1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
/*
 *  Copyright 2017 Gianmarco Garrisi
 *
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version, or (at your opinion) under the terms
 *  of the Mozilla Public License version 2.0.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//! This module contains the [`DoublePriorityQueue`] type and the related iterators.
//!
//! See the type level documentation for more details and examples.

pub mod iterators;

#[cfg(not(has_std))]
use std::vec::Vec;

use crate::core_iterators::{IntoIter, Iter};
use crate::store::Store;
use iterators::*;

use std::borrow::Borrow;
use std::cmp::{Eq, Ord};
#[cfg(has_std)]
use std::collections::hash_map::RandomState;
use std::hash::{BuildHasher, Hash};
use std::iter::{Extend, FromIterator, IntoIterator, Iterator};
use std::mem::replace;

/// A double priority queue with efficient change function to change the priority of an
/// element.
///
/// The priority is of type P, that must implement `std::cmp::Ord`.
///
/// The item is of type I, that must implement `Hash` and `Eq`.
///
/// Implemented as a heap of indexes, stores the items inside an `IndexMap`
/// to be able to retrieve them quickly.
///
/// With this data structure it is possible to efficiently extract both
/// the maximum and minimum elements arbitrarily.
///
/// If your need is to always extract the minimum, use a
/// `PriorityQueue<I, Reverse<P>>` wrapping
/// your priorities in the standard wrapper
/// [`Reverse<T>`](https://doc.rust-lang.org/std/cmp/struct.Reverse.html).
///
///
/// # Example
/// ```rust
/// use priority_queue::DoublePriorityQueue;
///
/// let mut pq = DoublePriorityQueue::new();
///
/// assert!(pq.is_empty());
/// pq.push("Apples", 5);
/// pq.push("Bananas", 8);
/// pq.push("Strawberries", 23);
///
/// assert_eq!(pq.peek_max(), Some((&"Strawberries", &23)));
/// assert_eq!(pq.peek_min(), Some((&"Apples", &5)));
///
/// pq.change_priority("Bananas", 25);
/// assert_eq!(pq.peek_max(), Some((&"Bananas", &25)));
///
/// for (item, _) in pq.into_sorted_iter() {
///     println!("{}", item);
/// }
/// ```
#[derive(Clone)]
#[cfg(has_std)]
pub struct DoublePriorityQueue<I, P, H = RandomState>
where
    I: Hash + Eq,
    P: Ord,
{
    pub(crate) store: Store<I, P, H>,
}

#[derive(Clone)]
#[cfg(not(has_std))]
pub struct DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
{
    pub(crate) store: Store<I, P, H>,
}

// do not [derive(Eq)] to loosen up trait requirements for other types and impls
impl<I, P, H> Eq for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
}

impl<I, P, H> Default for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn default() -> Self {
        Self::with_default_hasher()
    }
}

#[cfg(has_std)]
impl<I, P> DoublePriorityQueue<I, P>
where
    P: Ord,
    I: Hash + Eq,
{
    /// Creates an empty `DoublePriorityQueue`
    pub fn new() -> Self {
        Self::with_capacity(0)
    }

    /// Creates an empty `DoublePriorityQueue` with the specified capacity.
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_and_default_hasher(capacity)
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher + Default,
{
    /// Creates an empty `DoublePriorityQueue` with the default hasher
    pub fn with_default_hasher() -> Self {
        Self::with_capacity_and_default_hasher(0)
    }

    /// Creates an empty `DoublePriorityQueue` with the specified capacity and default hasher
    pub fn with_capacity_and_default_hasher(capacity: usize) -> Self {
        Self::with_capacity_and_hasher(capacity, H::default())
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher,
{
    /// Creates an empty `DoublePriorityQueue` with the specified hasher
    pub fn with_hasher(hash_builder: H) -> Self {
        Self::with_capacity_and_hasher(0, hash_builder)
    }

    /// Creates an empty `DoublePriorityQueue` with the specified capacity and hasher
    ///
    /// The internal collections will be able to hold at least `capacity`
    /// elements without reallocating.
    /// If `capacity` is 0, there will be no allocation.
    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: H) -> Self {
        Self {
            store: Store::with_capacity_and_hasher(capacity, hash_builder),
        }
    }

    /// Returns an iterator in arbitrary order over the
    /// (item, priority) elements in the queue
    pub fn iter(&self) -> Iter<I, P> {
        self.store.iter()
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
{
    /// Return an iterator in arbitrary order over the
    /// (item, priority) elements in the queue.
    ///
    /// The item and the priority are mutable references, but it's a logic error
    /// to modify the item in a way that change the result of `Hash` or `Eq`.
    ///
    /// It's *not* an error, instead, to modify the priorities, because the heap
    /// will be rebuilt once the `IterMut` goes out of scope. It would be
    /// rebuilt even if no priority value would have been modified, but the
    /// procedure will not move anything, but just compare the priorities.
    pub fn iter_mut(&mut self) -> IterMut<I, P, H> {
        IterMut::new(self)
    }

    /// Returns the couple (item, priority) with the lowest
    /// priority in the queue, or None if it is empty.
    ///
    /// Computes in **O(1)** time
    pub fn peek_min(&self) -> Option<(&I, &P)> {
        self.find_min().and_then(|i| {
            self.store
                .map
                .get_index(unsafe { *self.store.heap.get_unchecked(i) })
        })
    }

    /// Returns the couple (item, priority) with the greatest
    /// priority in the queue, or None if it is empty.
    ///
    /// Computes in **O(1)** time
    pub fn peek_max(&self) -> Option<(&I, &P)> {
        self.find_max().and_then(|i| {
            self.store
                .map
                .get_index(unsafe { *self.store.heap.get_unchecked(i) })
        })
    }

    /// Returns the couple (item, priority) with the greatest
    /// priority in the queue, or None if it is empty.
    ///
    /// The item is a mutable reference, but it's a logic error to modify it
    /// in a way that change the result of  `Hash` or `Eq`.
    ///
    /// The priority cannot be modified with a call to this function.
    /// To modify the priority use `push`, `change_priority` or
    /// `change_priority_by`.
    ///
    /// Computes in **O(1)** time
    pub fn peek_min_mut(&mut self) -> Option<(&mut I, &P)> {
        self.find_min()
            .and_then(move |i| {
                self.store
                    .map
                    .get_index_mut(unsafe { *self.store.heap.get_unchecked(i) })
            })
            .map(|(k, v)| (k, &*v))
    }

    /// Returns the couple (item, priority) with the greatest
    /// priority in the queue, or None if it is empty.
    ///
    /// The item is a mutable reference, but it's a logic error to modify it
    /// in a way that change the result of  `Hash` or `Eq`.
    ///
    /// The priority cannot be modified with a call to this function.
    /// To modify the priority use `push`, `change_priority` or
    /// `change_priority_by`.
    ///
    /// Computes in **O(1)** time
    pub fn peek_max_mut(&mut self) -> Option<(&mut I, &P)> {
        self.find_max()
            .and_then(move |i| {
                self.store
                    .map
                    .get_index_mut(unsafe { *self.store.heap.get_unchecked(i) })
            })
            .map(|(k, v)| (k, &*v))
    }

    /// Returns the number of elements the internal map can hold without
    /// reallocating.
    ///
    /// This number is a lower bound; the map might be able to hold more,
    /// but is guaranteed to be able to hold at least this many.
    pub fn capacity(&self) -> usize {
        self.store.capacity()
    }

    /// Shrinks the capacity of the internal data structures
    /// that support this operation as much as possible.
    pub fn shrink_to_fit(&mut self) {
        self.store.shrink_to_fit();
    }

    /// Removes the item with the lowest priority from
    /// the priority queue and returns the pair (item, priority),
    /// or None if the queue is empty.
    pub fn pop_min(&mut self) -> Option<(I, P)> {
        self.find_min().and_then(|i| {
            let r = self.store.swap_remove(i);
            self.heapify(i);
            r
        })
    }

    /// Removes the item with the greatest priority from
    /// the priority queue and returns the pair (item, priority),
    /// or None if the queue is empty.
    pub fn pop_max(&mut self) -> Option<(I, P)> {
        self.find_max().and_then(|i| {
            let r = self.store.swap_remove(i);
            self.heapify(i);
            r
        })
    }

    /// Implements a HeapSort.
    ///
    /// Consumes the PriorityQueue and returns a vector
    /// with all the items sorted from the one associated to
    /// the lowest priority to the highest.
    pub fn into_ascending_sorted_vec(mut self) -> Vec<I> {
        let mut res = Vec::with_capacity(self.store.size);
        while let Some((i, _)) = self.pop_min() {
            res.push(i);
        }
        res
    }

    /// Implements a HeapSort
    ///
    /// Consumes the PriorityQueue and returns a vector
    /// with all the items sorted from the one associated to
    /// the highest priority to the lowest.
    pub fn into_descending_sorted_vec(mut self) -> Vec<I> {
        let mut res = Vec::with_capacity(self.store.size);
        while let Some((i, _)) = self.pop_max() {
            res.push(i);
        }
        res
    }

    /// Returns the number of elements in the priority queue.
    pub fn len(&self) -> usize {
        self.store.len()
    }

    /// Returns true if the priority queue contains no elements.
    pub fn is_empty(&self) -> bool {
        self.store.is_empty()
    }

    /// Generates a new double ended iterator from self that
    /// will extract the elements from the one with the lowest priority
    /// to the highest one.
    pub fn into_sorted_iter(self) -> IntoSortedIter<I, P, H> {
        IntoSortedIter { pq: self }
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher,
{
    // reserve_exact -> IndexMap does not implement reserve_exact

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the given `DoublePriorityQueue`. The collection may reserve more space to avoid
    /// frequent reallocations. After calling `reserve`, capacity will be
    /// greater than or equal to `self.len() + additional`. Does nothing if
    /// capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    pub fn reserve(&mut self, additional: usize) {
        self.store.reserve(additional);
    }

    /// Insert the item-priority pair into the queue.
    ///
    /// If an element equal to `item` was already into the queue,
    /// it is updated and the old value of its priority is returned in `Some`;
    /// otherwise, returns `None`.
    ///
    /// Computes in **O(log(N))** time.
    pub fn push(&mut self, item: I, priority: P) -> Option<P> {
        use indexmap::map::Entry::*;
        let mut pos = 0;
        let mut oldp = None;

        match self.store.map.entry(item) {
            Occupied(mut e) => {
                oldp = Some(replace(e.get_mut(), priority));
                pos = unsafe { *self.store.qp.get_unchecked(e.index()) };
            }
            Vacant(e) => {
                e.insert(priority);
            }
        }

        if oldp.is_some() {
            self.up_heapify(pos);
            return oldp;
        }
        // get a reference to the priority
        // copy the current size of the heap
        let i = self.store.size;
        // add the new element in the qp vector as the last in the heap
        self.store.qp.push(i);
        self.store.heap.push(i);
        self.bubble_up(i, i);
        self.store.size += 1;
        None
    }

    /// Increase the priority of an existing item in the queue, or
    /// insert it if not present.
    ///
    /// If an element equal to `item` is already in the queue with a
    /// lower priority, its priority is increased to the new one
    /// without replacing the element and the old priority is returned.
    /// Otherwise, the new element is inserted into the queue.
    ///
    /// Returns `Some` if an element equal to `item` is already in the
    /// queue. If its priority is higher then `priority`, the latter is returned back,
    /// otherwise, the old priority is contained in the Option.
    /// If the item is not in the queue, `None` is returned.
    ///
    /// Computes in **O(log(N))** time.
    pub fn push_increase(&mut self, item: I, priority: P) -> Option<P> {
        if self.get_priority(&item).map_or(true, |p| priority > *p) {
            self.push(item, priority)
        } else {
            Some(priority)
        }
    }

    /// Decrease the priority of an existing item in the queue, or
    /// insert it if not present.
    ///
    /// If an element equal to `item` is already in the queue with a
    /// higher priority, its priority is decreased to the new one
    /// without replacing the element and the old priority is returned.
    /// Otherwise, the new element is inserted into the queue.
    ///
    /// Returns `Some` if an element equal to `item` is already in the
    /// queue. If its priority is lower then `priority`, the latter is returned back,
    /// otherwise, the old priority is contained in the Option.
    /// If the item is not in the queue, `None` is returned.
    ///
    /// Computes in **O(log(N))** time.
    pub fn push_decrease(&mut self, item: I, priority: P) -> Option<P> {
        if self.get_priority(&item).map_or(true, |p| priority < *p) {
            self.push(item, priority)
        } else {
            Some(priority)
        }
    }

    /// Change the priority of an Item returning the old value of priority,
    /// or `None` if the item wasn't in the queue.
    ///
    /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
    /// in the priority queue.
    ///
    /// The item is found in **O(1)** thanks to the hash table.
    /// The operation is performed in **O(log(N))** time.
    pub fn change_priority<Q: ?Sized>(&mut self, item: &Q, new_priority: P) -> Option<P>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        if let Some((r, pos)) = self.store.change_priority(item, new_priority) {
            self.up_heapify(pos);
            Some(r)
        } else {
            None
        }
    }

    /// Change the priority of an Item using the provided function.
    /// The item is found in **O(1)** thanks to the hash table.
    /// The operation is performed in **O(log(N))** time (worst case).
    pub fn change_priority_by<Q: ?Sized, F>(&mut self, item: &Q, priority_setter: F)
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
        F: FnOnce(&mut P),
    {
        if let Some(pos) = self.store.change_priority_by(item, priority_setter) {
            self.up_heapify(pos);
        }
    }

    /// Get the priority of an item, or `None`, if the item is not in the queue
    pub fn get_priority<Q: ?Sized>(&self, item: &Q) -> Option<&P>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.get_priority(item)
    }

    /// Get the couple (item, priority) of an arbitrary element, as reference
    /// or `None` if the item is not in the queue.
    pub fn get<Q: ?Sized>(&self, item: &Q) -> Option<(&I, &P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.get(item)
    }

    /// Get the couple (item, priority) of an arbitrary element, or `None`
    /// if the item was not in the queue.
    ///
    /// The item is a mutable reference, but it's a logic error to modify it
    /// in a way that change the result of  `Hash` or `Eq`.
    ///
    /// The priority cannot be modified with a call to this function.
    /// To modify the priority use `push`, `change_priority` or
    /// `change_priority_by`.
    pub fn get_mut<Q: ?Sized>(&mut self, item: &Q) -> Option<(&mut I, &P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.get_mut(item)
    }

    /// Remove an arbitrary element from the priority queue.
    /// Returns the (item, priority) couple or None if the item
    /// is not found in the queue.
    ///
    /// The operation is performed in **O(log(N))** time (worst case).
    pub fn remove<Q: ?Sized>(&mut self, item: &Q) -> Option<(I, P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.store.remove(item).map(|(item, priority, pos)| {
            if pos < self.store.size {
                self.up_heapify(pos);
            }

            (item, priority)
        })
    }

    /// Returns the items not ordered
    pub fn into_vec(self) -> Vec<I> {
        self.store.into_vec()
    }

    /// Drops all items from the priority queue
    pub fn clear(&mut self) {
        self.store.clear();
    }

    /// Move all items of the `other` queue to `self`
    /// ignoring the items Eq to elements already in `self`
    /// At the end, `other` will be empty.
    ///
    /// **Note** that at the end, the priority of the duplicated elements
    /// inside self may be the one of the elements in other,
    /// if other is longer than self
    pub fn append(&mut self, other: &mut Self) {
        self.store.append(&mut other.store);
        self.heap_build();
    }
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
{
}

impl<I, P, H> DoublePriorityQueue<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
{
    /**************************************************************************/
    /*                            internal functions                          */

    fn heapify(&mut self, i: usize) {
        if self.store.size <= 1 {
            return;
        }
        if level(i) % 2 == 0 {
            self.heapify_min(i)
        } else {
            self.heapify_max(i)
        }
    }

    fn heapify_min(&mut self, mut i: usize) {
        while i <= parent(self.store.size - 1) {
            let m = i;

            // Minimum of childs and grandchilds
            i = *[
                left(i),
                right(i),
                left(left(i)),
                right(left(i)),
                left(right(i)),
                right(right(i)),
            ]
            .iter()
            .filter_map(|i| self.store.heap.get(*i).map(|index| (i, index)))
            .map(|(i, index)| {
                self.store
                    .map
                    .get_index(*index)
                    .map(|(item, priority)| (i, item, priority))
                    .unwrap()
            })
            .min_by_key(|(_, _, priority)| *priority)
            .unwrap()
            .0;

            if unsafe {
                self.store.get_priority_from_heap_index(i)
                    < self.store.get_priority_from_heap_index(m)
            } {
                self.store.swap(i, m);
                if i > right(m) // i is a grandchild of m
                    && unsafe {
                        self.store.get_priority_from_heap_index(i)
                            > self.store.get_priority_from_heap_index(parent(i))
                    }
                {
                    self.store.swap(i, parent(i));
                }
            } else {
                break;
            }
        }
    }

    fn heapify_max(&mut self, mut i: usize) {
        while i <= parent(self.store.size - 1) {
            let m = i;

            // Minimum of childs and grandchilds
            i = *[
                left(i),
                right(i),
                left(left(i)),
                right(left(i)),
                left(right(i)),
                right(right(i)),
            ]
            .iter()
            .filter_map(|i| self.store.heap.get(*i).map(|index| (i, index)))
            .map(|(i, index)| {
                self.store
                    .map
                    .get_index(*index)
                    .map(|(item, priority)| (i, item, priority))
                    .unwrap()
            })
            .max_by_key(|(_, _, priority)| *priority)
            .unwrap()
            .0;

            if unsafe {
                self.store.get_priority_from_heap_index(i)
                    > self.store.get_priority_from_heap_index(m)
            } {
                self.store.swap(i, m);
                if i > right(m) // i is a grandchild of m
                    && unsafe {
                        self.store.get_priority_from_heap_index(i)
                            < self.store.get_priority_from_heap_index(parent(i))
                    }
                {
                    self.store.swap(i, parent(i));
                }
            } else {
                break;
            }
        }
    }

    fn bubble_up(&mut self, mut position: usize, map_position: usize) -> usize {
        if position > 0 {
            position = if level(position) % 2 == 0 {
                if self
                    .store
                    .map
                    .get_index(unsafe { *self.store.heap.get_unchecked(parent(position)) })
                    .unwrap()
                    .1
                    < self.store.map.get_index(map_position).unwrap().1
                {
                    unsafe {
                        *self.store.heap.get_unchecked_mut(position) =
                            *self.store.heap.get_unchecked(parent(position));
                        *self
                            .store
                            .qp
                            .get_unchecked_mut(*self.store.heap.get_unchecked(position)) = position;
                    }
                    self.bubble_up_max(parent(position), map_position)
                } else {
                    self.bubble_up_min(position, map_position)
                }
            } else if self
                .store
                .map
                .get_index(unsafe { *self.store.heap.get_unchecked(parent(position)) })
                .unwrap()
                .1
                > self.store.map.get_index(map_position).unwrap().1
            {
                unsafe {
                    *self.store.heap.get_unchecked_mut(position) =
                        *self.store.heap.get_unchecked(parent(position));
                    *self
                        .store
                        .qp
                        .get_unchecked_mut(*self.store.heap.get_unchecked(position)) = position;
                }
                self.bubble_up_min(parent(position), map_position)
            } else {
                self.bubble_up_max(position, map_position)
            }
        }

        unsafe {
            // put the new element into the heap and
            // update the qp translation table and the size
            *self.store.heap.get_unchecked_mut(position) = map_position;
            *self.store.qp.get_unchecked_mut(map_position) = position;
        }
        position
    }

    fn bubble_up_min(&mut self, mut position: usize, map_position: usize) -> usize {
        while (position > 0 && parent(position) > 0)
            && (self
                .store
                .map
                .get_index(unsafe { *self.store.heap.get_unchecked(parent(parent(position))) })
                .unwrap()
                .1
                > self.store.map.get_index(map_position).unwrap().1)
        {
            self.store.swap(position, parent(parent(position)));
            position = parent(parent(position));
        }
        position
    }

    fn bubble_up_max(&mut self, mut position: usize, map_position: usize) -> usize {
        while (position > 0 && parent(position) > 0)
            && (self
                .store
                .map
                .get_index(unsafe { *self.store.heap.get_unchecked(parent(parent(position))) })
                .unwrap()
                .1
                < self.store.map.get_index(map_position).unwrap().1)
        {
            self.store.swap(position, parent(parent(position)));
            position = parent(parent(position));
        }
        position
    }

    fn up_heapify(&mut self, i: usize) {
        let tmp = unsafe { *self.store.heap.get_unchecked(i) };
        let pos = self.bubble_up(i, tmp);
        self.heapify(pos);
    }

    /// Internal function that transform the `heap`
    /// vector in a heap with its properties
    ///
    /// Computes in **O(N)**
    pub(crate) fn heap_build(&mut self) {
        if self.store.size == 0 {
            return;
        }
        for i in (0..=parent(self.store.size)).rev() {
            self.heapify(i);
        }
    }

    /// Returns the index of the max element
    fn find_max(&self) -> Option<usize> {
        match self.store.size {
            0 => None,
            1 => Some(0),
            2 => Some(1),
            _ => Some(
                *[1, 2]
                    .iter()
                    .max_by_key(|i| unsafe { self.store.get_priority_from_heap_index(**i) })
                    .unwrap(),
            ),
        }
    }

    /// Returns the index of the min element
    fn find_min(&self) -> Option<usize> {
        match self.store.size {
            0 => None,
            _ => Some(0),
        }
    }
}

//FIXME: fails when the vector contains repeated items
// FIXED: repeated items ignored
impl<I, P, H> From<Vec<(I, P)>> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn from(vec: Vec<(I, P)>) -> Self {
        let store = Store::from(vec);
        let mut pq = DoublePriorityQueue { store };
        pq.heap_build();
        pq
    }
}

use crate::PriorityQueue;

impl<I, P, H> From<PriorityQueue<I, P, H>> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    fn from(pq: PriorityQueue<I, P, H>) -> Self {
        let store = pq.store;
        let mut this = Self { store };
        this.heap_build();
        this
    }
}

//FIXME: fails when the iterator contains repeated items
// FIXED: the item inside the pq is updated
// so there are two functions with different behaviours.
impl<I, P, H> FromIterator<(I, P)> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn from_iter<IT>(iter: IT) -> Self
    where
        IT: IntoIterator<Item = (I, P)>,
    {
        let store = Store::from_iter(iter);
        let mut pq = DoublePriorityQueue { store };
        pq.heap_build();
        pq
    }
}

impl<I, P, H> IntoIterator for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    type Item = (I, P);
    type IntoIter = IntoIter<I, P>;
    fn into_iter(self) -> IntoIter<I, P> {
        self.store.into_iter()
    }
}

impl<'a, I, P, H> IntoIterator for &'a DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    type Item = (&'a I, &'a P);
    type IntoIter = Iter<'a, I, P>;
    fn into_iter(self) -> Iter<'a, I, P> {
        self.store.iter()
    }
}

impl<'a, I, P, H> IntoIterator for &'a mut DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
{
    type Item = (&'a mut I, &'a mut P);
    type IntoIter = IterMut<'a, I, P, H>;
    fn into_iter(self) -> IterMut<'a, I, P, H> {
        IterMut::new(self)
    }
}

impl<I, P, H> Extend<(I, P)> for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    fn extend<T: IntoIterator<Item = (I, P)>>(&mut self, iter: T) {
        let iter = iter.into_iter();
        let (min, max) = iter.size_hint();
        let rebuild = if let Some(max) = max {
            self.reserve(max);
            better_to_rebuild(self.store.size, max)
        } else if min != 0 {
            self.reserve(min);
            better_to_rebuild(self.store.size, min)
        } else {
            false
        };
        if rebuild {
            self.store.extend(iter);
            self.heap_build();
        } else {
            for (item, priority) in iter {
                self.push(item, priority);
            }
        }
    }
}

use std::fmt;

impl<I, P, H> fmt::Debug for DoublePriorityQueue<I, P, H>
where
    I: Hash + Eq + fmt::Debug,
    P: Ord + fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        self.store.fmt(f)
    }
}

use std::cmp::PartialEq;

impl<I, P1, H1, P2, H2> PartialEq<DoublePriorityQueue<I, P2, H2>> for DoublePriorityQueue<I, P1, H1>
where
    I: Hash + Eq,
    P1: Ord,
    P1: PartialEq<P2>,
    Option<P1>: PartialEq<Option<P2>>,
    P2: Ord,
    H1: BuildHasher,
    H2: BuildHasher,
{
    fn eq(&self, other: &DoublePriorityQueue<I, P2, H2>) -> bool {
        self.store == other.store
    }
}

/// Compute the index of the left child of an item from its index
fn left(i: usize) -> usize {
    (i * 2) + 1
}
/// Compute the index of the right child of an item from its index
fn right(i: usize) -> usize {
    (i * 2) + 2
}
/// Compute the index of the parent element in the heap from its index
fn parent(i: usize) -> usize {
    (i - 1) / 2
}

// Compute the level of a node from its index
fn level(i: usize) -> usize {
    log2_fast(i + 1)
}

fn log2_fast(x: usize) -> usize {
    use std::mem::size_of;

    8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1
}

// `rebuild` takes O(len1 + len2) operations
// and about 2 * (len1 + len2) comparisons in the worst case
// while `extend` takes O(len2 * log_2(len1)) operations
// and about 1 * len2 * log_2(len1) comparisons in the worst case,
// assuming len1 >= len2.
fn better_to_rebuild(len1: usize, len2: usize) -> bool {
    // log(1) == 0, so the inequation always falsy
    // log(0) is inapplicable and produces panic
    if len1 <= 1 {
        return false;
    }

    2 * (len1 + len2) < len2 * log2_fast(len1)
}

#[cfg(feature = "serde")]
mod serde {
    use std::cmp::{Eq, Ord};
    use std::hash::{BuildHasher, Hash};

    use serde::de::{Deserialize, Deserializer};
    use serde::ser::{Serialize, Serializer};

    use super::DoublePriorityQueue;
    use crate::store::Store;

    impl<I, P, H> Serialize for DoublePriorityQueue<I, P, H>
    where
        I: Hash + Eq + Serialize,
        P: Ord + Serialize,
        H: BuildHasher,
    {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            self.store.serialize(serializer)
        }
    }

    impl<'de, I, P, H> Deserialize<'de> for DoublePriorityQueue<I, P, H>
    where
        I: Hash + Eq + Deserialize<'de>,
        P: Ord + Deserialize<'de>,
        H: BuildHasher + Default,
    {
        fn deserialize<D>(deserializer: D) -> Result<DoublePriorityQueue<I, P, H>, D::Error>
        where
            D: Deserializer<'de>,
        {
            Store::deserialize(deserializer).map(|store| {
                let mut pq = DoublePriorityQueue { store };
                pq.heap_build();
                pq
            })
        }
    }
}