1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
use crate::architecture::arm::component::get_arm_components;
use crate::architecture::arm::sequences::{ArmDebugSequence, DefaultArmSequence};
use crate::architecture::arm::{ArmError, DpAddress};
use crate::architecture::riscv::communication_interface::RiscvError;
use crate::config::{ChipInfo, CoreExt, RegistryError, Target, TargetSelector};
use crate::core::{Architecture, CombinedCoreState};
use crate::{
architecture::{
arm::{
communication_interface::ArmProbeInterface, component::TraceSink,
memory::CoresightComponent, SwoReader,
},
riscv::communication_interface::RiscvCommunicationInterface,
},
config::DebugSequence,
};
use crate::{AttachMethod, Core, CoreType, Error, FakeProbe, Probe};
use std::ops::DerefMut;
use std::{fmt, sync::Arc, time::Duration};
/// The `Session` struct represents an active debug session.
///
/// ## Creating a session
/// The session can be created by calling the [Session::auto_attach()] function,
/// which tries to automatically select a probe, and then connect to the target.
///
/// For more control, the [Probe::attach()] and [Probe::attach_under_reset()]
/// methods can be used to open a `Session` from a specific [Probe].
///
/// # Usage
/// The Session is the common handle that gives a user exclusive access to an active probe.
/// You can create and share a session between threads to enable multiple stakeholders (e.g. GDB and RTT) to access the target taking turns, by using `Arc<Mutex<Session>>.`
///
/// If you do so, make sure that both threads sleep in between tasks such that other stakeholders may take their turn.
///
/// To get access to a single [Core] from the `Session`, the [Session::core()] method can be used.
/// Please see the [Session::core()] method for more usage guidelines.
///
#[derive(Debug)]
pub struct Session {
target: Target,
interface: ArchitectureInterface,
cores: Vec<CombinedCoreState>,
configured_trace_sink: Option<TraceSink>,
}
pub(crate) enum ArchitectureInterface {
Arm(Box<dyn ArmProbeInterface + 'static>),
Riscv(Box<RiscvCommunicationInterface>),
}
impl fmt::Debug for ArchitectureInterface {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ArchitectureInterface::Arm(..) => f.write_str("ArchitectureInterface::Arm(..)"),
ArchitectureInterface::Riscv(iface) => f
.debug_tuple("ArchitectureInterface::Riscv")
.field(iface)
.finish(),
}
}
}
impl From<ArchitectureInterface> for Architecture {
fn from(value: ArchitectureInterface) -> Self {
match value {
ArchitectureInterface::Arm(_) => Architecture::Arm,
ArchitectureInterface::Riscv(_) => Architecture::Riscv,
}
}
}
impl ArchitectureInterface {
fn attach<'probe, 'target: 'probe>(
&'probe mut self,
combined_state: &'probe mut CombinedCoreState,
) -> Result<Core<'probe>, Error> {
match self {
ArchitectureInterface::Arm(arm_interface) => combined_state.attach_arm(arm_interface),
ArchitectureInterface::Riscv(riscv_interface) => {
combined_state.attach_riscv(riscv_interface)
}
}
}
}
impl Session {
/// Open a new session with a given debug target.
pub(crate) fn new(
probe: Probe,
target: TargetSelector,
attach_method: AttachMethod,
permissions: Permissions,
) -> Result<Self, Error> {
let (probe, target) = get_target_from_selector(target, attach_method, probe)?;
let cores = target
.cores
.iter()
.enumerate()
.map(|(id, core)| {
Core::create_state(
id,
core.core_access_options.clone(),
&target,
core.core_type,
)
})
.collect();
let mut session = match target.architecture() {
Architecture::Arm => {
Self::attach_arm(probe, target, attach_method, permissions, cores)?
}
Architecture::Riscv => {
Self::attach_riscv(probe, target, attach_method, permissions, cores)?
}
};
session.clear_all_hw_breakpoints()?;
Ok(session)
}
fn attach_arm(
mut probe: Probe,
target: Target,
attach_method: AttachMethod,
permissions: Permissions,
cores: Vec<CombinedCoreState>,
) -> Result<Self, Error> {
let default_core = target.default_core();
let default_memory_ap = default_core.memory_ap().ok_or_else(|| {
Error::Other(anyhow::anyhow!(
"Unable to connect to core {default_core:?}, no memory AP configured"
))
})?;
let sequence_handle = match &target.debug_sequence {
DebugSequence::Arm(sequence) => sequence.clone(),
DebugSequence::Riscv(_) => {
panic!("Mismatch between architecture and sequence type!")
}
};
if AttachMethod::UnderReset == attach_method {
let span = tracing::debug_span!("Asserting hardware assert");
let _enter = span.enter();
if let Some(dap_probe) = probe.try_as_dap_probe() {
sequence_handle.reset_hardware_assert(dap_probe)?;
} else {
tracing::info!(
"Custom reset sequences are not supported on {}.",
probe.get_name()
);
tracing::info!("Falling back to standard probe reset.");
probe.target_reset_assert()?;
}
}
probe.inner_attach()?;
let interface = probe.try_into_arm_interface().map_err(|(_, err)| err)?;
let mut interface = interface
.initialize(sequence_handle.clone())
.map_err(|(_interface, e)| e)?;
let unlock_span = tracing::debug_span!("debug_device_unlock").entered();
// Enable debug mode
let unlock_res =
sequence_handle.debug_device_unlock(&mut *interface, default_memory_ap, &permissions);
drop(unlock_span);
match unlock_res {
Ok(()) => (),
// In case this happens after unlock. Try to re-attach the probe once.
Err(ArmError::ReAttachRequired) => {
Self::reattach_arm_interface(&mut interface, &sequence_handle)?;
}
Err(e) => return Err(Error::Arm(e)),
}
// For each core, setup debugging
for core in &cores {
core.enable_arm_debug(&mut *interface)?;
}
if attach_method == AttachMethod::UnderReset {
{
for core in &cores {
core.arm_reset_catch_set(&mut *interface)?;
}
let reset_hardware_deassert =
tracing::debug_span!("reset_hardware_deassert").entered();
let mut memory_interface = interface.memory_interface(default_memory_ap)?;
// TODO: A timeout here indicates that the reset pin is probably not properly
// connected.
if let Err(e) = sequence_handle.reset_hardware_deassert(&mut *memory_interface) {
if matches!(e, ArmError::Timeout) {
tracing::warn!("Timeout while deasserting hardware reset pin. This indicates that the reset pin is not properly connected. Please check your hardware setup.");
}
return Err(e.into());
}
drop(reset_hardware_deassert);
}
let mut session = Session {
target,
interface: ArchitectureInterface::Arm(interface),
cores,
configured_trace_sink: None,
};
{
// Wait for the core to be halted. The core should be
// halted because we set the `reset_catch` earlier, which
// means that the core should stop when coming out of reset.
for core_id in 0..session.cores.len() {
let mut core = session.core(core_id)?;
core.wait_for_core_halted(Duration::from_millis(100))?;
core.reset_catch_clear()?;
}
}
Ok(session)
} else {
Ok(Session {
target,
interface: ArchitectureInterface::Arm(interface),
cores,
configured_trace_sink: None,
})
}
}
fn attach_riscv(
mut probe: Probe,
target: Target,
_attach_method: AttachMethod,
_permissions: Permissions,
cores: Vec<CombinedCoreState>,
) -> Result<Self, Error> {
// TODO: Handle attach under reset
let sequence_handle = match &target.debug_sequence {
DebugSequence::Riscv(sequence) => sequence.clone(),
DebugSequence::Arm(_) => {
panic!("Mismatch between architecture and sequence type!")
}
};
probe.inner_attach()?;
let interface = probe
.try_into_riscv_interface()
.map_err(|(_probe, err)| err)?;
let mut session = Session {
target,
interface: ArchitectureInterface::Riscv(Box::new(interface)),
cores,
configured_trace_sink: None,
};
{
// Todo: Add multicore support. How to deal with any cores that are not active and won't respond?
let mut core = session.core(0)?;
core.halt(Duration::from_millis(100))?;
}
sequence_handle.on_connect(session.get_riscv_interface()?)?;
Ok(session)
}
/// Automatically creates a session with the first connected probe found.
#[tracing::instrument(skip(target))]
pub fn auto_attach(
target: impl Into<TargetSelector>,
permissions: Permissions,
) -> Result<Session, Error> {
// Get a list of all available debug probes.
let probes = Probe::list_all();
// Use the first probe found.
let probe = probes
.get(0)
.ok_or(Error::UnableToOpenProbe("No probe was found"))?
.open()?;
// Attach to a chip.
probe.attach(target, permissions)
}
/// Lists the available cores with their number and their type.
pub fn list_cores(&self) -> Vec<(usize, CoreType)> {
self.cores.iter().map(|t| (t.id(), t.core_type())).collect()
}
/// Attaches to the core with the given number.
///
/// ## Usage
/// Everytime you want to perform an operation on the chip, you need to get the Core handle with the [Session::core()] method. This [Core] handle is merely a view into the core and provides a convenient API surface.
///
/// All the state is stored in the [Session] handle.
///
/// The first time you call [Session::core()] for a specific core, it will run the attach/init sequences and return a handle to the [Core].
///
/// Every subsequent call is a no-op. It simply returns the handle for the user to use in further operations without calling any int sequences again.
///
/// It is strongly advised to never store the [Core] handle for any significant duration! Free it as fast as possible such that other stakeholders can have access to the [Core] too.
///
/// The idea behind this is: You need the smallest common denominator which you can share between threads. Since you sometimes need the [Core], sometimes the [Probe] or sometimes the [Target], the [Session] is the only common ground and the only handle you should actively store in your code.
///
#[tracing::instrument(skip(self), name = "attach_to_core")]
pub fn core(&mut self, core_index: usize) -> Result<Core<'_>, Error> {
let combined_state = self
.cores
.get_mut(core_index)
.ok_or(Error::CoreNotFound(core_index))?;
self.interface.attach(combined_state)
}
/// Read available trace data from the specified data sink.
///
/// This method is only supported for ARM-based targets, and will
/// return [ArmError::ArchitectureRequired] otherwise.
#[tracing::instrument(skip(self))]
pub fn read_trace_data(&mut self) -> Result<Vec<u8>, ArmError> {
let sink = self
.configured_trace_sink
.as_ref()
.ok_or(ArmError::TracingUnconfigured)?;
match sink {
TraceSink::Swo(_) => {
let interface = self.get_arm_interface()?;
interface.read_swo()
}
TraceSink::Tpiu(_) => {
panic!("Probe-rs does not yet support reading parallel trace ports");
}
TraceSink::TraceMemory => {
let components = self.get_arm_components(DpAddress::Default)?;
let interface = self.get_arm_interface()?;
crate::architecture::arm::component::read_trace_memory(interface, &components)
}
}
}
/// Returns an implementation of [std::io::Read] that wraps [SwoAccess::read_swo].
///
/// The implementation buffers all available bytes from
/// [SwoAccess::read_swo] on each [std::io::Read::read],
/// minimizing the chance of a target-side overflow event on which
/// trace packets are lost.
///
/// [SwoAccess::read_swo]: crate::architecture::arm::swo::SwoAccess
pub fn swo_reader(&mut self) -> Result<SwoReader, Error> {
let interface = self.get_arm_interface()?;
Ok(SwoReader::new(interface))
}
/// Get the Arm probe interface.
pub fn get_arm_interface(&mut self) -> Result<&mut dyn ArmProbeInterface, ArmError> {
let interface = match &mut self.interface {
ArchitectureInterface::Arm(state) => state.deref_mut(),
_ => return Err(ArmError::NoArmTarget),
};
Ok(interface)
}
fn get_riscv_interface(&mut self) -> Result<&mut RiscvCommunicationInterface, RiscvError> {
let interface = match &mut self.interface {
ArchitectureInterface::Riscv(interface) => interface,
_ => return Err(RiscvError::NoRiscvTarget),
};
Ok(interface)
}
#[tracing::instrument(skip_all)]
fn reattach_arm_interface(
interface: &mut Box<dyn ArmProbeInterface>,
debug_sequence: &Arc<dyn ArmDebugSequence>,
) -> Result<(), Error> {
use crate::DebugProbe;
// In order to re-attach we need an owned instance to the interface
// but we only have &mut. We can work around that by first creating
// an instance of a Dummy and then swapping it out for the real one.
// perform the re-attach and then swap it back.
let tmp_interface = Box::<FakeProbe>::default().try_get_arm_interface().unwrap();
let mut tmp_interface = tmp_interface
.initialize(DefaultArmSequence::create())
.unwrap();
std::mem::swap(interface, &mut tmp_interface);
tracing::debug!("Re-attaching Probe");
let mut probe = tmp_interface.close();
probe.detach()?;
probe.attach_to_unspecified()?;
let new_interface = probe.try_into_arm_interface().map_err(|(_, err)| err)?;
tmp_interface = new_interface
.initialize(debug_sequence.clone())
.map_err(|(_interface, e)| e)?;
// swap it back
std::mem::swap(interface, &mut tmp_interface);
tracing::debug!("Probe re-attached");
Ok(())
}
/// Check if the connected device has a debug erase sequence defined
pub fn has_sequence_erase_all(&self) -> bool {
match &self.target.debug_sequence {
DebugSequence::Arm(seq) => seq.debug_erase_sequence().is_some(),
DebugSequence::Riscv(_) => false,
}
}
/// Erase all flash memory using the Device's Debug Erase Sequence if any
///
/// # Returns
/// Ok(()) if the device provides a custom erase sequence and it succeeded.
///
/// # Errors
/// NotImplemented if no custom erase sequence exists
/// Err(e) if the custom erase sequence failed
pub fn sequence_erase_all(&mut self) -> Result<(), Error> {
let interface = match &mut self.interface {
ArchitectureInterface::Arm(interface) => interface,
ArchitectureInterface::Riscv(_) => {
return Err(Error::Probe(crate::DebugProbeError::NotImplemented(
"Debug Erase Sequence",
)))
}
};
let debug_sequence = match &self.target.debug_sequence {
DebugSequence::Arm(seq) => seq.clone(),
DebugSequence::Riscv(_) => {
unreachable!("This should never happen. Please file a bug if it does.")
}
};
let Some(erase_sequence) = debug_sequence.debug_erase_sequence() else {
return Err(Error::Probe(crate::DebugProbeError::NotImplemented(
"Debug Erase Sequence",
)))};
tracing::info!("Trying Debug Erase Sequence");
let erase_result = erase_sequence.erase_all(interface.deref_mut());
match erase_result {
Ok(()) => (),
// In case this happens after unlock. Try to re-attach the probe once.
Err(ArmError::ReAttachRequired) => {
Self::reattach_arm_interface(interface, &debug_sequence)?;
// For re-setup debugging on all cores
for core_state in &self.cores {
core_state.enable_arm_debug(interface.deref_mut())?;
}
}
Err(e) => return Err(Error::Arm(e)),
}
tracing::info!("Device Erased Successfully");
Ok(())
}
/// Reads all the available ARM CoresightComponents of the currently attached target.
///
/// This will recursively parse the Romtable of the attached target
/// and create a list of all the contained components.
pub fn get_arm_components(
&mut self,
dp: DpAddress,
) -> Result<Vec<CoresightComponent>, ArmError> {
let interface = self.get_arm_interface()?;
get_arm_components(interface, dp)
}
/// Get the target description of the connected target.
pub fn target(&self) -> &Target {
&self.target
}
/// Configure the target and probe for serial wire view (SWV) tracing.
pub fn setup_tracing(
&mut self,
core_index: usize,
destination: TraceSink,
) -> Result<(), Error> {
// Enable tracing on the target
{
let mut core = self.core(core_index)?;
crate::architecture::arm::component::enable_tracing(&mut core)?;
}
let sequence_handle = match &self.target.debug_sequence {
DebugSequence::Arm(sequence) => sequence.clone(),
DebugSequence::Riscv(_) => {
panic!("Mismatch between architecture and sequence type!")
}
};
let components = self.get_arm_components(DpAddress::Default)?;
let interface = self.get_arm_interface()?;
// Configure SWO on the probe when the trace sink is configured for a serial output. Note
// that on some architectures, the TPIU is configured to drive SWO.
match destination {
TraceSink::Swo(ref config) => {
interface.enable_swo(config)?;
}
TraceSink::Tpiu(ref config) => {
interface.enable_swo(config)?;
}
TraceSink::TraceMemory => {}
}
sequence_handle.trace_start(interface, &components, &destination)?;
crate::architecture::arm::component::setup_tracing(interface, &components, &destination)?;
self.configured_trace_sink.replace(destination);
Ok(())
}
/// Configure the target to stop emitting SWV trace data.
#[tracing::instrument(skip(self))]
pub fn disable_swv(&mut self, core_index: usize) -> Result<(), Error> {
crate::architecture::arm::component::disable_swv(&mut self.core(core_index)?)
}
/// Begin tracing a memory address over SWV.
pub fn add_swv_data_trace(&mut self, unit: usize, address: u32) -> Result<(), ArmError> {
let components = self.get_arm_components(DpAddress::Default)?;
let interface = self.get_arm_interface()?;
crate::architecture::arm::component::add_swv_data_trace(
interface,
&components,
unit,
address,
)
}
/// Stop tracing from a given SWV unit
pub fn remove_swv_data_trace(&mut self, unit: usize) -> Result<(), ArmError> {
let components = self.get_arm_components(DpAddress::Default)?;
let interface = self.get_arm_interface()?;
crate::architecture::arm::component::remove_swv_data_trace(interface, &components, unit)
}
/// Return the `Architecture` of the currently connected chip.
pub fn architecture(&self) -> Architecture {
match self.interface {
ArchitectureInterface::Arm(_) => Architecture::Arm,
ArchitectureInterface::Riscv(_) => Architecture::Riscv,
}
}
/// Clears all hardware breakpoints on all cores
pub fn clear_all_hw_breakpoints(&mut self) -> Result<(), Error> {
{ 0..self.cores.len() }.try_for_each(|n| {
self.core(n)
.and_then(|mut core| core.clear_all_hw_breakpoints())
})
}
}
// This test ensures that [Session] is fully [Send] + [Sync].
static_assertions::assert_impl_all!(Session: Send);
// TODO tiwalun: Enable again, after rework of Session::new is done.
impl Drop for Session {
#[tracing::instrument(name = "session_drop", skip(self))]
fn drop(&mut self) {
if let Err(err) = { 0..self.cores.len() }.try_for_each(|i| {
self.core(i)
.and_then(|mut core| core.clear_all_hw_breakpoints())
}) {
tracing::warn!("Could not clear all hardware breakpoints: {:?}", err);
}
// Call any necessary deconfiguration/shutdown hooks.
if let Err(err) = { 0..self.cores.len() }
.try_for_each(|i| self.core(i).and_then(|mut core| core.debug_core_stop()))
{
tracing::warn!("Failed to deconfigure device during shutdown: {err:?}");
}
}
}
/// Determine the [Target] from a [TargetSelector].
///
/// If the selector is [TargetSelector::Unspecified], the target will be looked up in the registry.
/// If it its [TargetSelector::Auto], probe-rs will try to determine the target automatically, based on
/// information read from the chip.
fn get_target_from_selector(
target: TargetSelector,
attach_method: AttachMethod,
probe: Probe,
) -> Result<(Probe, Target), Error> {
let mut probe = probe;
let target = match target {
TargetSelector::Unspecified(name) => crate::config::get_target_by_name(name)?,
TargetSelector::Specified(target) => target,
TargetSelector::Auto => {
let mut found_chip = None;
// At this point we do not know what the target is, so we cannot use the chip specific reset sequence.
// Thus, we try just using a normal reset for target detection if we want to do so under reset.
// This can of course fail, but target detection is a best effort, not a guarantee!
if AttachMethod::UnderReset == attach_method {
probe.target_reset_assert()?;
}
probe.inner_attach()?;
if probe.has_arm_interface() {
match probe.try_into_arm_interface() {
Ok(interface) => {
let mut interface = interface
.initialize(DefaultArmSequence::create())
.map_err(|(_probe, err)| err)?;
// TODO:
let dp = DpAddress::Default;
let found_arm_chip = interface
.read_chip_info_from_rom_table(dp)
.unwrap_or_else(|e| {
tracing::info!("Error during auto-detection of ARM chips: {}", e);
None
});
found_chip = found_arm_chip.map(ChipInfo::from);
probe = interface.close();
}
Err((returned_probe, err)) => {
probe = returned_probe;
tracing::debug!("Error using ARM interface: {}", err);
}
}
} else {
tracing::debug!("No ARM interface was present. Skipping Riscv autodetect.");
}
if found_chip.is_none() && probe.has_riscv_interface() {
match probe.try_into_riscv_interface() {
Ok(mut interface) => {
let idcode = interface.read_idcode();
tracing::debug!("ID Code read over JTAG: {:x?}", idcode);
probe = interface.close();
}
Err((returned_probe, err)) => {
tracing::debug!("Error during autodetection of RISCV chips: {}", err);
probe = returned_probe;
}
}
} else {
tracing::debug!("No RISCV interface was present. Skipping Riscv autodetect.");
}
// Now we can deassert reset in case we asserted it before. This is always okay.
probe.target_reset_deassert()?;
if let Some(chip) = found_chip {
crate::config::get_target_by_chip_info(chip)?
} else {
return Err(Error::ChipNotFound(RegistryError::ChipAutodetectFailed));
}
}
};
Ok((probe, target))
}
/// The `Permissions` struct represents what a [Session] is allowed to do with a target.
/// Some operations can be irreversable, so need to be explicitly allowed by the user.
///
/// # Example
///
/// ```
/// use probe_rs::Permissions;
///
/// let permissions = Permissions::new().allow_erase_all();
/// ```
#[non_exhaustive]
#[derive(Debug, Clone, Default)]
pub struct Permissions {
/// When set to true, all memory of the chip may be erased or reset to factory default
erase_all: bool,
}
impl Permissions {
/// Constructs a new permissions object with the default values
pub fn new() -> Self {
Self::default()
}
/// Allow the session to erase all memory of the chip or reset it to factory default.
///
/// # Warning
/// This may irreversibly remove otherwise read-protected data from the device like security keys and 3rd party firmware.
/// What happens exactly may differ per device and per probe-rs version.
#[must_use]
pub fn allow_erase_all(self) -> Self {
Self {
erase_all: true,
..self
}
}
pub(crate) fn erase_all(&self) -> Result<(), MissingPermissions> {
if self.erase_all {
Ok(())
} else {
Err(MissingPermissions("erase_all".into()))
}
}
}
#[derive(Debug, Clone, thiserror::Error)]
#[error("An operation could not be performed because it lacked the permission to do so: {0}")]
pub struct MissingPermissions(pub String);