wrap_proc_macro))]
159use crate::fallback as imp;
160#[path = "wrapper.rs"]
161#[cfg(wrap_proc_macro)]
162mod imp;
163
164#[cfg(span_locations)]
165mod location;
166
167use crate::extra::DelimSpan;
168use crate::marker::{ProcMacroAutoTraits, MARKER};
169use core::cmp::Ordering;
170use core::fmt::{self, Debug, Display};
171use core::hash::{Hash, Hasher};
172#[cfg(span_locations)]
173use core::ops::Range;
174use core::ops::RangeBounds;
175use core::str::FromStr;
176use std::error::Error;
177use std::ffi::CStr;
178#[cfg(span_locations)]
179use std::path::PathBuf;
180
181#[cfg(span_locations)]
182#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
183pub use crate::location::LineColumn;
184
185/// An abstract stream of tokens, or more concretely a sequence of token trees.
186///
187/// This type provides interfaces for iterating over token trees and for
188/// collecting token trees into one stream.
189///
190/// Token stream is both the input and output of `#[proc_macro]`,
191/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
192#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenStream {
    #[inline]
    fn clone(&self) -> TokenStream {
        TokenStream {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
193pub struct TokenStream {
194    inner: imp::TokenStream,
195    _marker: ProcMacroAutoTraits,
196}
197
198/// Error returned from `TokenStream::from_str`.
199pub struct LexError {
200    inner: imp::LexError,
201    _marker: ProcMacroAutoTraits,
202}
203
204impl TokenStream {
205    fn _new(inner: imp::TokenStream) -> Self {
206        TokenStream {
207            inner,
208            _marker: MARKER,
209        }
210    }
211
212    fn _new_fallback(inner: fallback::TokenStream) -> Self {
213        TokenStream {
214            inner: imp::TokenStream::from(inner),
215            _marker: MARKER,
216        }
217    }
218
219    /// Returns an empty `TokenStream` containing no token trees.
220    pub fn new() -> Self {
221        TokenStream::_new(imp::TokenStream::new())
222    }
223
224    /// Checks if this `TokenStream` is empty.
225    pub fn is_empty(&self) -> bool {
226        self.inner.is_empty()
227    }
228}
229
230/// `TokenStream::default()` returns an empty stream,
231/// i.e. this is equivalent with `TokenStream::new()`.
232impl Default for TokenStream {
233    fn default() -> Self {
234        TokenStream::new()
235    }
236}
237
238/// Attempts to break the string into tokens and parse those tokens into a token
239/// stream.
240///
241/// May fail for a number of reasons, for example, if the string contains
242/// unbalanced delimiters or characters not existing in the language.
243///
244/// NOTE: Some errors may cause panics instead of returning `LexError`. We
245/// reserve the right to change these errors into `LexError`s later.
246impl FromStr for TokenStream {
247    type Err = LexError;
248
249    fn from_str(src: &str) -> Result<TokenStream, LexError> {
250        match imp::TokenStream::from_str_checked(src) {
251            Ok(tokens) => Ok(TokenStream::_new(tokens)),
252            Err(lex) => Err(LexError {
253                inner: lex,
254                _marker: MARKER,
255            }),
256        }
257    }
258}
259
260#[cfg(feature = "proc-macro")]
261#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
262impl From<proc_macro::TokenStream> for TokenStream {
263    fn from(inner: proc_macro::TokenStream) -> Self {
264        TokenStream::_new(imp::TokenStream::from(inner))
265    }
266}
267
268#[cfg(feature = "proc-macro")]
269#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
270impl From<TokenStream> for proc_macro::TokenStream {
271    fn from(inner: TokenStream) -> Self {
272        proc_macro::TokenStream::from(inner.inner)
273    }
274}
275
276impl From<TokenTree> for TokenStream {
277    fn from(token: TokenTree) -> Self {
278        TokenStream::_new(imp::TokenStream::from(token))
279    }
280}
281
282impl Extend<TokenTree> for TokenStream {
283    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
284        self.inner.extend(streams);
285    }
286}
287
288impl Extend<TokenStream> for TokenStream {
289    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
290        self.inner
291            .extend(streams.into_iter().map(|stream| stream.inner));
292    }
293}
294
295/// Collects a number of token trees into a single stream.
296impl FromIterator<TokenTree> for TokenStream {
297    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
298        TokenStream::_new(streams.into_iter().collect())
299    }
300}
301impl FromIterator<TokenStream> for TokenStream {
302    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
303        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
304    }
305}
306
307/// Prints the token stream as a string that is supposed to be losslessly
308/// convertible back into the same token stream (modulo spans), except for
309/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
310/// numeric literals.
311impl Display for TokenStream {
312    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
313        Display::fmt(&self.inner, f)
314    }
315}
316
317/// Prints token in a form convenient for debugging.
318impl Debug for TokenStream {
319    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
320        Debug::fmt(&self.inner, f)
321    }
322}
323
324impl LexError {
325    pub fn span(&self) -> Span {
326        Span::_new(self.inner.span())
327    }
328}
329
330impl Debug for LexError {
331    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
332        Debug::fmt(&self.inner, f)
333    }
334}
335
336impl Display for LexError {
337    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
338        Display::fmt(&self.inner, f)
339    }
340}
341
342impl Error for LexError {}
343
344/// A region of source code, along with macro expansion information.
345#[derive(#[automatically_derived]
impl ::core::marker::Copy for Span { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Span {
    #[inline]
    fn clone(&self) -> Span {
        let _: ::core::clone::AssertParamIsClone<imp::Span>;
        let _: ::core::clone::AssertParamIsClone<ProcMacroAutoTraits>;
        *self
    }
}Clone)]
346pub struct Span {
347    inner: imp::Span,
348    _marker: ProcMacroAutoTraits,
349}
350
351impl Span {
352    fn _new(inner: imp::Span) -> Self {
353        Span {
354            inner,
355            _marker: MARKER,
356        }
357    }
358
359    fn _new_fallback(inner: fallback::Span) -> Self {
360        Span {
361            inner: imp::Span::from(inner),
362            _marker: MARKER,
363        }
364    }
365
366    /// The span of the invocation of the current procedural macro.
367    ///
368    /// Identifiers created with this span will be resolved as if they were
369    /// written directly at the macro call location (call-site hygiene) and
370    /// other code at the macro call site will be able to refer to them as well.
371    pub fn call_site() -> Self {
372        Span::_new(imp::Span::call_site())
373    }
374
375    /// The span located at the invocation of the procedural macro, but with
376    /// local variables, labels, and `$crate` resolved at the definition site
377    /// of the macro. This is the same hygiene behavior as `macro_rules`.
378    pub fn mixed_site() -> Self {
379        Span::_new(imp::Span::mixed_site())
380    }
381
382    /// A span that resolves at the macro definition site.
383    ///
384    /// This method is semver exempt and not exposed by default.
385    #[cfg(procmacro2_semver_exempt)]
386    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
387    pub fn def_site() -> Self {
388        Span::_new(imp::Span::def_site())
389    }
390
391    /// Creates a new span with the same line/column information as `self` but
392    /// that resolves symbols as though it were at `other`.
393    pub fn resolved_at(&self, other: Span) -> Span {
394        Span::_new(self.inner.resolved_at(other.inner))
395    }
396
397    /// Creates a new span with the same name resolution behavior as `self` but
398    /// with the line/column information of `other`.
399    pub fn located_at(&self, other: Span) -> Span {
400        Span::_new(self.inner.located_at(other.inner))
401    }
402
403    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
404    ///
405    /// This method is available when building with a nightly compiler, or when
406    /// building with rustc 1.29+ *without* semver exempt features.
407    ///
408    /// # Panics
409    ///
410    /// Panics if called from outside of a procedural macro. Unlike
411    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
412    /// the context of a procedural macro invocation.
413    #[cfg(wrap_proc_macro)]
414    pub fn unwrap(self) -> proc_macro::Span {
415        self.inner.unwrap()
416    }
417
418    // Soft deprecated. Please use Span::unwrap.
419    #[cfg(wrap_proc_macro)]
420    #[doc(hidden)]
421    pub fn unstable(self) -> proc_macro::Span {
422        self.unwrap()
423    }
424
425    /// Returns the span's byte position range in the source file.
426    ///
427    /// This method requires the `"span-locations"` feature to be enabled.
428    ///
429    /// When executing in a procedural macro context, the returned range is only
430    /// accurate if compiled with a nightly toolchain. The stable toolchain does
431    /// not have this information available. When executing outside of a
432    /// procedural macro, such as main.rs or build.rs, the byte range is always
433    /// accurate regardless of toolchain.
434    #[cfg(span_locations)]
435    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
436    pub fn byte_range(&self) -> Range<usize> {
437        self.inner.byte_range()
438    }
439
440    /// Get the starting line/column in the source file for this span.
441    ///
442    /// This method requires the `"span-locations"` feature to be enabled.
443    ///
444    /// When executing in a procedural macro context, the returned line/column
445    /// are only meaningful if compiled with a nightly toolchain. The stable
446    /// toolchain does not have this information available. When executing
447    /// outside of a procedural macro, such as main.rs or build.rs, the
448    /// line/column are always meaningful regardless of toolchain.
449    #[cfg(span_locations)]
450    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
451    pub fn start(&self) -> LineColumn {
452        self.inner.start()
453    }
454
455    /// Get the ending line/column in the source file for this span.
456    ///
457    /// This method requires the `"span-locations"` feature to be enabled.
458    ///
459    /// When executing in a procedural macro context, the returned line/column
460    /// are only meaningful if compiled with a nightly toolchain. The stable
461    /// toolchain does not have this information available. When executing
462    /// outside of a procedural macro, such as main.rs or build.rs, the
463    /// line/column are always meaningful regardless of toolchain.
464    #[cfg(span_locations)]
465    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
466    pub fn end(&self) -> LineColumn {
467        self.inner.end()
468    }
469
470    /// The path to the source file in which this span occurs, for display
471    /// purposes.
472    ///
473    /// This might not correspond to a valid file system path. It might be
474    /// remapped, or might be an artificial path such as `"<macro expansion>"`.
475    #[cfg(span_locations)]
476    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
477    pub fn file(&self) -> String {
478        self.inner.file()
479    }
480
481    /// The path to the source file in which this span occurs on disk.
482    ///
483    /// This is the actual path on disk. It is unaffected by path remapping.
484    ///
485    /// This path should not be embedded in the output of the macro; prefer
486    /// `file()` instead.
487    #[cfg(span_locations)]
488    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
489    pub fn local_file(&self) -> Option<PathBuf> {
490        self.inner.local_file()
491    }
492
493    /// Create a new span encompassing `self` and `other`.
494    ///
495    /// Returns `None` if `self` and `other` are from different files.
496    ///
497    /// Warning: the underlying [`proc_macro::Span::join`] method is
498    /// nightly-only. When called from within a procedural macro not using a
499    /// nightly compiler, this method will always return `None`.
500    pub fn join(&self, other: Span) -> Option<Span> {
501        self.inner.join(other.inner).map(Span::_new)
502    }
503
504    /// Compares two spans to see if they're equal.
505    ///
506    /// This method is semver exempt and not exposed by default.
507    #[cfg(procmacro2_semver_exempt)]
508    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
509    pub fn eq(&self, other: &Span) -> bool {
510        self.inner.eq(&other.inner)
511    }
512
513    /// Returns the source text behind a span. This preserves the original
514    /// source code, including spaces and comments. It only returns a result if
515    /// the span corresponds to real source code.
516    ///
517    /// Note: The observable result of a macro should only rely on the tokens
518    /// and not on this source text. The result of this function is a best
519    /// effort to be used for diagnostics only.
520    pub fn source_text(&self) -> Option<String> {
521        self.inner.source_text()
522    }
523}
524
525/// Prints a span in a form convenient for debugging.
526impl Debug for Span {
527    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
528        Debug::fmt(&self.inner, f)
529    }
530}
531
532/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
533#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenTree {
    #[inline]
    fn clone(&self) -> TokenTree {
        match self {
            TokenTree::Group(__self_0) =>
                TokenTree::Group(::core::clone::Clone::clone(__self_0)),
            TokenTree::Ident(__self_0) =>
                TokenTree::Ident(::core::clone::Clone::clone(__self_0)),
            TokenTree::Punct(__self_0) =>
                TokenTree::Punct(::core::clone::Clone::clone(__self_0)),
            TokenTree::Literal(__self_0) =>
                TokenTree::Literal(::core::clone::Clone::clone(__self_0)),
        }
    }
}Clone)]
534pub enum TokenTree {
535    /// A token stream surrounded by bracket delimiters.
536    Group(Group),
537    /// An identifier.
538    Ident(Ident),
539    /// A single punctuation character (`+`, `,`, `$`, etc.).
540    Punct(Punct),
541    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
542    Literal(Literal),
543}
544
545impl TokenTree {
546    /// Returns the span of this tree, delegating to the `span` method of
547    /// the contained token or a delimited stream.
548    pub fn span(&self) -> Span {
549        match self {
550            TokenTree::Group(t) => t.span(),
551            TokenTree::Ident(t) => t.span(),
552            TokenTree::Punct(t) => t.span(),
553            TokenTree::Literal(t) => t.span(),
554        }
555    }
556
557    /// Configures the span for *only this token*.
558    ///
559    /// Note that if this token is a `Group` then this method will not configure
560    /// the span of each of the internal tokens, this will simply delegate to
561    /// the `set_span` method of each variant.
562    pub fn set_span(&mut self, span: Span) {
563        match self {
564            TokenTree::Group(t) => t.set_span(span),
565            TokenTree::Ident(t) => t.set_span(span),
566            TokenTree::Punct(t) => t.set_span(span),
567            TokenTree::Literal(t) => t.set_span(span),
568        }
569    }
570}
571
572impl From<Group> for TokenTree {
573    fn from(g: Group) -> Self {
574        TokenTree::Group(g)
575    }
576}
577
578impl From<Ident> for TokenTree {
579    fn from(g: Ident) -> Self {
580        TokenTree::Ident(g)
581    }
582}
583
584impl From<Punct> for TokenTree {
585    fn from(g: Punct) -> Self {
586        TokenTree::Punct(g)
587    }
588}
589
590impl From<Literal> for TokenTree {
591    fn from(g: Literal) -> Self {
592        TokenTree::Literal(g)
593    }
594}
595
596/// Prints the token tree as a string that is supposed to be losslessly
597/// convertible back into the same token tree (modulo spans), except for
598/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
599/// numeric literals.
600impl Display for TokenTree {
601    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
602        match self {
603            TokenTree::Group(t) => Display::fmt(t, f),
604            TokenTree::Ident(t) => Display::fmt(t, f),
605            TokenTree::Punct(t) => Display::fmt(t, f),
606            TokenTree::Literal(t) => Display::fmt(t, f),
607        }
608    }
609}
610
611/// Prints token tree in a form convenient for debugging.
612impl Debug for TokenTree {
613    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
614        // Each of these has the name in the struct type in the derived debug,
615        // so don't bother with an extra layer of indirection
616        match self {
617            TokenTree::Group(t) => Debug::fmt(t, f),
618            TokenTree::Ident(t) => {
619                let mut debug = f.debug_struct("Ident");
620                debug.field("sym", &format_args!("{0}", t)format_args!("{}", t));
621                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
622                debug.finish()
623            }
624            TokenTree::Punct(t) => Debug::fmt(t, f),
625            TokenTree::Literal(t) => Debug::fmt(t, f),
626        }
627    }
628}
629
630/// A delimited token stream.
631///
632/// A `Group` internally contains a `TokenStream` which is surrounded by
633/// `Delimiter`s.
634#[derive(#[automatically_derived]
impl ::core::clone::Clone for Group {
    #[inline]
    fn clone(&self) -> Group {
        Group { inner: ::core::clone::Clone::clone(&self.inner) }
    }
}Clone)]
635pub struct Group {
636    inner: imp::Group,
637}
638
639/// Describes how a sequence of token trees is delimited.
640#[derive(#[automatically_derived]
impl ::core::marker::Copy for Delimiter { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Delimiter {
    #[inline]
    fn clone(&self) -> Delimiter { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Delimiter {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Delimiter::Parenthesis => "Parenthesis",
                Delimiter::Brace => "Brace",
                Delimiter::Bracket => "Bracket",
                Delimiter::None => "None",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Delimiter {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Delimiter {
    #[inline]
    fn eq(&self, other: &Delimiter) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
641pub enum Delimiter {
642    /// `( ... )`
643    Parenthesis,
644    /// `{ ... }`
645    Brace,
646    /// `[ ... ]`
647    Bracket,
648    /// `∅ ... ∅`
649    ///
650    /// An invisible delimiter, that may, for example, appear around tokens
651    /// coming from a "macro variable" `$var`. It is important to preserve
652    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
653    /// Invisible delimiters may not survive roundtrip of a token stream through
654    /// a string.
655    ///
656    /// <div class="warning">
657    ///
658    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
659    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
660    /// of a proc_macro macro are preserved, and only in very specific circumstances.
661    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
662    /// operator priorities as indicated above. The other `Delimiter` variants should be used
663    /// instead in this context. This is a rustc bug. For details, see
664    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
665    ///
666    /// </div>
667    None,
668}
669
670impl Group {
671    fn _new(inner: imp::Group) -> Self {
672        Group { inner }
673    }
674
675    fn _new_fallback(inner: fallback::Group) -> Self {
676        Group {
677            inner: imp::Group::from(inner),
678        }
679    }
680
681    /// Creates a new `Group` with the given delimiter and token stream.
682    ///
683    /// This constructor will set the span for this group to
684    /// `Span::call_site()`. To change the span you can use the `set_span`
685    /// method below.
686    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
687        Group {
688            inner: imp::Group::new(delimiter, stream.inner),
689        }
690    }
691
692    /// Returns the punctuation used as the delimiter for this group: a set of
693    /// parentheses, square brackets, or curly braces.
694    pub fn delimiter(&self) -> Delimiter {
695        self.inner.delimiter()
696    }
697
698    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
699    ///
700    /// Note that the returned token stream does not include the delimiter
701    /// returned above.
702    pub fn stream(&self) -> TokenStream {
703        TokenStream::_new(self.inner.stream())
704    }
705
706    /// Returns the span for the delimiters of this token stream, spanning the
707    /// entire `Group`.
708    ///
709    /// ```text
710    /// pub fn span(&self) -> Span {
711    ///            ^^^^^^^
712    /// ```
713    pub fn span(&self) -> Span {
714        Span::_new(self.inner.span())
715    }
716
717    /// Returns the span pointing to the opening delimiter of this group.
718    ///
719    /// ```text
720    /// pub fn span_open(&self) -> Span {
721    ///                 ^
722    /// ```
723    pub fn span_open(&self) -> Span {
724        Span::_new(self.inner.span_open())
725    }
726
727    /// Returns the span pointing to the closing delimiter of this group.
728    ///
729    /// ```text
730    /// pub fn span_close(&self) -> Span {
731    ///                        ^
732    /// ```
733    pub fn span_close(&self) -> Span {
734        Span::_new(self.inner.span_close())
735    }
736
737    /// Returns an object that holds this group's `span_open()` and
738    /// `span_close()` together (in a more compact representation than holding
739    /// those 2 spans individually).
740    pub fn delim_span(&self) -> DelimSpan {
741        DelimSpan::new(&self.inner)
742    }
743
744    /// Configures the span for this `Group`'s delimiters, but not its internal
745    /// tokens.
746    ///
747    /// This method will **not** set the span of all the internal tokens spanned
748    /// by this group, but rather it will only set the span of the delimiter
749    /// tokens at the level of the `Group`.
750    pub fn set_span(&mut self, span: Span) {
751        self.inner.set_span(span.inner);
752    }
753}
754
755/// Prints the group as a string that should be losslessly convertible back
756/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
757/// with `Delimiter::None` delimiters.
758impl Display for Group {
759    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
760        Display::fmt(&self.inner, formatter)
761    }
762}
763
764impl Debug for Group {
765    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
766        Debug::fmt(&self.inner, formatter)
767    }
768}
769
770/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
771///
772/// Multicharacter operators like `+=` are represented as two instances of
773/// `Punct` with different forms of `Spacing` returned.
774#[derive(#[automatically_derived]
impl ::core::clone::Clone for Punct {
    #[inline]
    fn clone(&self) -> Punct {
        Punct {
            ch: ::core::clone::Clone::clone(&self.ch),
            spacing: ::core::clone::Clone::clone(&self.spacing),
            span: ::core::clone::Clone::clone(&self.span),
        }
    }
}Clone)]
775pub struct Punct {
776    ch: char,
777    spacing: Spacing,
778    span: Span,
779}
780
781/// Whether a `Punct` is followed immediately by another `Punct` or followed by
782/// another token or whitespace.
783#[derive(#[automatically_derived]
impl ::core::marker::Copy for Spacing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Spacing {
    #[inline]
    fn clone(&self) -> Spacing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Spacing {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Spacing::Alone => "Alone",
                Spacing::Joint => "Joint",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Spacing {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Spacing {
    #[inline]
    fn eq(&self, other: &Spacing) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
784pub enum Spacing {
785    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
786    Alone,
787    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
788    ///
789    /// Additionally, single quote `'` can join with identifiers to form
790    /// lifetimes `'ident`.
791    Joint,
792}
793
794impl Punct {
795    /// Creates a new `Punct` from the given character and spacing.
796    ///
797    /// The `ch` argument must be a valid punctuation character permitted by the
798    /// language, otherwise the function will panic.
799    ///
800    /// The returned `Punct` will have the default span of `Span::call_site()`
801    /// which can be further configured with the `set_span` method below.
802    pub fn new(ch: char, spacing: Spacing) -> Self {
803        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
804        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
805        {
806            Punct {
807                ch,
808                spacing,
809                span: Span::call_site(),
810            }
811        } else {
812            {
    ::core::panicking::panic_fmt(format_args!("unsupported proc macro punctuation character {0:?}",
            ch));
};panic!("unsupported proc macro punctuation character {:?}", ch);
813        }
814    }
815
816    /// Returns the value of this punctuation character as `char`.
817    pub fn as_char(&self) -> char {
818        self.ch
819    }
820
821    /// Returns the spacing of this punctuation character, indicating whether
822    /// it's immediately followed by another `Punct` in the token stream, so
823    /// they can potentially be combined into a multicharacter operator
824    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
825    /// so the operator has certainly ended.
826    pub fn spacing(&self) -> Spacing {
827        self.spacing
828    }
829
830    /// Returns the span for this punctuation character.
831    pub fn span(&self) -> Span {
832        self.span
833    }
834
835    /// Configure the span for this punctuation character.
836    pub fn set_span(&mut self, span: Span) {
837        self.span = span;
838    }
839}
840
841/// Prints the punctuation character as a string that should be losslessly
842/// convertible back into the same character.
843impl Display for Punct {
844    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
845        Display::fmt(&self.ch, f)
846    }
847}
848
849impl Debug for Punct {
850    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
851        let mut debug = fmt.debug_struct("Punct");
852        debug.field("char", &self.ch);
853        debug.field("spacing", &self.spacing);
854        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
855        debug.finish()
856    }
857}
858
859/// A word of Rust code, which may be a keyword or legal variable name.
860///
861/// An identifier consists of at least one Unicode code point, the first of
862/// which has the XID_Start property and the rest of which have the XID_Continue
863/// property.
864///
865/// - The empty string is not an identifier. Use `Option<Ident>`.
866/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
867///
868/// An identifier constructed with `Ident::new` is permitted to be a Rust
869/// keyword, though parsing one through its [`Parse`] implementation rejects
870/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
871/// behaviour of `Ident::new`.
872///
873/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
874///
875/// # Examples
876///
877/// A new ident can be created from a string using the `Ident::new` function.
878/// A span must be provided explicitly which governs the name resolution
879/// behavior of the resulting identifier.
880///
881/// ```
882/// use proc_macro2::{Ident, Span};
883///
884/// fn main() {
885///     let call_ident = Ident::new("calligraphy", Span::call_site());
886///
887///     println!("{}", call_ident);
888/// }
889/// ```
890///
891/// An ident can be interpolated into a token stream using the `quote!` macro.
892///
893/// ```
894/// use proc_macro2::{Ident, Span};
895/// use quote::quote;
896///
897/// fn main() {
898///     let ident = Ident::new("demo", Span::call_site());
899///
900///     // Create a variable binding whose name is this ident.
901///     let expanded = quote! { let #ident = 10; };
902///
903///     // Create a variable binding with a slightly different name.
904///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
905///     let expanded = quote! { let #temp_ident = 10; };
906/// }
907/// ```
908///
909/// A string representation of the ident is available through the `to_string()`
910/// method.
911///
912/// ```
913/// # use proc_macro2::{Ident, Span};
914/// #
915/// # let ident = Ident::new("another_identifier", Span::call_site());
916/// #
917/// // Examine the ident as a string.
918/// let ident_string = ident.to_string();
919/// if ident_string.len() > 60 {
920///     println!("Very long identifier: {}", ident_string)
921/// }
922/// ```
923#[derive(#[automatically_derived]
impl ::core::clone::Clone for Ident {
    #[inline]
    fn clone(&self) -> Ident {
        Ident {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
924pub struct Ident {
925    inner: imp::Ident,
926    _marker: ProcMacroAutoTraits,
927}
928
929impl Ident {
930    fn _new(inner: imp::Ident) -> Self {
931        Ident {
932            inner,
933            _marker: MARKER,
934        }
935    }
936
937    fn _new_fallback(inner: fallback::Ident) -> Self {
938        Ident {
939            inner: imp::Ident::from(inner),
940            _marker: MARKER,
941        }
942    }
943
944    /// Creates a new `Ident` with the given `string` as well as the specified
945    /// `span`.
946    ///
947    /// The `string` argument must be a valid identifier permitted by the
948    /// language, otherwise the function will panic.
949    ///
950    /// Note that `span`, currently in rustc, configures the hygiene information
951    /// for this identifier.
952    ///
953    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
954    /// hygiene meaning that identifiers created with this span will be resolved
955    /// as if they were written directly at the location of the macro call, and
956    /// other code at the macro call site will be able to refer to them as well.
957    ///
958    /// Later spans like `Span::def_site()` will allow to opt-in to
959    /// "definition-site" hygiene meaning that identifiers created with this
960    /// span will be resolved at the location of the macro definition and other
961    /// code at the macro call site will not be able to refer to them.
962    ///
963    /// Due to the current importance of hygiene this constructor, unlike other
964    /// tokens, requires a `Span` to be specified at construction.
965    ///
966    /// # Panics
967    ///
968    /// Panics if the input string is neither a keyword nor a legal variable
969    /// name. If you are not sure whether the string contains an identifier and
970    /// need to handle an error case, use
971    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
972    ///   style="padding-right:0;">syn::parse_str</code></a><code
973    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
974    /// rather than `Ident::new`.
975    #[track_caller]
976    pub fn new(string: &str, span: Span) -> Self {
977        Ident::_new(imp::Ident::new_checked(string, span.inner))
978    }
979
980    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
981    /// `string` argument must be a valid identifier permitted by the language
982    /// (including keywords, e.g. `fn`). Keywords which are usable in path
983    /// segments (e.g. `self`, `super`) are not supported, and will cause a
984    /// panic.
985    #[track_caller]
986    pub fn new_raw(string: &str, span: Span) -> Self {
987        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
988    }
989
990    /// Returns the span of this `Ident`.
991    pub fn span(&self) -> Span {
992        Span::_new(self.inner.span())
993    }
994
995    /// Configures the span of this `Ident`, possibly changing its hygiene
996    /// context.
997    pub fn set_span(&mut self, span: Span) {
998        self.inner.set_span(span.inner);
999    }
1000}
1001
1002impl PartialEq for Ident {
1003    fn eq(&self, other: &Ident) -> bool {
1004        self.inner == other.inner
1005    }
1006}
1007
1008impl<T> PartialEq<T> for Ident
1009where
1010    T: ?Sized + AsRef<str>,
1011{
1012    fn eq(&self, other: &T) -> bool {
1013        self.inner == other
1014    }
1015}
1016
1017impl Eq for Ident {}
1018
1019impl PartialOrd for Ident {
1020    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1021        Some(self.cmp(other))
1022    }
1023}
1024
1025impl Ord for Ident {
1026    fn cmp(&self, other: &Ident) -> Ordering {
1027        self.to_string().cmp(&other.to_string())
1028    }
1029}
1030
1031impl Hash for Ident {
1032    fn hash<H: Hasher>(&self, hasher: &mut H) {
1033        self.to_string().hash(hasher);
1034    }
1035}
1036
1037/// Prints the identifier as a string that should be losslessly convertible back
1038/// into the same identifier.
1039impl Display for Ident {
1040    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1041        Display::fmt(&self.inner, f)
1042    }
1043}
1044
1045impl Debug for Ident {
1046    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1047        Debug::fmt(&self.inner, f)
1048    }
1049}
1050
1051/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1052/// byte character (`b'a'`), an integer or floating point number with or without
1053/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1054///
1055/// Boolean literals like `true` and `false` do not belong here, they are
1056/// `Ident`s.
1057#[derive(#[automatically_derived]
impl ::core::clone::Clone for Literal {
    #[inline]
    fn clone(&self) -> Literal {
        Literal {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1058pub struct Literal {
1059    inner: imp::Literal,
1060    _marker: ProcMacroAutoTraits,
1061}
1062
1063macro_rules! suffixed_int_literals {
1064    ($($name:ident => $kind:ident,)*) => ($(
1065        /// Creates a new suffixed integer literal with the specified value.
1066        ///
1067        /// This function will create an integer like `1u32` where the integer
1068        /// value specified is the first part of the token and the integral is
1069        /// also suffixed at the end. Literals created from negative numbers may
1070        /// not survive roundtrips through `TokenStream` or strings and may be
1071        /// broken into two tokens (`-` and positive literal).
1072        ///
1073        /// Literals created through this method have the `Span::call_site()`
1074        /// span by default, which can be configured with the `set_span` method
1075        /// below.
1076        pub fn $name(n: $kind) -> Literal {
1077            Literal::_new(imp::Literal::$name(n))
1078        }
1079    )*)
1080}
1081
1082macro_rules! unsuffixed_int_literals {
1083    ($($name:ident => $kind:ident,)*) => ($(
1084        /// Creates a new unsuffixed integer literal with the specified value.
1085        ///
1086        /// This function will create an integer like `1` where the integer
1087        /// value specified is the first part of the token. No suffix is
1088        /// specified on this token, meaning that invocations like
1089        /// `Literal::i8_unsuffixed(1)` are equivalent to
1090        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1091        /// may not survive roundtrips through `TokenStream` or strings and may
1092        /// be broken into two tokens (`-` and positive literal).
1093        ///
1094        /// Literals created through this method have the `Span::call_site()`
1095        /// span by default, which can be configured with the `set_span` method
1096        /// below.
1097        pub fn $name(n: $kind) -> Literal {
1098            Literal::_new(imp::Literal::$name(n))
1099        }
1100    )*)
1101}
1102
1103impl Literal {
1104    fn _new(inner: imp::Literal) -> Self {
1105        Literal {
1106            inner,
1107            _marker: MARKER,
1108        }
1109    }
1110
1111    fn _new_fallback(inner: fallback::Literal) -> Self {
1112        Literal {
1113            inner: imp::Literal::from(inner),
1114            _marker: MARKER,
1115        }
1116    }
1117
1118    n
Literal::_new(imp::Literal::isize_suffixed(n));suffixed_int_literals! {
1119        u8_suffixed => u8,
1120        u16_suffixed => u16,
1121        u32_suffixed => u32,
1122        u64_suffixed => u64,
1123        u128_suffixed => u128,
1124        usize_suffixed => usize,
1125        i8_suffixed => i8,
1126        i16_suffixed => i16,
1127        i32_suffixed => i32,
1128        i64_suffixed => i64,
1129        i128_suffixed => i128,
1130        isize_suffixed => isize,
1131    }
1132
1133    n
Literal::_new(imp::Literal::isize_unsuffixed(n));unsuffixed_int_literals! {
1134        u8_unsuffixed => u8,
1135        u16_unsuffixed => u16,
1136        u32_unsuffixed => u32,
1137        u64_unsuffixed => u64,
1138        u128_unsuffixed => u128,
1139        usize_unsuffixed => usize,
1140        i8_unsuffixed => i8,
1141        i16_unsuffixed => i16,
1142        i32_unsuffixed => i32,
1143        i64_unsuffixed => i64,
1144        i128_unsuffixed => i128,
1145        isize_unsuffixed => isize,
1146    }
1147
1148    /// Creates a new unsuffixed floating-point literal.
1149    ///
1150    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1151    /// the float's value is emitted directly into the token but no suffix is
1152    /// used, so it may be inferred to be a `f64` later in the compiler.
1153    /// Literals created from negative numbers may not survive round-trips
1154    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1155    /// and positive literal).
1156    ///
1157    /// # Panics
1158    ///
1159    /// This function requires that the specified float is finite, for example
1160    /// if it is infinity or NaN this function will panic.
1161    pub fn f64_unsuffixed(f: f64) -> Literal {
1162        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1163        Literal::_new(imp::Literal::f64_unsuffixed(f))
1164    }
1165
1166    /// Creates a new suffixed floating-point literal.
1167    ///
1168    /// This constructor will create a literal like `1.0f64` where the value
1169    /// specified is the preceding part of the token and `f64` is the suffix of
1170    /// the token. This token will always be inferred to be an `f64` in the
1171    /// compiler. Literals created from negative numbers may not survive
1172    /// round-trips through `TokenStream` or strings and may be broken into two
1173    /// tokens (`-` and positive literal).
1174    ///
1175    /// # Panics
1176    ///
1177    /// This function requires that the specified float is finite, for example
1178    /// if it is infinity or NaN this function will panic.
1179    pub fn f64_suffixed(f: f64) -> Literal {
1180        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1181        Literal::_new(imp::Literal::f64_suffixed(f))
1182    }
1183
1184    /// Creates a new unsuffixed floating-point literal.
1185    ///
1186    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1187    /// the float's value is emitted directly into the token but no suffix is
1188    /// used, so it may be inferred to be a `f64` later in the compiler.
1189    /// Literals created from negative numbers may not survive round-trips
1190    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1191    /// and positive literal).
1192    ///
1193    /// # Panics
1194    ///
1195    /// This function requires that the specified float is finite, for example
1196    /// if it is infinity or NaN this function will panic.
1197    pub fn f32_unsuffixed(f: f32) -> Literal {
1198        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1199        Literal::_new(imp::Literal::f32_unsuffixed(f))
1200    }
1201
1202    /// Creates a new suffixed floating-point literal.
1203    ///
1204    /// This constructor will create a literal like `1.0f32` where the value
1205    /// specified is the preceding part of the token and `f32` is the suffix of
1206    /// the token. This token will always be inferred to be an `f32` in the
1207    /// compiler. Literals created from negative numbers may not survive
1208    /// round-trips through `TokenStream` or strings and may be broken into two
1209    /// tokens (`-` and positive literal).
1210    ///
1211    /// # Panics
1212    ///
1213    /// This function requires that the specified float is finite, for example
1214    /// if it is infinity or NaN this function will panic.
1215    pub fn f32_suffixed(f: f32) -> Literal {
1216        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1217        Literal::_new(imp::Literal::f32_suffixed(f))
1218    }
1219
1220    /// String literal.
1221    pub fn string(string: &str) -> Literal {
1222        Literal::_new(imp::Literal::string(string))
1223    }
1224
1225    /// Character literal.
1226    pub fn character(ch: char) -> Literal {
1227        Literal::_new(imp::Literal::character(ch))
1228    }
1229
1230    /// Byte character literal.
1231    pub fn byte_character(byte: u8) -> Literal {
1232        Literal::_new(imp::Literal::byte_character(byte))
1233    }
1234
1235    /// Byte string literal.
1236    pub fn byte_string(bytes: &[u8]) -> Literal {
1237        Literal::_new(imp::Literal::byte_string(bytes))
1238    }
1239
1240    /// C string literal.
1241    pub fn c_string(string: &CStr) -> Literal {
1242        Literal::_new(imp::Literal::c_string(string))
1243    }
1244
1245    /// Returns the span encompassing this literal.
1246    pub fn span(&self) -> Span {
1247        Span::_new(self.inner.span())
1248    }
1249
1250    /// Configures the span associated for this literal.
1251    pub fn set_span(&mut self, span: Span) {
1252        self.inner.set_span(span.inner);
1253    }
1254
1255    /// Returns a `Span` that is a subset of `self.span()` containing only
1256    /// the source bytes in range `range`. Returns `None` if the would-be
1257    /// trimmed span is outside the bounds of `self`.
1258    ///
1259    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1260    /// nightly-only. When called from within a procedural macro not using a
1261    /// nightly compiler, this method will always return `None`.
1262    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1263        self.inner.subspan(range).map(Span::_new)
1264    }
1265
1266    // Intended for the `quote!` macro to use when constructing a proc-macro2
1267    // token out of a macro_rules $:literal token, which is already known to be
1268    // a valid literal. This avoids reparsing/validating the literal's string
1269    // representation. This is not public API other than for quote.
1270    #[doc(hidden)]
1271    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1272        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1273    }
1274}
1275
1276impl FromStr for Literal {
1277    type Err = LexError;
1278
1279    fn from_str(repr: &str) -> Result<Self, LexError> {
1280        match imp::Literal::from_str_checked(repr) {
1281            Ok(lit) => Ok(Literal::_new(lit)),
1282            Err(lex) => Err(LexError {
1283                inner: lex,
1284                _marker: MARKER,
1285            }),
1286        }
1287    }
1288}
1289
1290impl Debug for Literal {
1291    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1292        Debug::fmt(&self.inner, f)
1293    }
1294}
1295
1296impl Display for Literal {
1297    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1298        Display::fmt(&self.inner, f)
1299    }
1300}
1301
1302/// Public implementation details for the `TokenStream` type, such as iterators.
1303pub mod token_stream {
1304    use crate::marker::{ProcMacroAutoTraits, MARKER};
1305    use crate::{imp, TokenTree};
1306    use core::fmt::{self, Debug};
1307
1308    pub use crate::TokenStream;
1309
1310    /// An iterator over `TokenStream`'s `TokenTree`s.
1311    ///
1312    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1313    /// delimited groups, and returns whole groups as token trees.
1314    #[derive(#[automatically_derived]
impl ::core::clone::Clone for IntoIter {
    #[inline]
    fn clone(&self) -> IntoIter {
        IntoIter {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1315    pub struct IntoIter {
1316        inner: imp::TokenTreeIter,
1317        _marker: ProcMacroAutoTraits,
1318    }
1319
1320    impl Iterator for IntoIter {
1321        type Item = TokenTree;
1322
1323        fn next(&mut self) -> Option<TokenTree> {
1324            self.inner.next()
1325        }
1326
1327        fn size_hint(&self) -> (usize, Option<usize>) {
1328            self.inner.size_hint()
1329        }
1330    }
1331
1332    impl Debug for IntoIter {
1333        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1334            f.write_str("TokenStream ")?;
1335            f.debug_list().entries(self.clone()).finish()
1336        }
1337    }
1338
1339    impl IntoIterator for TokenStream {
1340        type Item = TokenTree;
1341        type IntoIter = IntoIter;
1342
1343        fn into_iter(self) -> IntoIter {
1344            IntoIter {
1345                inner: self.inner.into_iter(),
1346                _marker: MARKER,
1347            }
1348        }
1349    }
1350}