proc_macro2_fallback/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/
13//!
14//! - **Bring proc-macro-like functionality to other contexts like build.rs and
15//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
16//!   macros and cannot ever exist in code outside of a procedural macro.
17//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
18//!   By developing foundational libraries like [syn] and [quote] against
19//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
20//!   becomes easily applicable to many other use cases and we avoid
21//!   reimplementing non-macro equivalents of those libraries.
22//!
23//! - **Make procedural macros unit testable.** As a consequence of being
24//!   specific to procedural macros, nothing that uses `proc_macro` can be
25//!   executed from a unit test. In order for helper libraries or components of
26//!   a macro to be testable in isolation, they must be implemented using
27//!   `proc_macro2`.
28//!
29//! [syn]: https://github.com/dtolnay/syn
30//! [quote]: https://github.com/dtolnay/quote
31//!
32//! # Usage
33//!
34//! The skeleton of a typical procedural macro typically looks like this:
35//!
36//! ```
37//! extern crate proc_macro;
38//!
39//! # const IGNORE: &str = stringify! {
40//! #[proc_macro_derive(MyDerive)]
41//! # };
42//! # #[cfg(wrap_proc_macro)]
43//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
44//!     let input = proc_macro2::TokenStream::from(input);
45//!
46//!     let output: proc_macro2::TokenStream = {
47//!         /* transform input */
48//!         # input
49//!     };
50//!
51//!     proc_macro::TokenStream::from(output)
52//! }
53//! ```
54//!
55//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
56//! propagate parse errors correctly back to the compiler when parsing fails.
57//!
58//! [`parse_macro_input!`]: https://docs.rs/syn/1.0/syn/macro.parse_macro_input.html
59//!
60//! # Unstable features
61//!
62//! The default feature set of proc-macro2 tracks the most recent stable
63//! compiler API. Functionality in `proc_macro` that is not yet stable is not
64//! exposed by proc-macro2 by default.
65//!
66//! To opt into the additional APIs available in the most recent nightly
67//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
68//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
69//! these are unstable APIs that track the nightly compiler, minor versions of
70//! proc-macro2 may make breaking changes to them at any time.
71//!
72//! ```sh
73//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
74//! ```
75//!
76//! Note that this must not only be done for your crate, but for any crate that
77//! depends on your crate. This infectious nature is intentional, as it serves
78//! as a reminder that you are outside of the normal semver guarantees.
79//!
80//! Semver exempt methods are marked as such in the proc-macro2 documentation.
81//!
82//! # Thread-Safety
83//!
84//! Most types in this crate are `!Sync` because the underlying compiler
85//! types make use of thread-local memory, meaning they cannot be accessed from
86//! a different thread.
87
88// Proc-macro2 types in rustdoc of other crates get linked to here.
89#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.66")]
90#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
91#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
92#![cfg_attr(doc_cfg, feature(doc_cfg))]
93#![allow(
94    clippy::cast_lossless,
95    clippy::cast_possible_truncation,
96    clippy::doc_markdown,
97    clippy::items_after_statements,
98    clippy::let_underscore_untyped,
99    clippy::manual_assert,
100    clippy::manual_range_contains,
101    clippy::must_use_candidate,
102    clippy::needless_doctest_main,
103    clippy::new_without_default,
104    clippy::return_self_not_must_use,
105    clippy::shadow_unrelated,
106    clippy::trivially_copy_pass_by_ref,
107    clippy::unnecessary_wraps,
108    clippy::unused_self,
109    clippy::used_underscore_binding,
110    clippy::vec_init_then_push
111)]
112
113#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
114compile_error! {"\
115    Something is not right. If you've tried to turn on \
116    procmacro2_semver_exempt, you need to ensure that it \
117    is turned on for the compilation of the proc-macro2 \
118    build script as well.
119"}
120
121extern crate alloc;
122
123#[cfg(feature = "proc-macro")]
124extern crate proc_macro;
125
126mod marker;
127mod parse;
128mod rcvec;
129
130#[cfg(wrap_proc_macro)]
131mod detection;
132
133// Public for proc_macro2::fallback::force() and unforce(), but those are quite
134// a niche use case so we omit it from rustdoc.
135#[doc(hidden)]
136pub mod fallback;
137
138pub mod extra;
139
140#[cfg(not(wrap_proc_macro))]
141use crate::fallback as imp;
142#[path = "wrapper.rs"]
143#[cfg(wrap_proc_macro)]
144mod imp;
145
146#[cfg(span_locations)]
147mod location;
148
149use crate::extra::DelimSpan;
150use crate::marker::Marker;
151use core::cmp::Ordering;
152use core::fmt::{self, Debug, Display};
153use core::hash::{Hash, Hasher};
154use core::ops::RangeBounds;
155use core::str::FromStr;
156use std::error::Error;
157#[cfg(procmacro2_semver_exempt)]
158use std::path::PathBuf;
159
160#[cfg(span_locations)]
161pub use crate::location::LineColumn;
162
163/// An abstract stream of tokens, or more concretely a sequence of token trees.
164///
165/// This type provides interfaces for iterating over token trees and for
166/// collecting token trees into one stream.
167///
168/// Token stream is both the input and output of `#[proc_macro]`,
169/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
170#[derive(Clone)]
171pub struct TokenStream {
172    inner: imp::TokenStream,
173    _marker: Marker,
174}
175
176/// Error returned from `TokenStream::from_str`.
177pub struct LexError {
178    inner: imp::LexError,
179    _marker: Marker,
180}
181
182impl TokenStream {
183    fn _new(inner: imp::TokenStream) -> Self {
184        TokenStream {
185            inner,
186            _marker: Marker,
187        }
188    }
189
190    fn _new_fallback(inner: fallback::TokenStream) -> Self {
191        TokenStream {
192            inner: inner.into(),
193            _marker: Marker,
194        }
195    }
196
197    /// Returns an empty `TokenStream` containing no token trees.
198    pub fn new() -> Self {
199        TokenStream::_new(imp::TokenStream::new())
200    }
201
202    /// Checks if this `TokenStream` is empty.
203    pub fn is_empty(&self) -> bool {
204        self.inner.is_empty()
205    }
206}
207
208/// `TokenStream::default()` returns an empty stream,
209/// i.e. this is equivalent with `TokenStream::new()`.
210impl Default for TokenStream {
211    fn default() -> Self {
212        TokenStream::new()
213    }
214}
215
216/// Attempts to break the string into tokens and parse those tokens into a token
217/// stream.
218///
219/// May fail for a number of reasons, for example, if the string contains
220/// unbalanced delimiters or characters not existing in the language.
221///
222/// NOTE: Some errors may cause panics instead of returning `LexError`. We
223/// reserve the right to change these errors into `LexError`s later.
224impl FromStr for TokenStream {
225    type Err = LexError;
226
227    fn from_str(src: &str) -> Result<TokenStream, LexError> {
228        let e = src.parse().map_err(|e| LexError {
229            inner: e,
230            _marker: Marker,
231        })?;
232        Ok(TokenStream::_new(e))
233    }
234}
235
236#[cfg(feature = "proc-macro")]
237#[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))]
238impl From<proc_macro::TokenStream> for TokenStream {
239    fn from(inner: proc_macro::TokenStream) -> Self {
240        TokenStream::_new(inner.into())
241    }
242}
243
244#[cfg(feature = "proc-macro")]
245#[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))]
246impl From<TokenStream> for proc_macro::TokenStream {
247    fn from(inner: TokenStream) -> Self {
248        inner.inner.into()
249    }
250}
251
252impl From<TokenTree> for TokenStream {
253    fn from(token: TokenTree) -> Self {
254        TokenStream::_new(imp::TokenStream::from(token))
255    }
256}
257
258impl Extend<TokenTree> for TokenStream {
259    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
260        self.inner.extend(streams);
261    }
262}
263
264impl Extend<TokenStream> for TokenStream {
265    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
266        self.inner
267            .extend(streams.into_iter().map(|stream| stream.inner));
268    }
269}
270
271/// Collects a number of token trees into a single stream.
272impl FromIterator<TokenTree> for TokenStream {
273    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
274        TokenStream::_new(streams.into_iter().collect())
275    }
276}
277impl FromIterator<TokenStream> for TokenStream {
278    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
279        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
280    }
281}
282
283/// Prints the token stream as a string that is supposed to be losslessly
284/// convertible back into the same token stream (modulo spans), except for
285/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
286/// numeric literals.
287impl Display for TokenStream {
288    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
289        Display::fmt(&self.inner, f)
290    }
291}
292
293/// Prints token in a form convenient for debugging.
294impl Debug for TokenStream {
295    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
296        Debug::fmt(&self.inner, f)
297    }
298}
299
300impl LexError {
301    pub fn span(&self) -> Span {
302        Span::_new(self.inner.span())
303    }
304}
305
306impl Debug for LexError {
307    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
308        Debug::fmt(&self.inner, f)
309    }
310}
311
312impl Display for LexError {
313    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
314        Display::fmt(&self.inner, f)
315    }
316}
317
318impl Error for LexError {}
319
320/// The source file of a given `Span`.
321///
322/// This type is semver exempt and not exposed by default.
323#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
324#[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
325#[derive(Clone, PartialEq, Eq)]
326pub struct SourceFile {
327    inner: imp::SourceFile,
328    _marker: Marker,
329}
330
331#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
332impl SourceFile {
333    fn _new(inner: imp::SourceFile) -> Self {
334        SourceFile {
335            inner,
336            _marker: Marker,
337        }
338    }
339
340    /// Get the path to this source file.
341    ///
342    /// ### Note
343    ///
344    /// If the code span associated with this `SourceFile` was generated by an
345    /// external macro, this may not be an actual path on the filesystem. Use
346    /// [`is_real`] to check.
347    ///
348    /// Also note that even if `is_real` returns `true`, if
349    /// `--remap-path-prefix` was passed on the command line, the path as given
350    /// may not actually be valid.
351    ///
352    /// [`is_real`]: #method.is_real
353    pub fn path(&self) -> PathBuf {
354        self.inner.path()
355    }
356
357    /// Returns `true` if this source file is a real source file, and not
358    /// generated by an external macro's expansion.
359    pub fn is_real(&self) -> bool {
360        self.inner.is_real()
361    }
362}
363
364#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
365impl Debug for SourceFile {
366    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
367        Debug::fmt(&self.inner, f)
368    }
369}
370
371/// A region of source code, along with macro expansion information.
372#[derive(Copy, Clone)]
373pub struct Span {
374    inner: imp::Span,
375    _marker: Marker,
376}
377
378impl Span {
379    fn _new(inner: imp::Span) -> Self {
380        Span {
381            inner,
382            _marker: Marker,
383        }
384    }
385
386    fn _new_fallback(inner: fallback::Span) -> Self {
387        Span {
388            inner: inner.into(),
389            _marker: Marker,
390        }
391    }
392
393    /// The span of the invocation of the current procedural macro.
394    ///
395    /// Identifiers created with this span will be resolved as if they were
396    /// written directly at the macro call location (call-site hygiene) and
397    /// other code at the macro call site will be able to refer to them as well.
398    pub fn call_site() -> Self {
399        Span::_new(imp::Span::call_site())
400    }
401
402    /// The span located at the invocation of the procedural macro, but with
403    /// local variables, labels, and `$crate` resolved at the definition site
404    /// of the macro. This is the same hygiene behavior as `macro_rules`.
405    pub fn mixed_site() -> Self {
406        Span::_new(imp::Span::mixed_site())
407    }
408
409    /// A span that resolves at the macro definition site.
410    ///
411    /// This method is semver exempt and not exposed by default.
412    #[cfg(procmacro2_semver_exempt)]
413    #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
414    pub fn def_site() -> Self {
415        Span::_new(imp::Span::def_site())
416    }
417
418    /// Creates a new span with the same line/column information as `self` but
419    /// that resolves symbols as though it were at `other`.
420    pub fn resolved_at(&self, other: Span) -> Span {
421        Span::_new(self.inner.resolved_at(other.inner))
422    }
423
424    /// Creates a new span with the same name resolution behavior as `self` but
425    /// with the line/column information of `other`.
426    pub fn located_at(&self, other: Span) -> Span {
427        Span::_new(self.inner.located_at(other.inner))
428    }
429
430    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
431    ///
432    /// This method is available when building with a nightly compiler, or when
433    /// building with rustc 1.29+ *without* semver exempt features.
434    ///
435    /// # Panics
436    ///
437    /// Panics if called from outside of a procedural macro. Unlike
438    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
439    /// the context of a procedural macro invocation.
440    #[cfg(wrap_proc_macro)]
441    pub fn unwrap(self) -> proc_macro::Span {
442        self.inner.unwrap()
443    }
444
445    // Soft deprecated. Please use Span::unwrap.
446    #[cfg(wrap_proc_macro)]
447    #[doc(hidden)]
448    pub fn unstable(self) -> proc_macro::Span {
449        self.unwrap()
450    }
451
452    /// The original source file into which this span points.
453    ///
454    /// This method is semver exempt and not exposed by default.
455    #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
456    #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
457    pub fn source_file(&self) -> SourceFile {
458        SourceFile::_new(self.inner.source_file())
459    }
460
461    /// Get the starting line/column in the source file for this span.
462    ///
463    /// This method requires the `"span-locations"` feature to be enabled.
464    ///
465    /// When executing in a procedural macro context, the returned line/column
466    /// are only meaningful if compiled with a nightly toolchain. The stable
467    /// toolchain does not have this information available. When executing
468    /// outside of a procedural macro, such as main.rs or build.rs, the
469    /// line/column are always meaningful regardless of toolchain.
470    #[cfg(span_locations)]
471    #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))]
472    pub fn start(&self) -> LineColumn {
473        self.inner.start()
474    }
475
476    /// Get the ending line/column in the source file for this span.
477    ///
478    /// This method requires the `"span-locations"` feature to be enabled.
479    ///
480    /// When executing in a procedural macro context, the returned line/column
481    /// are only meaningful if compiled with a nightly toolchain. The stable
482    /// toolchain does not have this information available. When executing
483    /// outside of a procedural macro, such as main.rs or build.rs, the
484    /// line/column are always meaningful regardless of toolchain.
485    #[cfg(span_locations)]
486    #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))]
487    pub fn end(&self) -> LineColumn {
488        self.inner.end()
489    }
490
491    /// Create a new span encompassing `self` and `other`.
492    ///
493    /// Returns `None` if `self` and `other` are from different files.
494    ///
495    /// Warning: the underlying [`proc_macro::Span::join`] method is
496    /// nightly-only. When called from within a procedural macro not using a
497    /// nightly compiler, this method will always return `None`.
498    ///
499    /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join
500    pub fn join(&self, other: Span) -> Option<Span> {
501        self.inner.join(other.inner).map(Span::_new)
502    }
503
504    /// Compares two spans to see if they're equal.
505    ///
506    /// This method is semver exempt and not exposed by default.
507    #[cfg(procmacro2_semver_exempt)]
508    #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
509    pub fn eq(&self, other: &Span) -> bool {
510        self.inner.eq(&other.inner)
511    }
512
513    /// Returns the source text behind a span. This preserves the original
514    /// source code, including spaces and comments. It only returns a result if
515    /// the span corresponds to real source code.
516    ///
517    /// Note: The observable result of a macro should only rely on the tokens
518    /// and not on this source text. The result of this function is a best
519    /// effort to be used for diagnostics only.
520    pub fn source_text(&self) -> Option<String> {
521        self.inner.source_text()
522    }
523}
524
525/// Prints a span in a form convenient for debugging.
526impl Debug for Span {
527    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
528        Debug::fmt(&self.inner, f)
529    }
530}
531
532/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
533#[derive(Clone)]
534pub enum TokenTree {
535    /// A token stream surrounded by bracket delimiters.
536    Group(Group),
537    /// An identifier.
538    Ident(Ident),
539    /// A single punctuation character (`+`, `,`, `$`, etc.).
540    Punct(Punct),
541    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
542    Literal(Literal),
543}
544
545impl TokenTree {
546    /// Returns the span of this tree, delegating to the `span` method of
547    /// the contained token or a delimited stream.
548    pub fn span(&self) -> Span {
549        match self {
550            TokenTree::Group(t) => t.span(),
551            TokenTree::Ident(t) => t.span(),
552            TokenTree::Punct(t) => t.span(),
553            TokenTree::Literal(t) => t.span(),
554        }
555    }
556
557    /// Configures the span for *only this token*.
558    ///
559    /// Note that if this token is a `Group` then this method will not configure
560    /// the span of each of the internal tokens, this will simply delegate to
561    /// the `set_span` method of each variant.
562    pub fn set_span(&mut self, span: Span) {
563        match self {
564            TokenTree::Group(t) => t.set_span(span),
565            TokenTree::Ident(t) => t.set_span(span),
566            TokenTree::Punct(t) => t.set_span(span),
567            TokenTree::Literal(t) => t.set_span(span),
568        }
569    }
570}
571
572impl From<Group> for TokenTree {
573    fn from(g: Group) -> Self {
574        TokenTree::Group(g)
575    }
576}
577
578impl From<Ident> for TokenTree {
579    fn from(g: Ident) -> Self {
580        TokenTree::Ident(g)
581    }
582}
583
584impl From<Punct> for TokenTree {
585    fn from(g: Punct) -> Self {
586        TokenTree::Punct(g)
587    }
588}
589
590impl From<Literal> for TokenTree {
591    fn from(g: Literal) -> Self {
592        TokenTree::Literal(g)
593    }
594}
595
596/// Prints the token tree as a string that is supposed to be losslessly
597/// convertible back into the same token tree (modulo spans), except for
598/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
599/// numeric literals.
600impl Display for TokenTree {
601    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
602        match self {
603            TokenTree::Group(t) => Display::fmt(t, f),
604            TokenTree::Ident(t) => Display::fmt(t, f),
605            TokenTree::Punct(t) => Display::fmt(t, f),
606            TokenTree::Literal(t) => Display::fmt(t, f),
607        }
608    }
609}
610
611/// Prints token tree in a form convenient for debugging.
612impl Debug for TokenTree {
613    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
614        // Each of these has the name in the struct type in the derived debug,
615        // so don't bother with an extra layer of indirection
616        match self {
617            TokenTree::Group(t) => Debug::fmt(t, f),
618            TokenTree::Ident(t) => {
619                let mut debug = f.debug_struct("Ident");
620                debug.field("sym", &format_args!("{}", t));
621                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
622                debug.finish()
623            }
624            TokenTree::Punct(t) => Debug::fmt(t, f),
625            TokenTree::Literal(t) => Debug::fmt(t, f),
626        }
627    }
628}
629
630/// A delimited token stream.
631///
632/// A `Group` internally contains a `TokenStream` which is surrounded by
633/// `Delimiter`s.
634#[derive(Clone)]
635pub struct Group {
636    inner: imp::Group,
637}
638
639/// Describes how a sequence of token trees is delimited.
640#[derive(Copy, Clone, Debug, Eq, PartialEq)]
641pub enum Delimiter {
642    /// `( ... )`
643    Parenthesis,
644    /// `{ ... }`
645    Brace,
646    /// `[ ... ]`
647    Bracket,
648    /// `Ø ... Ø`
649    ///
650    /// An implicit delimiter, that may, for example, appear around tokens
651    /// coming from a "macro variable" `$var`. It is important to preserve
652    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
653    /// Implicit delimiters may not survive roundtrip of a token stream through
654    /// a string.
655    None,
656}
657
658impl Group {
659    fn _new(inner: imp::Group) -> Self {
660        Group { inner }
661    }
662
663    fn _new_fallback(inner: fallback::Group) -> Self {
664        Group {
665            inner: inner.into(),
666        }
667    }
668
669    /// Creates a new `Group` with the given delimiter and token stream.
670    ///
671    /// This constructor will set the span for this group to
672    /// `Span::call_site()`. To change the span you can use the `set_span`
673    /// method below.
674    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
675        Group {
676            inner: imp::Group::new(delimiter, stream.inner),
677        }
678    }
679
680    /// Returns the punctuation used as the delimiter for this group: a set of
681    /// parentheses, square brackets, or curly braces.
682    pub fn delimiter(&self) -> Delimiter {
683        self.inner.delimiter()
684    }
685
686    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
687    ///
688    /// Note that the returned token stream does not include the delimiter
689    /// returned above.
690    pub fn stream(&self) -> TokenStream {
691        TokenStream::_new(self.inner.stream())
692    }
693
694    /// Returns the span for the delimiters of this token stream, spanning the
695    /// entire `Group`.
696    ///
697    /// ```text
698    /// pub fn span(&self) -> Span {
699    ///            ^^^^^^^
700    /// ```
701    pub fn span(&self) -> Span {
702        Span::_new(self.inner.span())
703    }
704
705    /// Returns the span pointing to the opening delimiter of this group.
706    ///
707    /// ```text
708    /// pub fn span_open(&self) -> Span {
709    ///                 ^
710    /// ```
711    pub fn span_open(&self) -> Span {
712        Span::_new(self.inner.span_open())
713    }
714
715    /// Returns the span pointing to the closing delimiter of this group.
716    ///
717    /// ```text
718    /// pub fn span_close(&self) -> Span {
719    ///                        ^
720    /// ```
721    pub fn span_close(&self) -> Span {
722        Span::_new(self.inner.span_close())
723    }
724
725    /// Returns an object that holds this group's `span_open()` and
726    /// `span_close()` together (in a more compact representation than holding
727    /// those 2 spans individually).
728    pub fn delim_span(&self) -> DelimSpan {
729        DelimSpan::new(&self.inner)
730    }
731
732    /// Configures the span for this `Group`'s delimiters, but not its internal
733    /// tokens.
734    ///
735    /// This method will **not** set the span of all the internal tokens spanned
736    /// by this group, but rather it will only set the span of the delimiter
737    /// tokens at the level of the `Group`.
738    pub fn set_span(&mut self, span: Span) {
739        self.inner.set_span(span.inner);
740    }
741}
742
743/// Prints the group as a string that should be losslessly convertible back
744/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
745/// with `Delimiter::None` delimiters.
746impl Display for Group {
747    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
748        Display::fmt(&self.inner, formatter)
749    }
750}
751
752impl Debug for Group {
753    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
754        Debug::fmt(&self.inner, formatter)
755    }
756}
757
758/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
759///
760/// Multicharacter operators like `+=` are represented as two instances of
761/// `Punct` with different forms of `Spacing` returned.
762#[derive(Clone)]
763pub struct Punct {
764    ch: char,
765    spacing: Spacing,
766    span: Span,
767}
768
769/// Whether a `Punct` is followed immediately by another `Punct` or followed by
770/// another token or whitespace.
771#[derive(Copy, Clone, Debug, Eq, PartialEq)]
772pub enum Spacing {
773    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
774    Alone,
775    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
776    ///
777    /// Additionally, single quote `'` can join with identifiers to form
778    /// lifetimes `'ident`.
779    Joint,
780}
781
782impl Punct {
783    /// Creates a new `Punct` from the given character and spacing.
784    ///
785    /// The `ch` argument must be a valid punctuation character permitted by the
786    /// language, otherwise the function will panic.
787    ///
788    /// The returned `Punct` will have the default span of `Span::call_site()`
789    /// which can be further configured with the `set_span` method below.
790    pub fn new(ch: char, spacing: Spacing) -> Self {
791        Punct {
792            ch,
793            spacing,
794            span: Span::call_site(),
795        }
796    }
797
798    /// Returns the value of this punctuation character as `char`.
799    pub fn as_char(&self) -> char {
800        self.ch
801    }
802
803    /// Returns the spacing of this punctuation character, indicating whether
804    /// it's immediately followed by another `Punct` in the token stream, so
805    /// they can potentially be combined into a multicharacter operator
806    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
807    /// so the operator has certainly ended.
808    pub fn spacing(&self) -> Spacing {
809        self.spacing
810    }
811
812    /// Returns the span for this punctuation character.
813    pub fn span(&self) -> Span {
814        self.span
815    }
816
817    /// Configure the span for this punctuation character.
818    pub fn set_span(&mut self, span: Span) {
819        self.span = span;
820    }
821}
822
823/// Prints the punctuation character as a string that should be losslessly
824/// convertible back into the same character.
825impl Display for Punct {
826    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
827        Display::fmt(&self.ch, f)
828    }
829}
830
831impl Debug for Punct {
832    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
833        let mut debug = fmt.debug_struct("Punct");
834        debug.field("char", &self.ch);
835        debug.field("spacing", &self.spacing);
836        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
837        debug.finish()
838    }
839}
840
841/// A word of Rust code, which may be a keyword or legal variable name.
842///
843/// An identifier consists of at least one Unicode code point, the first of
844/// which has the XID_Start property and the rest of which have the XID_Continue
845/// property.
846///
847/// - The empty string is not an identifier. Use `Option<Ident>`.
848/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
849///
850/// An identifier constructed with `Ident::new` is permitted to be a Rust
851/// keyword, though parsing one through its [`Parse`] implementation rejects
852/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
853/// behaviour of `Ident::new`.
854///
855/// [`Parse`]: https://docs.rs/syn/1.0/syn/parse/trait.Parse.html
856///
857/// # Examples
858///
859/// A new ident can be created from a string using the `Ident::new` function.
860/// A span must be provided explicitly which governs the name resolution
861/// behavior of the resulting identifier.
862///
863/// ```
864/// use proc_macro2::{Ident, Span};
865///
866/// fn main() {
867///     let call_ident = Ident::new("calligraphy", Span::call_site());
868///
869///     println!("{}", call_ident);
870/// }
871/// ```
872///
873/// An ident can be interpolated into a token stream using the `quote!` macro.
874///
875/// ```
876/// use proc_macro2::{Ident, Span};
877/// use quote::quote;
878///
879/// fn main() {
880///     let ident = Ident::new("demo", Span::call_site());
881///
882///     // Create a variable binding whose name is this ident.
883///     let expanded = quote! { let #ident = 10; };
884///
885///     // Create a variable binding with a slightly different name.
886///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
887///     let expanded = quote! { let #temp_ident = 10; };
888/// }
889/// ```
890///
891/// A string representation of the ident is available through the `to_string()`
892/// method.
893///
894/// ```
895/// # use proc_macro2::{Ident, Span};
896/// #
897/// # let ident = Ident::new("another_identifier", Span::call_site());
898/// #
899/// // Examine the ident as a string.
900/// let ident_string = ident.to_string();
901/// if ident_string.len() > 60 {
902///     println!("Very long identifier: {}", ident_string)
903/// }
904/// ```
905#[derive(Clone)]
906pub struct Ident {
907    inner: imp::Ident,
908    _marker: Marker,
909}
910
911impl Ident {
912    fn _new(inner: imp::Ident) -> Self {
913        Ident {
914            inner,
915            _marker: Marker,
916        }
917    }
918
919    /// Creates a new `Ident` with the given `string` as well as the specified
920    /// `span`.
921    ///
922    /// The `string` argument must be a valid identifier permitted by the
923    /// language, otherwise the function will panic.
924    ///
925    /// Note that `span`, currently in rustc, configures the hygiene information
926    /// for this identifier.
927    ///
928    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
929    /// hygiene meaning that identifiers created with this span will be resolved
930    /// as if they were written directly at the location of the macro call, and
931    /// other code at the macro call site will be able to refer to them as well.
932    ///
933    /// Later spans like `Span::def_site()` will allow to opt-in to
934    /// "definition-site" hygiene meaning that identifiers created with this
935    /// span will be resolved at the location of the macro definition and other
936    /// code at the macro call site will not be able to refer to them.
937    ///
938    /// Due to the current importance of hygiene this constructor, unlike other
939    /// tokens, requires a `Span` to be specified at construction.
940    ///
941    /// # Panics
942    ///
943    /// Panics if the input string is neither a keyword nor a legal variable
944    /// name. If you are not sure whether the string contains an identifier and
945    /// need to handle an error case, use
946    /// <a href="https://docs.rs/syn/1.0/syn/fn.parse_str.html"><code
947    ///   style="padding-right:0;">syn::parse_str</code></a><code
948    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
949    /// rather than `Ident::new`.
950    pub fn new(string: &str, span: Span) -> Self {
951        Ident::_new(imp::Ident::new(string, span.inner))
952    }
953
954    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
955    /// `string` argument must be a valid identifier permitted by the language
956    /// (including keywords, e.g. `fn`). Keywords which are usable in path
957    /// segments (e.g. `self`, `super`) are not supported, and will cause a
958    /// panic.
959    pub fn new_raw(string: &str, span: Span) -> Self {
960        Ident::_new_raw(string, span)
961    }
962
963    fn _new_raw(string: &str, span: Span) -> Self {
964        Ident::_new(imp::Ident::new_raw(string, span.inner))
965    }
966
967    /// Returns the span of this `Ident`.
968    pub fn span(&self) -> Span {
969        Span::_new(self.inner.span())
970    }
971
972    /// Configures the span of this `Ident`, possibly changing its hygiene
973    /// context.
974    pub fn set_span(&mut self, span: Span) {
975        self.inner.set_span(span.inner);
976    }
977}
978
979impl PartialEq for Ident {
980    fn eq(&self, other: &Ident) -> bool {
981        self.inner == other.inner
982    }
983}
984
985impl<T> PartialEq<T> for Ident
986where
987    T: ?Sized + AsRef<str>,
988{
989    fn eq(&self, other: &T) -> bool {
990        self.inner == other
991    }
992}
993
994impl Eq for Ident {}
995
996impl PartialOrd for Ident {
997    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
998        Some(self.cmp(other))
999    }
1000}
1001
1002impl Ord for Ident {
1003    fn cmp(&self, other: &Ident) -> Ordering {
1004        self.to_string().cmp(&other.to_string())
1005    }
1006}
1007
1008impl Hash for Ident {
1009    fn hash<H: Hasher>(&self, hasher: &mut H) {
1010        self.to_string().hash(hasher);
1011    }
1012}
1013
1014/// Prints the identifier as a string that should be losslessly convertible back
1015/// into the same identifier.
1016impl Display for Ident {
1017    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1018        Display::fmt(&self.inner, f)
1019    }
1020}
1021
1022impl Debug for Ident {
1023    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1024        Debug::fmt(&self.inner, f)
1025    }
1026}
1027
1028/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1029/// byte character (`b'a'`), an integer or floating point number with or without
1030/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1031///
1032/// Boolean literals like `true` and `false` do not belong here, they are
1033/// `Ident`s.
1034#[derive(Clone)]
1035pub struct Literal {
1036    inner: imp::Literal,
1037    _marker: Marker,
1038}
1039
1040macro_rules! suffixed_int_literals {
1041    ($($name:ident => $kind:ident,)*) => ($(
1042        /// Creates a new suffixed integer literal with the specified value.
1043        ///
1044        /// This function will create an integer like `1u32` where the integer
1045        /// value specified is the first part of the token and the integral is
1046        /// also suffixed at the end. Literals created from negative numbers may
1047        /// not survive roundtrips through `TokenStream` or strings and may be
1048        /// broken into two tokens (`-` and positive literal).
1049        ///
1050        /// Literals created through this method have the `Span::call_site()`
1051        /// span by default, which can be configured with the `set_span` method
1052        /// below.
1053        pub fn $name(n: $kind) -> Literal {
1054            Literal::_new(imp::Literal::$name(n))
1055        }
1056    )*)
1057}
1058
1059macro_rules! unsuffixed_int_literals {
1060    ($($name:ident => $kind:ident,)*) => ($(
1061        /// Creates a new unsuffixed integer literal with the specified value.
1062        ///
1063        /// This function will create an integer like `1` where the integer
1064        /// value specified is the first part of the token. No suffix is
1065        /// specified on this token, meaning that invocations like
1066        /// `Literal::i8_unsuffixed(1)` are equivalent to
1067        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1068        /// may not survive roundtrips through `TokenStream` or strings and may
1069        /// be broken into two tokens (`-` and positive literal).
1070        ///
1071        /// Literals created through this method have the `Span::call_site()`
1072        /// span by default, which can be configured with the `set_span` method
1073        /// below.
1074        pub fn $name(n: $kind) -> Literal {
1075            Literal::_new(imp::Literal::$name(n))
1076        }
1077    )*)
1078}
1079
1080impl Literal {
1081    fn _new(inner: imp::Literal) -> Self {
1082        Literal {
1083            inner,
1084            _marker: Marker,
1085        }
1086    }
1087
1088    fn _new_fallback(inner: fallback::Literal) -> Self {
1089        Literal {
1090            inner: inner.into(),
1091            _marker: Marker,
1092        }
1093    }
1094
1095    suffixed_int_literals! {
1096        u8_suffixed => u8,
1097        u16_suffixed => u16,
1098        u32_suffixed => u32,
1099        u64_suffixed => u64,
1100        u128_suffixed => u128,
1101        usize_suffixed => usize,
1102        i8_suffixed => i8,
1103        i16_suffixed => i16,
1104        i32_suffixed => i32,
1105        i64_suffixed => i64,
1106        i128_suffixed => i128,
1107        isize_suffixed => isize,
1108    }
1109
1110    unsuffixed_int_literals! {
1111        u8_unsuffixed => u8,
1112        u16_unsuffixed => u16,
1113        u32_unsuffixed => u32,
1114        u64_unsuffixed => u64,
1115        u128_unsuffixed => u128,
1116        usize_unsuffixed => usize,
1117        i8_unsuffixed => i8,
1118        i16_unsuffixed => i16,
1119        i32_unsuffixed => i32,
1120        i64_unsuffixed => i64,
1121        i128_unsuffixed => i128,
1122        isize_unsuffixed => isize,
1123    }
1124
1125    /// Creates a new unsuffixed floating-point literal.
1126    ///
1127    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1128    /// the float's value is emitted directly into the token but no suffix is
1129    /// used, so it may be inferred to be a `f64` later in the compiler.
1130    /// Literals created from negative numbers may not survive round-trips
1131    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1132    /// and positive literal).
1133    ///
1134    /// # Panics
1135    ///
1136    /// This function requires that the specified float is finite, for example
1137    /// if it is infinity or NaN this function will panic.
1138    pub fn f64_unsuffixed(f: f64) -> Literal {
1139        assert!(f.is_finite());
1140        Literal::_new(imp::Literal::f64_unsuffixed(f))
1141    }
1142
1143    /// Creates a new suffixed floating-point literal.
1144    ///
1145    /// This constructor will create a literal like `1.0f64` where the value
1146    /// specified is the preceding part of the token and `f64` is the suffix of
1147    /// the token. This token will always be inferred to be an `f64` in the
1148    /// compiler. Literals created from negative numbers may not survive
1149    /// round-trips through `TokenStream` or strings and may be broken into two
1150    /// tokens (`-` and positive literal).
1151    ///
1152    /// # Panics
1153    ///
1154    /// This function requires that the specified float is finite, for example
1155    /// if it is infinity or NaN this function will panic.
1156    pub fn f64_suffixed(f: f64) -> Literal {
1157        assert!(f.is_finite());
1158        Literal::_new(imp::Literal::f64_suffixed(f))
1159    }
1160
1161    /// Creates a new unsuffixed floating-point literal.
1162    ///
1163    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1164    /// the float's value is emitted directly into the token but no suffix is
1165    /// used, so it may be inferred to be a `f64` later in the compiler.
1166    /// Literals created from negative numbers may not survive round-trips
1167    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1168    /// and positive literal).
1169    ///
1170    /// # Panics
1171    ///
1172    /// This function requires that the specified float is finite, for example
1173    /// if it is infinity or NaN this function will panic.
1174    pub fn f32_unsuffixed(f: f32) -> Literal {
1175        assert!(f.is_finite());
1176        Literal::_new(imp::Literal::f32_unsuffixed(f))
1177    }
1178
1179    /// Creates a new suffixed floating-point literal.
1180    ///
1181    /// This constructor will create a literal like `1.0f32` where the value
1182    /// specified is the preceding part of the token and `f32` is the suffix of
1183    /// the token. This token will always be inferred to be an `f32` in the
1184    /// compiler. Literals created from negative numbers may not survive
1185    /// round-trips through `TokenStream` or strings and may be broken into two
1186    /// tokens (`-` and positive literal).
1187    ///
1188    /// # Panics
1189    ///
1190    /// This function requires that the specified float is finite, for example
1191    /// if it is infinity or NaN this function will panic.
1192    pub fn f32_suffixed(f: f32) -> Literal {
1193        assert!(f.is_finite());
1194        Literal::_new(imp::Literal::f32_suffixed(f))
1195    }
1196
1197    /// String literal.
1198    pub fn string(string: &str) -> Literal {
1199        Literal::_new(imp::Literal::string(string))
1200    }
1201
1202    /// Character literal.
1203    pub fn character(ch: char) -> Literal {
1204        Literal::_new(imp::Literal::character(ch))
1205    }
1206
1207    /// Byte string literal.
1208    pub fn byte_string(s: &[u8]) -> Literal {
1209        Literal::_new(imp::Literal::byte_string(s))
1210    }
1211
1212    /// Returns the span encompassing this literal.
1213    pub fn span(&self) -> Span {
1214        Span::_new(self.inner.span())
1215    }
1216
1217    /// Configures the span associated for this literal.
1218    pub fn set_span(&mut self, span: Span) {
1219        self.inner.set_span(span.inner);
1220    }
1221
1222    /// Returns a `Span` that is a subset of `self.span()` containing only
1223    /// the source bytes in range `range`. Returns `None` if the would-be
1224    /// trimmed span is outside the bounds of `self`.
1225    ///
1226    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1227    /// nightly-only. When called from within a procedural macro not using a
1228    /// nightly compiler, this method will always return `None`.
1229    ///
1230    /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan
1231    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1232        self.inner.subspan(range).map(Span::_new)
1233    }
1234
1235    // Intended for the `quote!` macro to use when constructing a proc-macro2
1236    // token out of a macro_rules $:literal token, which is already known to be
1237    // a valid literal. This avoids reparsing/validating the literal's string
1238    // representation. This is not public API other than for quote.
1239    #[doc(hidden)]
1240    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1241        Literal::_new(imp::Literal::from_str_unchecked(repr))
1242    }
1243}
1244
1245impl FromStr for Literal {
1246    type Err = LexError;
1247
1248    fn from_str(repr: &str) -> Result<Self, LexError> {
1249        repr.parse().map(Literal::_new).map_err(|inner| LexError {
1250            inner,
1251            _marker: Marker,
1252        })
1253    }
1254}
1255
1256impl Debug for Literal {
1257    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1258        Debug::fmt(&self.inner, f)
1259    }
1260}
1261
1262impl Display for Literal {
1263    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1264        Display::fmt(&self.inner, f)
1265    }
1266}
1267
1268/// Public implementation details for the `TokenStream` type, such as iterators.
1269pub mod token_stream {
1270    use crate::marker::Marker;
1271    use crate::{imp, TokenTree};
1272    use core::fmt::{self, Debug};
1273
1274    pub use crate::TokenStream;
1275
1276    /// An iterator over `TokenStream`'s `TokenTree`s.
1277    ///
1278    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1279    /// delimited groups, and returns whole groups as token trees.
1280    #[derive(Clone)]
1281    pub struct IntoIter {
1282        inner: imp::TokenTreeIter,
1283        _marker: Marker,
1284    }
1285
1286    impl Iterator for IntoIter {
1287        type Item = TokenTree;
1288
1289        fn next(&mut self) -> Option<TokenTree> {
1290            self.inner.next()
1291        }
1292
1293        fn size_hint(&self) -> (usize, Option<usize>) {
1294            self.inner.size_hint()
1295        }
1296    }
1297
1298    impl Debug for IntoIter {
1299        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1300            f.write_str("TokenStream ")?;
1301            f.debug_list().entries(self.clone()).finish()
1302        }
1303    }
1304
1305    impl IntoIterator for TokenStream {
1306        type Item = TokenTree;
1307        type IntoIter = IntoIter;
1308
1309        fn into_iter(self) -> IntoIter {
1310            IntoIter {
1311                inner: self.inner.into_iter(),
1312                _marker: Marker,
1313            }
1314        }
1315    }
1316}