pub enum WindingOrder {
    EvenOdd,
    NonZero,
}
Expand description

The rule to use in filling/clipping paint operations.

This is meaningful in the following cases:

  • When a path uses one of the fill paint operations, this will determine the rule used to fill the paths.
  • When a path uses a clip painting mode, this will determine the rule used to limit the regions of the page affected by painting operators.

Most of the time, NonZero is the appropriate option.

Variants§

§

EvenOdd

Make any filling or clipping paint operators follow the even-odd rule.

This rule determines whether a point is inside a path by drawing a ray from that point in any direction and simply counting the number of path segments that cross the ray, regardless of direction. If this number is odd, the point is inside; if even, the point is outside. This yields the same results as the nonzero winding number rule for paths with simple shapes, but produces different results for more complex shapes.

§

NonZero

Make any filling or clipping paint operators follow the nonzero rule.

This rule determines whether a given point is inside a path by conceptually drawing a ray from that point to infinity in any direction and then examining the places where a segment of the path crosses the ray. Starting with a count of 0, the rule adds 1 each time a path segment crosses the ray from left to right and subtracts 1 each time a segment crosses from right to left. After counting all the crossings, if the result is 0, the point is outside the path; otherwise, it is inside.

Implementations§

source§

impl WindingOrder

source

pub fn get_clip_op(&self) -> &'static str

Gets the operator for a clip paint operation.

source

pub fn get_fill_op(&self) -> &'static str

Gets the operator for a fill paint operation.

source

pub fn get_fill_stroke_close_op(&self) -> &'static str

Gets the operator for a close, fill and stroke painting operation.

source

pub fn get_fill_stroke_op(&self) -> &'static str

Gets the operator for a fill and stroke painting operation.

Trait Implementations§

source§

impl Clone for WindingOrder

source§

fn clone(&self) -> WindingOrder

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for WindingOrder

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Default for WindingOrder

source§

fn default() -> WindingOrder

Returns the “default value” for a type. Read more
source§

impl Hash for WindingOrder

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl PartialEq for WindingOrder

source§

fn eq(&self, other: &WindingOrder) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl Copy for WindingOrder

source§

impl Eq for WindingOrder

source§

impl StructuralEq for WindingOrder

source§

impl StructuralPartialEq for WindingOrder

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> Finish for T

source§

fn finish(self)

Does nothing but move self, equivalent to drop.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.