1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
// Copyright 2018-2021 Parity Technologies (UK) Ltd. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! A storage vector used to store elements in a contiguous sequenced order. //! //! This is by default the go-to collection for most smart contracts if there //! are not special requirements to the storage data structure. mod impls; mod iter; mod storage; #[cfg(test)] mod tests; pub use self::iter::{ Iter, IterMut, }; use crate::{ lazy::{ Lazy, LazyIndexMap, }, traits::PackedLayout, }; /// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'. /// /// # Note /// /// Despite the similarity to Rust's `Vec` type this storage `Vec` has many /// differences in its internal data layout. While it stores its data in contiguous /// storage slots this does not mean that the data is actually densely stored /// in memory. /// /// Also its technical performance characteristics may be different from Rust's /// `Vec` due to the differences stated above. /// /// Allows to store up to `2^32` elements and is guaranteed to not reallocate /// upon pushing new elements to it. #[derive(Debug)] pub struct Vec<T> where T: PackedLayout, { /// The length of the vector. len: Lazy<u32>, /// The synchronized cells to operate on the contract storage. elems: LazyIndexMap<T>, } /// The index is out of the bounds of this vector. #[derive(Debug, PartialEq, Eq, PartialOrd, Ord)] pub struct IndexOutOfBounds; impl<T> Default for Vec<T> where T: PackedLayout, { fn default() -> Self { Self::new() } } impl<T> Vec<T> where T: PackedLayout, { /// Creates a new empty storage vector. pub fn new() -> Self { Self { len: Lazy::new(0), elems: LazyIndexMap::new(), } } /// Returns the number of elements in the vector, also referred to as its 'length'. pub fn len(&self) -> u32 { *self.len } /// Returns `true` if the vector contains no elements. pub fn is_empty(&self) -> bool { self.len() == 0 } } impl<T> Vec<T> where T: PackedLayout, { /// Clears the underlying storage cells of the storage vector. /// /// # Note /// /// This completely invalidates the storage vector's invariants about /// the contents of its associated storage region. /// /// This API is used for the `Drop` implementation of [`Vec`] as well as /// for the [`SpreadLayout::clear_spread`] trait implementation. fn clear_cells(&self) { if self.elems.key().is_none() { // We won't clear any storage if we are in lazy state since there // probably has not been any state written to storage, yet. return } for index in 0..self.len() { self.elems.clear_packed_at(index); } } } impl<T> Vec<T> where T: PackedLayout, { /// Returns an iterator yielding shared references to all elements of the vector. /// /// # Note /// /// Avoid unbounded iteration over big storage vectors. /// Prefer using methods like `Iterator::take` in order to limit the number /// of yielded elements. pub fn iter(&self) -> Iter<T> { Iter::new(self) } /// Returns an iterator yielding exclusive references to all elements of the vector. /// /// # Note /// /// Avoid unbounded iteration over big storage vectors. /// Prefer using methods like `Iterator::take` in order to limit the number /// of yielded elements. pub fn iter_mut(&mut self) -> IterMut<T> { IterMut::new(self) } /// Returns the index if it is within bounds or `None` otherwise. fn within_bounds(&self, index: u32) -> Option<u32> { if index < self.len() { return Some(index) } None } /// Returns a shared reference to the first element if any. pub fn first(&self) -> Option<&T> { if self.is_empty() { return None } self.get(0) } /// Returns a shared reference to the last element if any. pub fn last(&self) -> Option<&T> { if self.is_empty() { return None } let last_index = self.len() - 1; self.get(last_index) } /// Returns a shared reference to the indexed element. /// /// Returns `None` if `index` is out of bounds. pub fn get(&self, index: u32) -> Option<&T> { self.within_bounds(index) .and_then(|index| self.elems.get(index)) } } impl<T> Vec<T> where T: PackedLayout, { /// Appends an element to the back of the vector. pub fn push(&mut self, value: T) { assert!( self.len() < core::u32::MAX, "cannot push more elements into the storage vector" ); let last_index = self.len(); *self.len += 1; self.elems.put(last_index, Some(value)); } } impl<T> Vec<T> where T: PackedLayout, { /// Pops the last element from the vector and returns it. // /// Returns `None` if the vector is empty. pub fn pop(&mut self) -> Option<T> { if self.is_empty() { return None } let last_index = self.len() - 1; *self.len = last_index; self.elems.put_get(last_index, None) } /// Pops the last element from the vector and immediately drops it. /// /// Returns `Some(())` if an element has been removed and `None` otherwise. /// /// # Note /// /// This operation is a bit more efficient than [`Vec::pop`] /// since it avoids reading from contract storage in some use cases. pub fn pop_drop(&mut self) -> Option<()> { if self.is_empty() { return None } let last_index = self.len() - 1; *self.len = last_index; self.elems.put(last_index, None); Some(()) } /// Returns an exclusive reference to the first element if any. pub fn first_mut(&mut self) -> Option<&mut T> { if self.is_empty() { return None } self.get_mut(0) } /// Returns an exclusive reference to the last element if any. pub fn last_mut(&mut self) -> Option<&mut T> { if self.is_empty() { return None } let last_index = self.len() - 1; self.get_mut(last_index) } /// Returns an exclusive reference to the indexed element. /// /// Returns `None` if `index` is out of bounds. pub fn get_mut(&mut self, index: u32) -> Option<&mut T> { self.within_bounds(index) .and_then(move |index| self.elems.get_mut(index)) } /// Swaps the elements at the given indices. /// /// # Panics /// /// If one or both indices are out of bounds. pub fn swap(&mut self, a: u32, b: u32) { assert!( a < self.len() && b < self.len(), "indices are out of bounds" ); self.elems.swap(a, b) } /// Removes the indexed element from the vector and returns it. /// /// The last element of the vector is put into the indexed slot. /// Returns `None` and does not mutate the vector if the index is out of bounds. /// /// # Note /// /// This operation does not preserve ordering but is constant time. pub fn swap_remove(&mut self, n: u32) -> Option<T> { if self.is_empty() { return None } self.elems.swap(n, self.len() - 1); self.pop() } /// Removes the indexed element from the vector. /// /// The last element of the vector is put into the indexed slot. /// Returns `Some(())` if an element has been removed and `None` otherwise. /// /// # Note /// /// This operation should be preferred over [`Vec::swap_remove`] if there is /// no need to return the removed element since it avoids a contract storage /// read for some use cases. pub fn swap_remove_drop(&mut self, n: u32) -> Option<()> { if self.is_empty() { return None } self.elems.put(n, None); let last_index = self.len() - 1; let last = self.elems.put_get(last_index, None); self.elems.put(n, last); *self.len = last_index; Some(()) } /// Sets the elements at the given index to the new value. /// /// Won't return the old element back to the caller. /// Prefer this operation over other method of overriding an element /// in the storage vector since this is more efficient. #[inline] pub fn set(&mut self, index: u32, new_value: T) -> Result<(), IndexOutOfBounds> { if self.within_bounds(index).is_none() { return Err(IndexOutOfBounds) } self.elems.put(index, Some(new_value)); Ok(()) } /// Removes all elements from this vector. /// /// # Note /// /// Use this method to clear the vector instead of e.g. iterative `pop()`. /// This method performs significantly better and does not actually read /// any of the elements (whereas `pop()` does). pub fn clear(&mut self) { if self.is_empty() { return } for index in 0..self.len() { self.elems.put(index, None); } *self.len = 0; } }