priority_queue/double_priority_queue/
mod.rs

1/*
2 *  Copyright 2017 Gianmarco Garrisi
3 *
4 *
5 *  This program is free software: you can redistribute it and/or modify
6 *  it under the terms of the GNU Lesser General Public License as published by
7 *  the Free Software Foundation, either version 3 of the License, or
8 *  (at your option) any later version, or (at your option) under the terms
9 *  of the Mozilla Public License version 2.0.
10 *
11 *  ----
12 *
13 *  This program is distributed in the hope that it will be useful,
14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *  GNU Lesser General Public License for more details.
17 *
18 *  You should have received a copy of the GNU Lesser General Public License
19 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
20 *
21 *  ----
22 *
23 *  This Source Code Form is subject to the terms of the Mozilla Public License,
24 *  v. 2.0. If a copy of the MPL was not distributed with this file, You can
25 *  obtain one at http://mozilla.org/MPL/2.0/.
26 *
27 */
28//! This module contains the [`DoublePriorityQueue`] type and the related iterators.
29//!
30//! See the type level documentation for more details and examples.
31
32pub mod iterators;
33
34#[cfg(not(feature = "std"))]
35use std::vec::Vec;
36
37use crate::TryReserveError;
38use crate::core_iterators::*;
39use crate::store::{Index, Position, Store};
40use iterators::*;
41
42use std::borrow::Borrow;
43use std::cmp::{Eq, Ord};
44#[cfg(feature = "std")]
45use std::collections::hash_map::RandomState;
46use std::hash::{BuildHasher, Hash};
47use std::iter::{Extend, FromIterator, IntoIterator, Iterator};
48use std::mem::replace;
49
50/// A double priority queue with efficient change function to change the priority of an
51/// element.
52///
53/// The priority is of type P, that must implement `std::cmp::Ord`.
54///
55/// The item is of type I, that must implement `Hash` and `Eq`.
56///
57/// Implemented as a heap of indexes, stores the items inside an `IndexMap`
58/// to be able to retrieve them quickly.
59///
60/// With this data structure it is possible to efficiently extract both
61/// the maximum and minimum elements arbitrarily.
62///
63/// If your need is to always extract the minimum, use a
64/// `PriorityQueue<I, Reverse<P>>` wrapping
65/// your priorities in the standard wrapper
66/// [`Reverse<T>`](https://doc.rust-lang.org/std/cmp/struct.Reverse.html).
67///
68///
69/// # Example
70/// ```rust
71/// use priority_queue::DoublePriorityQueue;
72///
73/// let mut pq = DoublePriorityQueue::new();
74///
75/// assert!(pq.is_empty());
76/// pq.push("Apples", 5);
77/// pq.push("Bananas", 8);
78/// pq.push("Strawberries", 23);
79///
80/// assert_eq!(pq.peek_max(), Some((&"Strawberries", &23)));
81/// assert_eq!(pq.peek_min(), Some((&"Apples", &5)));
82///
83/// pq.change_priority("Bananas", 25);
84/// assert_eq!(pq.peek_max(), Some((&"Bananas", &25)));
85///
86/// for (item, _) in pq.into_sorted_iter() {
87///     println!("{}", item);
88/// }
89/// ```
90#[derive(Clone)]
91#[cfg(feature = "std")]
92pub struct DoublePriorityQueue<I, P, H = RandomState> {
93    pub(crate) store: Store<I, P, H>,
94}
95
96#[derive(Clone)]
97#[cfg(not(feature = "std"))]
98pub struct DoublePriorityQueue<I, P, H> {
99    pub(crate) store: Store<I, P, H>,
100}
101
102// do not [derive(Eq)] to loosen up trait requirements for other types and impls
103impl<I, P, H> Eq for DoublePriorityQueue<I, P, H>
104where
105    I: Hash + Eq,
106    P: Ord,
107    H: BuildHasher,
108{
109}
110
111impl<I, P, H> Default for DoublePriorityQueue<I, P, H>
112where
113    I: Hash + Eq,
114    P: Ord,
115    H: BuildHasher + Default,
116{
117    fn default() -> Self {
118        Self::with_default_hasher()
119    }
120}
121
122#[cfg(feature = "std")]
123impl<I, P> DoublePriorityQueue<I, P>
124where
125    P: Ord,
126    I: Hash + Eq,
127{
128    /// Creates an empty `DoublePriorityQueue`
129    pub fn new() -> Self {
130        Self::with_capacity(0)
131    }
132
133    /// Creates an empty `DoublePriorityQueue` with the specified capacity.
134    pub fn with_capacity(capacity: usize) -> Self {
135        Self::with_capacity_and_default_hasher(capacity)
136    }
137}
138
139impl<I, P, H> DoublePriorityQueue<I, P, H>
140where
141    P: Ord,
142    I: Hash + Eq,
143    H: BuildHasher + Default,
144{
145    /// Creates an empty `DoublePriorityQueue` with the default hasher
146    pub fn with_default_hasher() -> Self {
147        Self::with_capacity_and_default_hasher(0)
148    }
149
150    /// Creates an empty `DoublePriorityQueue` with the specified capacity and default hasher
151    pub fn with_capacity_and_default_hasher(capacity: usize) -> Self {
152        Self::with_capacity_and_hasher(capacity, H::default())
153    }
154}
155
156impl<I, P, H> DoublePriorityQueue<I, P, H>
157where
158    P: Ord,
159    I: Hash + Eq,
160    H: BuildHasher,
161{
162    /// Creates an empty `DoublePriorityQueue` with the specified hasher
163    pub fn with_hasher(hash_builder: H) -> Self {
164        Self::with_capacity_and_hasher(0, hash_builder)
165    }
166
167    /// Creates an empty `DoublePriorityQueue` with the specified capacity and hasher
168    ///
169    /// The internal collections will be able to hold at least `capacity`
170    /// elements without reallocating.
171    /// If `capacity` is 0, there will be no allocation.
172    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: H) -> Self {
173        Self {
174            store: Store::with_capacity_and_hasher(capacity, hash_builder),
175        }
176    }
177}
178
179impl<I, P, H> DoublePriorityQueue<I, P, H> {
180    /// Returns the number of elements the internal map can hold without
181    /// reallocating.
182    ///
183    /// This number is a lower bound; the map might be able to hold more,
184    /// but is guaranteed to be able to hold at least this many.
185    pub fn capacity(&self) -> usize {
186        self.store.capacity()
187    }
188
189    /// Returns an iterator in arbitrary order over the
190    /// (item, priority) elements in the queue
191    pub fn iter(&self) -> Iter<I, P> {
192        self.store.iter()
193    }
194
195    /// Clears the PriorityQueue, returning an iterator over the removed elements in arbitrary order.
196    /// If the iterator is dropped before being fully consumed, it drops the remaining elements in arbitrary order.
197    pub fn drain(&mut self) -> Drain<I, P> {
198        self.store.drain()
199    }
200
201    /// Shrinks the capacity of the internal data structures
202    /// that support this operation as much as possible.
203    pub fn shrink_to_fit(&mut self) {
204        self.store.shrink_to_fit();
205    }
206
207    /// Returns the number of elements in the priority queue.
208    #[inline]
209    pub fn len(&self) -> usize {
210        self.store.len()
211    }
212
213    /// Returns true if the priority queue contains no elements.
214    pub fn is_empty(&self) -> bool {
215        self.store.is_empty()
216    }
217
218    /// Returns the couple (item, priority) with the lowest
219    /// priority in the queue, or None if it is empty.
220    ///
221    /// Computes in **O(1)** time
222    pub fn peek_min(&self) -> Option<(&I, &P)> {
223        self.find_min().and_then(|i| {
224            self.store
225                .map
226                .get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
227        })
228    }
229
230    /// Reserves capacity for at least `additional` more elements to be inserted
231    /// in the given `DoublePriorityQueue`. The collection may reserve more space to avoid
232    /// frequent reallocations. After calling `reserve`, capacity will be
233    /// greater than or equal to `self.len() + additional`. Does nothing if
234    /// capacity is already sufficient.
235    ///
236    /// # Panics
237    ///
238    /// Panics if the new capacity overflows `usize`.
239    pub fn reserve(&mut self, additional: usize) {
240        self.store.reserve(additional);
241    }
242
243    /// Reserve capacity for `additional` more elements, without over-allocating.
244    ///
245    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
246    /// frequent re-allocations. However, the underlying data structures may still have internal
247    /// capacity requirements, and the allocator itself may give more space than requested, so this
248    /// cannot be relied upon to be precisely minimal.
249    ///
250    /// Computes in **O(n)** time.
251    pub fn reserve_exact(&mut self, additional: usize) {
252        self.store.reserve_exact(additional);
253    }
254
255    /// Try to reserve capacity for at least `additional` more elements.
256    ///
257    /// Computes in O(n) time.
258    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
259        self.store.try_reserve(additional)
260    }
261
262    /// Try to reserve capacity for `additional` more elements, without over-allocating.
263    ///
264    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
265    /// frequent re-allocations. However, the underlying data structures may still have internal
266    /// capacity requirements, and the allocator itself may give more space than requested, so this
267    /// cannot be relied upon to be precisely minimal.
268    ///
269    /// Computes in **O(n)** time.
270    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
271        self.store.try_reserve_exact(additional)
272    }
273}
274impl<I, P, H> DoublePriorityQueue<I, P, H>
275where
276    P: Ord,
277{
278    /// Return an iterator in arbitrary order over the
279    /// (item, priority) elements in the queue.
280    ///
281    /// The item and the priority are mutable references, but it's a logic error
282    /// to modify the item in a way that change the result of `Hash` or `Eq`.
283    ///
284    /// It's *not* an error, instead, to modify the priorities, because the heap
285    /// will be rebuilt once the `IterMut` goes out of scope. It would be
286    /// rebuilt even if no priority value would have been modified, but the
287    /// procedure will not move anything, but just compare the priorities.
288    pub fn iter_mut(&mut self) -> IterMut<I, P, H> {
289        IterMut::new(self)
290    }
291
292    /// Returns the couple (item, priority) with the greatest
293    /// priority in the queue, or None if it is empty.
294    ///
295    /// Computes in **O(1)** time
296    pub fn peek_max(&self) -> Option<(&I, &P)> {
297        self.find_max().and_then(|i| {
298            self.store
299                .map
300                .get_index(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
301        })
302    }
303
304    /// Removes the item with the lowest priority from
305    /// the priority queue and returns the pair (item, priority),
306    /// or None if the queue is empty.
307    pub fn pop_min(&mut self) -> Option<(I, P)> {
308        self.find_min().and_then(|i| {
309            let r = self.store.swap_remove(i);
310            self.heapify(i);
311            r
312        })
313    }
314
315    /// Removes the item with the greatest priority from
316    /// the priority queue and returns the pair (item, priority),
317    /// or None if the queue is empty.
318    pub fn pop_max(&mut self) -> Option<(I, P)> {
319        self.find_max().and_then(|i| {
320            let r = self.store.swap_remove(i);
321            self.heapify(i);
322            r
323        })
324    }
325
326    /// Implements a HeapSort.
327    ///
328    /// Consumes the PriorityQueue and returns a vector
329    /// with all the items sorted from the one associated to
330    /// the lowest priority to the highest.
331    pub fn into_ascending_sorted_vec(mut self) -> Vec<I> {
332        let mut res = Vec::with_capacity(self.store.size);
333        while let Some((i, _)) = self.pop_min() {
334            res.push(i);
335        }
336        res
337    }
338
339    /// Implements a HeapSort
340    ///
341    /// Consumes the PriorityQueue and returns a vector
342    /// with all the items sorted from the one associated to
343    /// the highest priority to the lowest.
344    pub fn into_descending_sorted_vec(mut self) -> Vec<I> {
345        let mut res = Vec::with_capacity(self.store.size);
346        while let Some((i, _)) = self.pop_max() {
347            res.push(i);
348        }
349        res
350    }
351
352    /// Generates a new double ended iterator from self that
353    /// will extract the elements from the one with the lowest priority
354    /// to the highest one.
355    pub fn into_sorted_iter(self) -> IntoSortedIter<I, P, H> {
356        IntoSortedIter { pq: self }
357    }
358}
359
360impl<I, P, H> DoublePriorityQueue<I, P, H>
361where
362    H: BuildHasher,
363{
364    /// Returns the couple (item, priority) with the lowest
365    /// priority in the queue, or None if it is empty.
366    ///
367    /// The item is a mutable reference, but it's a logic error to modify it
368    /// in a way that change the result of  `Hash` or `Eq`.
369    ///
370    /// The priority cannot be modified with a call to this function.
371    /// To modify the priority use [`push`](DoublePriorityQueue::push),
372    /// [`change_priority`](DoublePriorityQueue::change_priority) or
373    /// [`change_priority_by`](DoublePriorityQueue::change_priority_by).
374    ///
375    /// Computes in **O(1)** time
376    pub fn peek_min_mut(&mut self) -> Option<(&mut I, &P)> {
377        use indexmap::map::MutableKeys;
378
379        self.find_min()
380            .and_then(move |i| {
381                self.store
382                    .map
383                    .get_index_mut2(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
384            })
385            .map(|(k, v)| (k, &*v))
386    }
387}
388
389impl<I, P, H> DoublePriorityQueue<I, P, H>
390where
391    P: Ord,
392    H: BuildHasher,
393{
394    /// Returns the couple (item, priority) with the greatest
395    /// priority in the queue, or None if it is empty.
396    ///
397    /// The item is a mutable reference, but it's a logic error to modify it
398    /// in a way that change the result of  `Hash` or `Eq`.
399    ///
400    /// The priority cannot be modified with a call to this function.
401    /// To modify the priority use [`push`](DoublePriorityQueue::push),
402    /// [`change_priority`](DoublePriorityQueue::change_priority) or
403    /// [`change_priority_by`](DoublePriorityQueue::change_priority_by).
404    ///
405    /// Computes in **O(1)** time
406    pub fn peek_max_mut(&mut self) -> Option<(&mut I, &P)> {
407        use indexmap::map::MutableKeys;
408        self.find_max()
409            .and_then(move |i| {
410                self.store
411                    .map
412                    .get_index_mut2(unsafe { *self.store.heap.get_unchecked(i.0) }.0)
413            })
414            .map(|(k, v)| (k, &*v))
415    }
416}
417
418impl<I, P, H> DoublePriorityQueue<I, P, H>
419where
420    P: Ord,
421    I: Hash + Eq,
422    H: BuildHasher,
423{
424    /// Removes the item with the lowest priority from
425    /// the priority queue if the predicate returns `true`.
426    ///
427    /// Returns the pair (item, priority), or None if the
428    /// queue is empty or the predicate returns `false`.
429    ///
430    /// The predicate receives mutable references to both the item and
431    /// the priority.
432    ///
433    /// It's a logical error to change the item in a way
434    /// that changes the result of `Hash` or `EQ`.
435    ///
436    /// The predicate can change the priority. If it returns true, the
437    /// returned couple will have the updated priority, otherwise, the
438    /// heap structural property will be restored.
439    ///
440    /// # Example
441    /// ```
442    /// # use priority_queue::DoublePriorityQueue;
443    /// let mut pq = DoublePriorityQueue::new();
444    /// pq.push("Apples", 5);
445    /// pq.push("Bananas", 10);
446    /// assert_eq!(pq.pop_min_if(|i, p| {
447    ///   *p = 15;
448    ///   false
449    /// }), None);
450    /// assert_eq!(pq.pop_min(), Some(("Bananas", 10)));
451    /// ```
452    pub fn pop_min_if<F>(&mut self, f: F) -> Option<(I, P)>
453    where
454        F: FnOnce(&mut I, &mut P) -> bool,
455    {
456        self.find_min().and_then(|i| {
457            let r = self.store.swap_remove_if(i, f);
458            self.heapify(i);
459            r
460        })
461    }
462
463    /// Removes the item with the greatest priority from
464    /// the priority queue if the predicate returns `true`.
465    ///
466    /// Returns the pair (item, priority), or None if the
467    /// queue is empty or the predicate returns `false`.
468    ///
469    /// The predicate receives mutable references to both the item and
470    /// the priority.
471    ///
472    /// It's a logical error to change the item in a way
473    /// that changes the result of `Hash` or `EQ`.
474    ///
475    /// The predicate can change the priority. If it returns true, the
476    /// returned couple will have the updated priority, otherwise, the
477    /// heap structural property will be restored.
478    ///
479    /// # Example
480    /// ```
481    /// # use priority_queue::DoublePriorityQueue;
482    /// let mut pq = DoublePriorityQueue::new();
483    /// pq.push("Apples", 5);
484    /// pq.push("Bananas", 10);
485    /// assert_eq!(pq.pop_max_if(|i, p| {
486    ///   *p = 3;
487    ///   false
488    /// }), None);
489    /// assert_eq!(pq.pop_max(), Some(("Apples", 5)));
490    /// ```
491    pub fn pop_max_if<F>(&mut self, f: F) -> Option<(I, P)>
492    where
493        F: FnOnce(&mut I, &mut P) -> bool,
494    {
495        self.find_max().and_then(|i| {
496            let r = self.store.swap_remove_if(i, f);
497            self.up_heapify(i);
498            r
499        })
500    }
501
502    /// Insert the item-priority pair into the queue.
503    ///
504    /// If an element equal to `item` is already in the queue, its priority
505    /// is updated and the old priority is returned in `Some`; otherwise,
506    /// `item` is inserted with `priority` and `None` is returned.
507    ///
508    /// # Example
509    /// ```
510    /// # use priority_queue::DoublePriorityQueue;
511    /// let mut pq = DoublePriorityQueue::new();
512    /// assert_eq!(pq.push("Apples", 5), None);
513    /// assert_eq!(pq.get_priority("Apples"), Some(&5));
514    /// assert_eq!(pq.push("Apples", 6), Some(5));
515    /// assert_eq!(pq.get_priority("Apples"), Some(&6));
516    /// assert_eq!(pq.push("Apples", 4), Some(6));
517    /// assert_eq!(pq.get_priority("Apples"), Some(&4));
518    /// ```
519    ///
520    /// Computes in **O(log(N))** time.
521    pub fn push(&mut self, item: I, priority: P) -> Option<P> {
522        use indexmap::map::Entry::*;
523        let mut pos = Position(0);
524        let mut oldp = None;
525
526        match self.store.map.entry(item) {
527            Occupied(mut e) => {
528                oldp = Some(replace(e.get_mut(), priority));
529                pos = unsafe { *self.store.qp.get_unchecked(e.index()) };
530            }
531            Vacant(e) => {
532                e.insert(priority);
533            }
534        }
535
536        if oldp.is_some() {
537            self.up_heapify(pos);
538            return oldp;
539        }
540        // get a reference to the priority
541        // copy the current size of the heap
542        let i = self.len();
543        // add the new element in the qp vector as the last in the heap
544        self.store.qp.push(Position(i));
545        self.store.heap.push(Index(i));
546        self.bubble_up(Position(i), Index(i));
547        self.store.size += 1;
548        None
549    }
550
551    /// Increase the priority of an existing item in the queue, or
552    /// insert it if not present.
553    ///
554    /// If an element equal to `item` is already in the queue with a
555    /// lower priority, its priority is increased to the new one
556    /// without replacing the element and the old priority is returned
557    /// in `Some`.
558    ///
559    /// If an element equal to `item` is already in the queue with an
560    /// equal or higher priority, its priority is not changed and the
561    /// `priority` argument is returned in `Some`.
562    ///
563    /// If no element equal to `item` is already in the queue, the new
564    /// element is inserted and `None` is returned.
565    ///
566    /// # Example
567    /// ```
568    /// # use priority_queue::DoublePriorityQueue;
569    /// let mut pq = DoublePriorityQueue::new();
570    /// assert_eq!(pq.push_increase("Apples", 5), None);
571    /// assert_eq!(pq.get_priority("Apples"), Some(&5));
572    /// assert_eq!(pq.push_increase("Apples", 6), Some(5));
573    /// assert_eq!(pq.get_priority("Apples"), Some(&6));
574    /// // Already present with higher priority, so requested (lower)
575    /// // priority is returned.
576    /// assert_eq!(pq.push_increase("Apples", 4), Some(4));
577    /// assert_eq!(pq.get_priority("Apples"), Some(&6));
578    /// ```
579    ///
580    /// Computes in **O(log(N))** time.
581    pub fn push_increase(&mut self, item: I, priority: P) -> Option<P> {
582        if self.get_priority(&item).is_none_or(|p| priority > *p) {
583            self.push(item, priority)
584        } else {
585            Some(priority)
586        }
587    }
588
589    /// Decrease the priority of an existing item in the queue, or
590    /// insert it if not present.
591    ///
592    /// If an element equal to `item` is already in the queue with a
593    /// higher priority, its priority is decreased to the new one
594    /// without replacing the element and the old priority is returned
595    /// in `Some`.
596    ///
597    /// If an element equal to `item` is already in the queue with an
598    /// equal or lower priority, its priority is not changed and the
599    /// `priority` argument is returned in `Some`.
600    ///
601    /// If no element equal to `item` is already in the queue, the new
602    /// element is inserted and `None` is returned.
603    ///
604    /// # Example
605    /// ```
606    /// # use priority_queue::DoublePriorityQueue;
607    /// let mut pq = DoublePriorityQueue::new();
608    /// assert_eq!(pq.push_decrease("Apples", 5), None);
609    /// assert_eq!(pq.get_priority("Apples"), Some(&5));
610    /// assert_eq!(pq.push_decrease("Apples", 4), Some(5));
611    /// assert_eq!(pq.get_priority("Apples"), Some(&4));
612    /// // Already present with lower priority, so requested (higher)
613    /// // priority is returned.
614    /// assert_eq!(pq.push_decrease("Apples", 6), Some(6));
615    /// assert_eq!(pq.get_priority("Apples"), Some(&4));
616    /// ```
617    ///
618    /// Computes in **O(log(N))** time.
619    pub fn push_decrease(&mut self, item: I, priority: P) -> Option<P> {
620        if self.get_priority(&item).is_none_or(|p| priority < *p) {
621            self.push(item, priority)
622        } else {
623            Some(priority)
624        }
625    }
626
627    /// Change the priority of an Item returning the old value of priority,
628    /// or `None` if the item wasn't in the queue.
629    ///
630    /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
631    /// in the priority queue.
632    ///
633    /// # Example
634    /// ```
635    /// # use priority_queue::DoublePriorityQueue;
636    /// let mut pq = DoublePriorityQueue::new();
637    /// assert_eq!(pq.change_priority("Apples", 5), None);
638    /// assert_eq!(pq.get_priority("Apples"), None);
639    /// assert_eq!(pq.push("Apples", 6), None);
640    /// assert_eq!(pq.get_priority("Apples"), Some(&6));
641    /// assert_eq!(pq.change_priority("Apples", 4), Some(6));
642    /// assert_eq!(pq.get_priority("Apples"), Some(&4));
643    /// ```
644    ///
645    /// The item is found in **O(1)** thanks to the hash table.
646    /// The operation is performed in **O(log(N))** time.
647    pub fn change_priority<Q>(&mut self, item: &Q, new_priority: P) -> Option<P>
648    where
649        I: Borrow<Q>,
650        Q: Eq + Hash + ?Sized,
651    {
652        self.store
653            .change_priority(item, new_priority)
654            .map(|(r, pos)| {
655                self.up_heapify(pos);
656                r
657            })
658    }
659
660    /// Change the priority of an Item using the provided function.
661    /// Return a boolean value where `true` means the item was in the queue and update was successful
662    ///
663    /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
664    /// in the priority queue.
665    ///
666    /// The item is found in **O(1)** thanks to the hash table.
667    /// The operation is performed in **O(log(N))** time (worst case).
668    pub fn change_priority_by<Q, F>(&mut self, item: &Q, priority_setter: F) -> bool
669    where
670        I: Borrow<Q>,
671        Q: Eq + Hash + ?Sized,
672        F: FnOnce(&mut P),
673    {
674        self.store
675            .change_priority_by(item, priority_setter)
676            .map(|pos| {
677                self.up_heapify(pos);
678            })
679            .is_some()
680    }
681
682    /// Get the priority of an item, or `None`, if the item is not in the queue
683    pub fn get_priority<Q>(&self, item: &Q) -> Option<&P>
684    where
685        I: Borrow<Q>,
686        Q: Eq + Hash + ?Sized,
687    {
688        self.store.get_priority(item)
689    }
690
691    /// Get the couple (item, priority) of an arbitrary element, as reference
692    /// or `None` if the item is not in the queue.
693    pub fn get<Q>(&self, item: &Q) -> Option<(&I, &P)>
694    where
695        I: Borrow<Q>,
696        Q: Eq + Hash + ?Sized,
697    {
698        self.store.get(item)
699    }
700
701    /// Get the couple (item, priority) of an arbitrary element, or `None`
702    /// if the item was not in the queue.
703    ///
704    /// The item is a mutable reference, but it's a logic error to modify it
705    /// in a way that change the result of  `Hash` or `Eq`.
706    ///
707    /// The priority cannot be modified with a call to this function.
708    /// To modify the priority use  use [`push`](DoublePriorityQueue::push),
709    /// [`change_priority`](DoublePriorityQueue::change_priority) or
710    /// [`change_priority_by`](DoublePriorityQueue::change_priority_by).
711    pub fn get_mut<Q>(&mut self, item: &Q) -> Option<(&mut I, &P)>
712    where
713        I: Borrow<Q>,
714        Q: Eq + Hash + ?Sized,
715    {
716        self.store.get_mut(item)
717    }
718
719    /// Remove an arbitrary element from the priority queue.
720    /// Returns the (item, priority) couple or None if the item
721    /// is not found in the queue.
722    ///
723    /// The operation is performed in **O(log(N))** time (worst case).
724    pub fn remove<Q>(&mut self, item: &Q) -> Option<(I, P)>
725    where
726        I: Borrow<Q>,
727        Q: Eq + Hash + ?Sized,
728    {
729        self.store.remove(item).map(|(item, priority, pos)| {
730            if pos.0 < self.len() {
731                self.up_heapify(pos);
732            }
733
734            (item, priority)
735        })
736    }
737
738    /// Returns the items not ordered
739    pub fn into_vec(self) -> Vec<I> {
740        self.store.into_vec()
741    }
742
743    /// Drops all items from the priority queue
744    pub fn clear(&mut self) {
745        self.store.clear();
746    }
747
748    /// Move all items of the `other` queue to `self`
749    /// ignoring the items Eq to elements already in `self`
750    /// At the end, `other` will be empty.
751    ///
752    /// **Note** that at the end, the priority of the duplicated elements
753    /// inside `self` may be the one of the elements in `other`,
754    /// if `other` is longer than `self`
755    pub fn append(&mut self, other: &mut Self) {
756        self.store.append(&mut other.store);
757        self.heap_build();
758    }
759}
760
761impl<I, P, H> DoublePriorityQueue<I, P, H> {
762    /// Returns the index of the min element
763    fn find_min(&self) -> Option<Position> {
764        match self.len() {
765            0 => None,
766            _ => Some(Position(0)),
767        }
768    }
769}
770
771impl<I, P, H> DoublePriorityQueue<I, P, H>
772where
773    P: Ord,
774{
775    /**************************************************************************/
776    /*                            internal functions                          */
777
778    fn heapify(&mut self, i: Position) {
779        if self.len() <= 1 {
780            return;
781        }
782        if level(i) % 2 == 0 {
783            self.heapify_min(i)
784        } else {
785            self.heapify_max(i)
786        }
787    }
788
789    fn heapify_min(&mut self, mut i: Position) {
790        while i <= parent(Position(self.len() - 1)) {
791            let m = i;
792
793            let l = left(i);
794            let r = right(i);
795            // Minimum of childs and grandchilds
796            i = *[l, r, left(l), right(l), left(r), right(r)]
797                .iter()
798                .map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
799                .min_by_key(|(_, index)| {
800                    self.store
801                        .map
802                        .get_index(index.0)
803                        .map(|(_, priority)| priority)
804                        .unwrap()
805                })
806                .unwrap()
807                .0;
808
809            if unsafe {
810                self.store.get_priority_from_position(i) < self.store.get_priority_from_position(m)
811            } {
812                self.store.swap(i, m);
813                if i > r {
814                    // i is a grandchild of m
815                    let p = parent(i);
816                    if unsafe {
817                        self.store.get_priority_from_position(i)
818                            > self.store.get_priority_from_position(p)
819                    } {
820                        self.store.swap(i, p);
821                    }
822                } else {
823                    break;
824                }
825            } else {
826                break;
827            }
828        }
829    }
830
831    fn heapify_max(&mut self, mut i: Position) {
832        while i <= parent(Position(self.len() - 1)) {
833            let m = i;
834
835            let l = left(i);
836            let r = right(i);
837            // Minimum of childs and grandchilds
838            i = *[l, r, left(l), right(l), left(r), right(r)]
839                .iter()
840                .map_while(|i| self.store.heap.get(i.0).map(|index| (i, index)))
841                .max_by_key(|(_, index)| {
842                    self.store
843                        .map
844                        .get_index(index.0)
845                        .map(|(_, priority)| priority)
846                        .unwrap()
847                })
848                .unwrap()
849                .0;
850
851            if unsafe {
852                self.store.get_priority_from_position(i) > self.store.get_priority_from_position(m)
853            } {
854                self.store.swap(i, m);
855                if i > r {
856                    // i is a grandchild of m
857                    let p = parent(i);
858                    if unsafe {
859                        self.store.get_priority_from_position(i)
860                            < self.store.get_priority_from_position(p)
861                    } {
862                        self.store.swap(i, p);
863                    }
864                } else {
865                    break;
866                }
867            } else {
868                break;
869            }
870        }
871    }
872
873    fn bubble_up(&mut self, mut position: Position, map_position: Index) -> Position {
874        let priority = self.store.map.get_index(map_position.0).unwrap().1;
875        if position.0 > 0 {
876            let parent = parent(position);
877            let parent_priority = unsafe { self.store.get_priority_from_position(parent) };
878            let parent_index = unsafe { *self.store.heap.get_unchecked(parent.0) };
879            position = match (level(position) % 2 == 0, parent_priority < priority) {
880                // on a min level and greater then parent
881                (true, true) => {
882                    unsafe {
883                        *self.store.heap.get_unchecked_mut(position.0) = parent_index;
884                        *self.store.qp.get_unchecked_mut(parent_index.0) = position;
885                    }
886                    self.bubble_up_max(parent, map_position)
887                }
888                // on a min level and less then parent
889                (true, false) => self.bubble_up_min(position, map_position),
890                // on a max level and greater then parent
891                (false, true) => self.bubble_up_max(position, map_position),
892                // on a max level and less then parent
893                (false, false) => {
894                    unsafe {
895                        *self.store.heap.get_unchecked_mut(position.0) = parent_index;
896                        *self.store.qp.get_unchecked_mut(parent_index.0) = position;
897                    }
898                    self.bubble_up_min(parent, map_position)
899                }
900            }
901        }
902
903        unsafe {
904            // put the new element into the heap and
905            // update the qp translation table and the size
906            *self.store.heap.get_unchecked_mut(position.0) = map_position;
907            *self.store.qp.get_unchecked_mut(map_position.0) = position;
908        }
909        position
910    }
911
912    fn bubble_up_min(&mut self, mut position: Position, map_position: Index) -> Position {
913        let priority = self.store.map.get_index(map_position.0).unwrap().1;
914        let mut grand_parent = Position(0);
915        while if position.0 > 0 && parent(position).0 > 0 {
916            grand_parent = parent(parent(position));
917            (unsafe { self.store.get_priority_from_position(grand_parent) }) > priority
918        } else {
919            false
920        } {
921            unsafe {
922                let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
923                *self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
924                *self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
925            }
926            position = grand_parent;
927        }
928        position
929    }
930
931    fn bubble_up_max(&mut self, mut position: Position, map_position: Index) -> Position {
932        let priority = self.store.map.get_index(map_position.0).unwrap().1;
933        let mut grand_parent = Position(0);
934        while if position.0 > 0 && parent(position).0 > 0 {
935            grand_parent = parent(parent(position));
936            (unsafe { self.store.get_priority_from_position(grand_parent) }) < priority
937        } else {
938            false
939        } {
940            unsafe {
941                let grand_parent_index = *self.store.heap.get_unchecked(grand_parent.0);
942                *self.store.heap.get_unchecked_mut(position.0) = grand_parent_index;
943                *self.store.qp.get_unchecked_mut(grand_parent_index.0) = position;
944            }
945            position = grand_parent;
946        }
947        position
948    }
949
950    fn up_heapify(&mut self, i: Position) {
951        let tmp = unsafe { *self.store.heap.get_unchecked(i.0) };
952        let pos = self.bubble_up(i, tmp);
953        if i != pos {
954            self.heapify(i)
955        }
956        self.heapify(pos);
957    }
958
959    /// Internal function that transform the `heap`
960    /// vector in a heap with its properties
961    ///
962    /// Computes in **O(N)**
963    pub(crate) fn heap_build(&mut self) {
964        if self.is_empty() {
965            return;
966        }
967        for i in (0..=parent(Position(self.len())).0).rev() {
968            self.heapify(Position(i));
969        }
970    }
971
972    /// Returns the index of the max element
973    fn find_max(&self) -> Option<Position> {
974        match self.len() {
975            0 => None,
976            1 => Some(Position(0)),
977            2 => Some(Position(1)),
978            _ => Some(
979                *[Position(1), Position(2)]
980                    .iter()
981                    .max_by_key(|i| unsafe { self.store.get_priority_from_position(**i) })
982                    .unwrap(),
983            ),
984        }
985    }
986}
987
988//FIXME: fails when the vector contains repeated items
989// FIXED: repeated items ignored
990impl<I, P, H> From<Vec<(I, P)>> for DoublePriorityQueue<I, P, H>
991where
992    I: Hash + Eq,
993    P: Ord,
994    H: BuildHasher + Default,
995{
996    fn from(vec: Vec<(I, P)>) -> Self {
997        let store = Store::from(vec);
998        let mut pq = DoublePriorityQueue { store };
999        pq.heap_build();
1000        pq
1001    }
1002}
1003
1004use crate::PriorityQueue;
1005
1006impl<I, P, H> From<PriorityQueue<I, P, H>> for DoublePriorityQueue<I, P, H>
1007where
1008    I: Hash + Eq,
1009    P: Ord,
1010    H: BuildHasher,
1011{
1012    fn from(pq: PriorityQueue<I, P, H>) -> Self {
1013        let store = pq.store;
1014        let mut this = Self { store };
1015        this.heap_build();
1016        this
1017    }
1018}
1019
1020//FIXME: fails when the iterator contains repeated items
1021// FIXED: the item inside the pq is updated
1022// so there are two functions with different behaviours.
1023impl<I, P, H> FromIterator<(I, P)> for DoublePriorityQueue<I, P, H>
1024where
1025    I: Hash + Eq,
1026    P: Ord,
1027    H: BuildHasher + Default,
1028{
1029    fn from_iter<IT>(iter: IT) -> Self
1030    where
1031        IT: IntoIterator<Item = (I, P)>,
1032    {
1033        let store = Store::from_iter(iter);
1034        let mut pq = DoublePriorityQueue { store };
1035        pq.heap_build();
1036        pq
1037    }
1038}
1039
1040impl<I, P, H> IntoIterator for DoublePriorityQueue<I, P, H>
1041where
1042    I: Hash + Eq,
1043    P: Ord,
1044    H: BuildHasher,
1045{
1046    type Item = (I, P);
1047    type IntoIter = IntoIter<I, P>;
1048    fn into_iter(self) -> IntoIter<I, P> {
1049        self.store.into_iter()
1050    }
1051}
1052
1053impl<'a, I, P, H> IntoIterator for &'a DoublePriorityQueue<I, P, H>
1054where
1055    I: Hash + Eq,
1056    P: Ord,
1057    H: BuildHasher,
1058{
1059    type Item = (&'a I, &'a P);
1060    type IntoIter = Iter<'a, I, P>;
1061    fn into_iter(self) -> Iter<'a, I, P> {
1062        self.store.iter()
1063    }
1064}
1065
1066impl<'a, I, P, H> IntoIterator for &'a mut DoublePriorityQueue<I, P, H>
1067where
1068    I: Hash + Eq,
1069    P: Ord,
1070    H: BuildHasher,
1071{
1072    type Item = (&'a mut I, &'a mut P);
1073    type IntoIter = IterMut<'a, I, P, H>;
1074    fn into_iter(self) -> IterMut<'a, I, P, H> {
1075        IterMut::new(self)
1076    }
1077}
1078
1079impl<I, P, H> Extend<(I, P)> for DoublePriorityQueue<I, P, H>
1080where
1081    I: Hash + Eq,
1082    P: Ord,
1083    H: BuildHasher,
1084{
1085    fn extend<T: IntoIterator<Item = (I, P)>>(&mut self, iter: T) {
1086        let iter = iter.into_iter();
1087        let (min, max) = iter.size_hint();
1088        let rebuild = if let Some(max) = max {
1089            self.reserve(max);
1090            better_to_rebuild(self.len(), max)
1091        } else if min != 0 {
1092            self.reserve(min);
1093            better_to_rebuild(self.len(), min)
1094        } else {
1095            false
1096        };
1097        if rebuild {
1098            self.store.extend(iter);
1099            self.heap_build();
1100        } else {
1101            for (item, priority) in iter {
1102                self.push(item, priority);
1103            }
1104        }
1105    }
1106}
1107
1108use std::fmt;
1109
1110impl<I, P, H> fmt::Debug for DoublePriorityQueue<I, P, H>
1111where
1112    I: Hash + Eq + fmt::Debug,
1113    P: Ord + fmt::Debug,
1114{
1115    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
1116        self.store.fmt(f)
1117    }
1118}
1119
1120use std::cmp::PartialEq;
1121
1122impl<I, P1, H1, P2, H2> PartialEq<DoublePriorityQueue<I, P2, H2>> for DoublePriorityQueue<I, P1, H1>
1123where
1124    I: Hash + Eq,
1125    P1: Ord,
1126    P1: PartialEq<P2>,
1127    Option<P1>: PartialEq<Option<P2>>,
1128    P2: Ord,
1129    H1: BuildHasher,
1130    H2: BuildHasher,
1131{
1132    fn eq(&self, other: &DoublePriorityQueue<I, P2, H2>) -> bool {
1133        self.store == other.store
1134    }
1135}
1136
1137/// Compute the index of the left child of an item from its index
1138#[inline(always)]
1139const fn left(i: Position) -> Position {
1140    Position((i.0 * 2) + 1)
1141}
1142/// Compute the index of the right child of an item from its index
1143#[inline(always)]
1144const fn right(i: Position) -> Position {
1145    Position((i.0 * 2) + 2)
1146}
1147/// Compute the index of the parent element in the heap from its index
1148#[inline(always)]
1149const fn parent(i: Position) -> Position {
1150    Position((i.0 - 1) / 2)
1151}
1152
1153// Compute the level of a node from its index
1154#[inline(always)]
1155const fn level(i: Position) -> usize {
1156    log2_fast(i.0 + 1)
1157}
1158
1159#[inline(always)]
1160const fn log2_fast(x: usize) -> usize {
1161    (usize::BITS - x.leading_zeros() - 1) as usize
1162}
1163
1164// `rebuild` takes O(len1 + len2) operations
1165// and about 2 * (len1 + len2) comparisons in the worst case
1166// while `extend` takes O(len2 * log_2(len1)) operations
1167// and about 1 * len2 * log_2(len1) comparisons in the worst case,
1168// assuming len1 >= len2.
1169fn better_to_rebuild(len1: usize, len2: usize) -> bool {
1170    // log(1) == 0, so the inequation always falsy
1171    // log(0) is inapplicable and produces panic
1172    if len1 <= 1 {
1173        return false;
1174    }
1175
1176    2 * (len1 + len2) < len2 * log2_fast(len1)
1177}
1178
1179#[cfg(feature = "serde")]
1180#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
1181mod serde {
1182    use std::cmp::{Eq, Ord};
1183    use std::hash::{BuildHasher, Hash};
1184
1185    use serde::de::{Deserialize, Deserializer};
1186    use serde::ser::{Serialize, Serializer};
1187
1188    use super::DoublePriorityQueue;
1189    use crate::store::Store;
1190
1191    impl<I, P, H> Serialize for DoublePriorityQueue<I, P, H>
1192    where
1193        I: Hash + Eq + Serialize,
1194        P: Ord + Serialize,
1195        H: BuildHasher,
1196    {
1197        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1198        where
1199            S: Serializer,
1200        {
1201            self.store.serialize(serializer)
1202        }
1203    }
1204
1205    impl<'de, I, P, H> Deserialize<'de> for DoublePriorityQueue<I, P, H>
1206    where
1207        I: Hash + Eq + Deserialize<'de>,
1208        P: Ord + Deserialize<'de>,
1209        H: BuildHasher + Default,
1210    {
1211        fn deserialize<D>(deserializer: D) -> Result<DoublePriorityQueue<I, P, H>, D::Error>
1212        where
1213            D: Deserializer<'de>,
1214        {
1215            Store::deserialize(deserializer).map(|store| {
1216                let mut pq = DoublePriorityQueue { store };
1217                pq.heap_build();
1218                pq
1219            })
1220        }
1221    }
1222}