1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//! The rgI device-dependent chromaticity color model

use crate::channel::{
    ChannelCast, ChannelFormatCast, ColorChannel, PosNormalBoundedChannel, PosNormalChannelScalar,
};
use crate::color::{Bounded, Broadcast, Color, Flatten, FromTuple, HomogeneousColor, Lerp};
use crate::convert::FromColor;
use crate::encoding::EncodableColor;
use crate::rgb::Rgb;
use crate::tags::RgiTag;
#[cfg(feature = "approx")]
use approx;
use num_traits;
use num_traits::Float;
use std::fmt;
use std::mem;
use std::slice;

/// The rgI device-dependent chromaticity color model
///
/// rgI is defined by a *relative* red amount, relative green amount and intensity. The rgI color
/// model is used to keep the color intensity relatively invariant (that is, only the color matters,
/// not how white or black it is), with the caveat that its parent RGB is not perceptually uniform. It is a
/// device-dependent relative to the [`xyY`](struct.XyY.html) CIE space.
///
/// The `r` and `g` components here are not absolute red and green like in RGB, but rather the
/// ratio of red or green to the sum of RGB. That is:
/// ```math
/// \begin{aligned}
/// r &= \frac{R}{R+G+B} \\
/// g &= \frac{G}{R+G+B} \\
/// b &= \frac{B}{R+G+B} \\
/// r+g+b &= 1 \\
/// I &= \frac{R+G+B}{3}
/// \end{aligned}
/// ```
///
/// Since `r+g+b=1`, the `b` component is not stored, but can be reconstructed at will. This also means
/// that setting any of r,g,b will require the others to be changed as well. `Rgi` does this by
/// proportionally rescaling the other channels with respect to the new value.
///
/// Including the intensity channel makes Rgi still a full color model that can convert back to
/// RGB, unlike the sometimes used `rg` model.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Hash)]
pub struct Rgi<T> {
    red: PosNormalBoundedChannel<T>,
    green: PosNormalBoundedChannel<T>,
    intensity: PosNormalBoundedChannel<T>,
}

impl<T> Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    /// Construct a `Rgi` instance from red, green and intensity
    ///
    /// ## Panics:
    /// If red+green is greater than 1.0 or less than 0.0, `new` will panic.
    pub fn new(red: T, green: T, intensity: T) -> Self {
        let zero = num_traits::cast(0.0).unwrap();
        if red + green > num_traits::cast(1.0).unwrap()
            || red + green < num_traits::cast(0.0).unwrap()
        {
            panic!("rgi channels must sum to exactly 1.0");
        }
        assert!(red >= zero);
        assert!(green >= zero);
        Rgi {
            red: PosNormalBoundedChannel::new(red),
            green: PosNormalBoundedChannel::new(green),
            intensity: PosNormalBoundedChannel::new(intensity),
        }
    }

    impl_color_color_cast_square!(
        Rgi {
            red,
            green,
            intensity
        },
        chan_traits = { PosNormalChannelScalar }
    );

    /// Returns the relative red scalar
    pub fn red(&self) -> T {
        self.red.0.clone()
    }
    /// Returns the relative green scalar
    pub fn green(&self) -> T {
        self.green.0.clone()
    }
    /// Returns the relative blue scalar
    ///
    /// Unlike red and green, this requires a small computation
    pub fn blue(&self) -> T {
        num_traits::cast::<_, T>(1.0).unwrap() - self.green() - self.red()
    }
    /// Returns the intensity scalar
    pub fn intensity(&self) -> T {
        self.intensity.0.clone()
    }
    /// Returns a mutable reference to the intensity scalar
    pub fn intensity_mut(&mut self) -> &mut T {
        &mut self.intensity.0
    }
    /// Set the relative red channel
    ///
    /// ## Panics:
    /// This will panic if `val` is greater than one or less than zero.
    pub fn set_red(&mut self, val: T) {
        let (red, green, _) = Self::rescale_channels(val, self.green(), self.blue());
        self.red.0 = red;
        self.green.0 = green;
    }
    /// Set the relative green channel
    ///
    /// ## Panics:
    /// This will panic if `val` is greater than one or less than zero.
    pub fn set_green(&mut self, val: T) {
        let (green, red, _) = Self::rescale_channels(val, self.red(), self.blue());
        self.red.0 = red;
        self.green.0 = green;
    }
    /// Set the relative blue channel
    ///
    /// ## Panics:
    /// This will panic if `val` is greater than one or less than zero.
    pub fn set_blue(&mut self, val: T) {
        let (_, red, green) = Self::rescale_channels(val, self.red(), self.green());
        self.red.0 = red;
        self.green.0 = green;
    }
    /// Set the intensity value
    pub fn set_intensity(&mut self, val: T) {
        self.intensity.0 = val;
    }

    /// Proportionately rescale the two channels not modifies so the sum is one
    fn rescale_channels(primary: T, c2: T, c3: T) -> (T, T, T) {
        let new_primary = primary;
        if new_primary > PosNormalBoundedChannel::max_bound()
            || new_primary < PosNormalBoundedChannel::min_bound()
        {
            panic!("rgi color channels must be 1.0 or below");
        }

        let zero = num_traits::cast(0.0).unwrap();
        let rem_scale = c2 + c3;
        let rem = num_traits::cast::<_, T>(1.0).unwrap() - new_primary;
        if rem_scale > zero {
            (new_primary, (c2 / rem_scale) * rem, (c3 / rem_scale) * rem)
        } else {
            let one_half = num_traits::cast(0.5).unwrap();
            (new_primary, rem * one_half, rem * one_half)
        }
    }
}

impl<T> Color for Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    type Tag = RgiTag;
    type ChannelsTuple = (T, T, T);

    #[inline]
    fn num_channels() -> u32 {
        3
    }
    fn to_tuple(self) -> Self::ChannelsTuple {
        (self.red.0, self.green.0, self.intensity.0)
    }
}

impl<T> FromTuple for Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    fn from_tuple(values: Self::ChannelsTuple) -> Self {
        Rgi::new(values.0, values.1, values.2)
    }
}

impl<T> Lerp for Rgi<T>
where
    T: PosNormalChannelScalar + Lerp + Float,
{
    type Position = <T as Lerp>::Position;
    impl_color_lerp_square!(Rgi {
        red,
        green,
        intensity
    });
}

impl<T> HomogeneousColor for Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    type ChannelFormat = T;
    impl_color_homogeneous_color_square!(Rgi<T> {red, green, intensity});
}

impl<T> Broadcast for Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    impl_color_broadcast!(Rgi<T> {red, green, intensity}, chan=PosNormalBoundedChannel);
}

impl<T> Flatten for Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    impl_color_as_slice!(T);
    impl_color_from_slice_square!(Rgi<T> {red:PosNormalBoundedChannel - 0, 
        green:PosNormalBoundedChannel - 1, intensity:PosNormalBoundedChannel - 2});
}

impl<T> Bounded for Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    impl_color_bounded!(Rgi {
        red,
        green,
        intensity
    });
}

impl<T> EncodableColor for Rgi<T> where T: PosNormalChannelScalar + Float {}

#[cfg(feature = "approx")]
impl<T> approx::AbsDiffEq for Rgi<T>
where
    T: PosNormalChannelScalar + approx::AbsDiffEq + Float,
    T::Epsilon: Clone,
{
    impl_abs_diff_eq!({red, green, intensity});
}
#[cfg(feature = "approx")]
impl<T> approx::RelativeEq for Rgi<T>
where
    T: PosNormalChannelScalar + approx::RelativeEq + Float,
    T::Epsilon: Clone,
{
    impl_rel_eq!({red, green, intensity});
}
#[cfg(feature = "approx")]
impl<T> approx::UlpsEq for Rgi<T>
where
    T: PosNormalChannelScalar + approx::UlpsEq + Float,
    T::Epsilon: Clone,
{
    impl_ulps_eq!({red, green, intensity});
}

impl<T> Default for Rgi<T>
where
    T: PosNormalChannelScalar + num_traits::Zero + Float,
{
    impl_color_default!(Rgi {
        red: PosNormalBoundedChannel,
        green: PosNormalBoundedChannel,
        intensity: PosNormalBoundedChannel
    });
}

impl<T> fmt::Display for Rgi<T>
where
    T: PosNormalChannelScalar + fmt::Display + Float,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Rgi({}, {}, {})", self.red, self.green, self.intensity)
    }
}

impl<T> FromColor<Rgb<T>> for Rgi<T>
where
    T: PosNormalChannelScalar + Float,
{
    fn from_color(from: &Rgb<T>) -> Self {
        let zero = num_traits::cast(0.0).unwrap();
        let sum = from.red() + from.green() + from.blue();

        if sum != zero {
            let r = from.red() / sum;
            let g = from.green() / sum;

            let i = num_traits::cast::<_, T>(1.0 / 3.0).unwrap() * sum;

            Rgi::new(r, g, i)
        } else {
            Rgi::new(zero, zero, zero)
        }
    }
}

impl<T> FromColor<Rgi<T>> for Rgb<T>
where
    T: PosNormalChannelScalar + Float,
{
    fn from_color(from: &Rgi<T>) -> Self {
        let sum = from.intensity() * num_traits::cast(3.0).unwrap();
        let red = from.red() * sum;
        let green = from.green() * sum;
        let blue = from.blue() * sum;

        Rgb::new(red, green, blue)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::rgb::Rgb;
    use crate::test;
    use approx::*;

    #[test]
    fn test_construct() {
        let c1 = Rgi::new(0.5, 0.2, 1.0);
        assert_relative_eq!(c1.red(), 0.5);
        assert_relative_eq!(c1.green(), 0.2);
        assert_relative_eq!(c1.blue(), 0.3);
        assert_relative_eq!(c1.intensity(), 1.0);
        assert_eq!(c1.to_tuple(), (0.5, 0.2, 1.0));
        assert_relative_eq!(Rgi::from_tuple(c1.to_tuple()), c1);

        let c2 = Rgi::new(0.0, 0.0, 0.5);
        assert_relative_eq!(c2.red(), 0.0);
        assert_relative_eq!(c2.green(), 0.0);
        assert_relative_eq!(c2.blue(), 1.0);
        assert_relative_eq!(c2.intensity(), 0.5);
        assert_eq!(c2.to_tuple(), (0.0, 0.0, 0.5));

        let c3 = Rgi::new(0.7, 0.3, 0.0);
        assert_relative_eq!(c3.red(), 0.7);
        assert_relative_eq!(c3.green(), 0.3);
        assert_relative_eq!(c3.blue(), 0.0);
        assert_relative_eq!(c3.intensity(), 0.0);
        assert_eq!(c3.to_tuple(), (0.7, 0.3, 0.0));
        assert_relative_eq!(Rgi::from_tuple(c3.to_tuple()), c3);
    }

    #[test]
    fn test_set_channels() {
        let mut c1 = Rgi::new(0.3, 0.2, 0.5);
        c1.set_red(0.6);
        assert_relative_eq!(c1.red(), 0.6);
        assert_relative_eq!(c1.green(), 0.1142857, epsilon = 1e-6);
        assert_relative_eq!(c1.blue(), 0.2857143, epsilon = 1e-6);
        assert_relative_eq!(c1.intensity(), 0.5);

        let mut c2 = Rgi::new(0.333333, 0.333333, 0.9);
        c2.set_green(0.5);
        assert_relative_eq!(c2.red(), 0.25, epsilon = 1e-6);
        assert_relative_eq!(c2.green(), 0.5, epsilon = 1e-6);
        assert_relative_eq!(c2.blue(), 0.25, epsilon = 1e-6);
        assert_relative_eq!(c2.intensity(), 0.9, epsilon = 1e-6);
        c2.set_green(1.0);
        assert_relative_eq!(c2.red(), 0.0, epsilon = 1e-6);
        assert_relative_eq!(c2.green(), 1.0, epsilon = 1e-6);
        assert_relative_eq!(c2.blue(), 0.0, epsilon = 1e-6);

        let mut c3 = Rgi::new(0.6, 0.3, 0.83);
        c3.set_blue(0.7);
        assert_relative_eq!(c3.red(), 0.2, epsilon = 1e-6);
        assert_relative_eq!(c3.green(), 0.1, epsilon = 1e-6);
        assert_relative_eq!(c3.blue(), 0.7, epsilon = 1e-6);
        assert_relative_eq!(c3.intensity(), 0.83, epsilon = 1e-6);

        let mut c4 = Rgi::new(1.0, 0.0, 0.6);
        c4.set_red(0.5);
        assert_relative_eq!(c4.red(), 0.5);
        assert_relative_eq!(c4.green(), 0.25);
        assert_relative_eq!(c4.blue(), 0.25);
    }

    #[test]
    #[should_panic]
    fn test_slice_oob_panic() {
        let _ = Rgi::from_slice(&[0.9, 0.3, 0.9]);
    }

    #[test]
    fn test_flatten() {
        let c1 = Rgi::new(0.2, 0.5, 0.6);
        assert_eq!(c1.as_slice(), &[0.2, 0.5, 0.6]);
        assert_relative_eq!(Rgi::from_slice(c1.as_slice()), c1);
    }

    #[test]
    fn test_normalize() {
        let c1 = Rgi::new(0.5, 0.2, 0.8);
        assert_relative_eq!(c1.normalize(), c1);
        assert!(c1.is_normalized());
        let c2 = Rgi::new(0.0, 0.0, 1.2);
        assert_relative_eq!(c2.normalize(), Rgi::new(0.0, 0.0, 1.0));
        assert!(!c2.is_normalized());
    }

    #[test]
    #[should_panic]
    fn test_constructor_oob_panic() {
        let mut c1 = Rgi::new(0.7, 0.4, 0.9);
        c1.set_blue(0.0);
    }

    #[test]
    #[should_panic]
    fn test_red_setter_oob_panic() {
        let mut c1 = Rgi::new(0.2, 0.3, 0.8);
        c1.set_red(1.2);
    }
    #[test]
    #[should_panic]
    fn test_green_setter_oob_panic() {
        let mut c1 = Rgi::new(0.2, 0.3, 0.8);
        c1.set_green(1.00000000001);
    }

    #[test]
    fn test_lerp() {
        let c1 = Rgi::new(0.3, 0.6, 0.5);
        let c2 = Rgi::new(0.1, 0.4, 1.0);
        assert_relative_eq!(c1.lerp(&c2, 0.0), c1);
        assert_relative_eq!(c1.lerp(&c2, 1.0), c2);
        assert_relative_eq!(c1.lerp(&c2, 0.5), Rgi::new(0.2, 0.5, 0.75));
        assert_relative_eq!(
            c1.lerp(&c2, 0.75),
            Rgi::new(0.15, 0.45, 0.875),
            epsilon = 1e-5
        );
    }

    #[test]
    fn test_from_to_rgb() {
        let test_data = test::build_hwb_test_data();
        for item in test_data.iter() {
            let rgi = Rgi::from_color(&item.rgb);
            let rgb = Rgb::from_color(&rgi);
            assert_relative_eq!(rgb, item.rgb, epsilon = 1e-6);
        }

        let rgb1 = Rgb::new(0.50, 0.50, 1.0);
        let rgi1 = Rgi::from_color(&rgb1);
        assert_relative_eq!(rgi1, Rgi::new(0.25, 0.25, 0.6666666666), epsilon = 1e-6);
        assert_relative_eq!(Rgb::from_color(&rgi1), rgb1);

        let rgb2 = Rgb::new(0.00, 0.00, 0.00);
        let rgi2 = Rgi::from_color(&rgb2);
        assert_relative_eq!(rgi2, Rgi::new(0.0, 0.0, 0.0));
        assert_relative_eq!(Rgb::from_color(&rgi2), rgb2);

        let rgb3 = Rgb::new(1.0, 1.0, 1.0);
        let rgi3 = Rgi::from_color(&rgb3);
        assert_relative_eq!(rgi3, Rgi::new(0.333333, 0.333333, 1.0), epsilon = 1e-5);
        assert_relative_eq!(Rgb::from_color(&rgi3), rgb3);
    }

    #[test]
    fn color_cast() {
        let c1 = Rgi::new(0.6f32, 0.2, 0.9);
        assert_relative_eq!(c1.color_cast(), c1);
        assert_relative_eq!(c1.color_cast::<f64>().color_cast(), c1);
        assert_relative_eq!(c1.color_cast(), Rgi::new(0.6, 0.2, 0.9), epsilon = 1e-6);
    }
}