

 Docs.rs

	

 printpdf-0.7.0

 	
 printpdf 0.7.0

	

 Permalink

	

 Docs.rs crate page

	

 MIT

 	Links
	

 Homepage

	

 Repository

	

 Crates.io

	

 Source

 	Owners
	

 fschutt

 	Dependencies
	

 	

 allsorts ^0.14
 normal

	

 image ^0.24.3
 normal

	

 log ^0.4.8
 normal

	

 lopdf ^0.31.0
 normal

	

 owned_ttf_parser ^0.19.0
 normal

	

 pdf-writer ^0.9
 normal

	

 svg2pdf ^0.8
 normal

	

 time ^0.3.25
 normal

	

 usvg ^0.35.0
 normal

	

 js-sys ^0.3.40
 normal

 	Versions
	

 	

 73.11%
 of the crate is documented

	

 Platform

 	
 i686-pc-windows-msvc

	
 i686-unknown-linux-gnu

	
 x86_64-apple-darwin

	
 x86_64-pc-windows-msvc

	
 x86_64-unknown-linux-gnu

	

 Feature flags

 	
 Rust
 	

 About docs.rs

	

 Privacy policy

	

 Rust website

	

 The Book

	

 Standard Library API Reference

	

 Rust by Example

	

 The Cargo Guide

	

 Clippy Documentation

printpdf0.7.0

	All Items

	Re-exports
	Modules
	Structs
	Enums
	Constants
	Traits
	Functions

?

Crate printpdf
source · [−]
Expand descriptionprintpdf is a library designed for creating printable PDF documents.

Crates.io | Documentation

[dependencies]
printpdf = "0.5.0"

§Features

Currently, printpdf can only write documents, not read them.

	Page generation
	Layers (Illustrator like layers)
	Graphics (lines, shapes, bezier curves)
	Images (currently BMP/PNG/JPG only or generate your own images)
	Embedded fonts (TTF and OTF) with Unicode support
	Advanced graphics - overprint control, blending modes, etc.
	Advanced typography - character scaling, character spacing, superscript, subscript, outlining, etc.
	PDF layers (you should be able to open the PDF in Illustrator and have the layers appear)

§Getting started
§Writing PDF
§Simple page

use printpdf::*;
use std::fs::File;
use std::io::BufWriter;

let (doc, page1, layer1) = PdfDocument::new("PDF_Document_title", Mm(247.0), Mm(210.0), "Layer 1");
let (page2, layer1) = doc.add_page(Mm(10.0), Mm(250.0),"Page 2, Layer 1");

doc.save(&mut BufWriter::new(File::create("test_working.pdf").unwrap())).unwrap();

§Adding graphical shapes

use printpdf::*;
use printpdf::path::{PaintMode, WindingOrder};
use std::fs::File;
use std::io::BufWriter;
use std::iter::FromIterator;

let (doc, page1, layer1) = PdfDocument::new("printpdf graphics test", Mm(297.0), Mm(210.0), "Layer 1");
let current_layer = doc.get_page(page1).get_layer(layer1);

// Quadratic shape. The "false" determines if the next (following)
// point is a bezier handle (for curves)
//
// If you want holes, use WindingOrder::EvenOdd
let points1 = vec![(Point::new(Mm(100.0), Mm(100.0)), false),
 (Point::new(Mm(100.0), Mm(200.0)), false),
 (Point::new(Mm(300.0), Mm(200.0)), false),
 (Point::new(Mm(300.0), Mm(100.0)), false)];

let line1 = Polygon {
 rings: vec![points1],
 mode: PaintMode::FillStroke,
 winding_order: WindingOrder::NonZero,
};

let fill_color = Color::Cmyk(Cmyk::new(0.0, 0.23, 0.0, 0.0, None));
let outline_color = Color::Rgb(Rgb::new(0.75, 1.0, 0.64, None));
let mut dash_pattern = LineDashPattern::default();
dash_pattern.dash_1 = Some(20);

current_layer.set_fill_color(fill_color);
current_layer.set_outline_color(outline_color);
current_layer.set_outline_thickness(10.0);

// Draw first line
current_layer.add_polygon(line1);

let fill_color_2 = Color::Cmyk(Cmyk::new(0.0, 0.0, 0.0, 0.0, None));
let outline_color_2 = Color::Greyscale(Greyscale::new(0.45, None));

// More advanced graphical options
current_layer.set_overprint_stroke(true);
current_layer.set_blend_mode(BlendMode::Seperable(SeperableBlendMode::Multiply));
current_layer.set_line_dash_pattern(dash_pattern);
current_layer.set_line_cap_style(LineCapStyle::Round);

current_layer.set_fill_color(fill_color_2);
current_layer.set_outline_color(outline_color_2);
current_layer.set_outline_thickness(15.0);

// Triangle shape
let mut line2 = Line::from_iter(vec![
 (Point::new(Mm(150.0), Mm(150.0)), false),
 (Point::new(Mm(150.0), Mm(250.0)), false),
 (Point::new(Mm(350.0), Mm(250.0)), false)]);

// draw second line
current_layer.add_line(line2);

§Adding images

Note: Images only get compressed in release mode. You might get huge PDFs (6 or more MB) in
debug mode. In release mode, the compression makes these files much smaller (~ 100 - 200 KB).

To make this process faster, use BufReader instead of directly reading from the file.
Images are currently not a top priority.

Scaling of images is implicitly done to fit one pixel = one dot at 300 dpi.

// Compile with --feature="embedded_images"
extern crate printpdf;

// imports the `image` library with the exact version that we are using
use printpdf::*;

use std::convert::From;
use std::convert::TryFrom;
use std::fs::File;

fn main() {
 let (doc, page1, layer1) = PdfDocument::new("PDF_Document_title", Mm(247.0), Mm(210.0), "Layer 1");
 let current_layer = doc.get_page(page1).get_layer(layer1);

 // currently, the only reliable file formats are bmp/jpeg/png
 // this is an issue of the image library, not a fault of printpdf
 let mut image_file = File::open("assets/img/BMP_test.bmp").unwrap();
 let image = Image::try_from(image_crate::codecs::bmp::BmpDecoder::new(&mut image_file).unwrap()).unwrap();

 // translate x, translate y, rotate, scale x, scale y
 // by default, an image is optimized to 300 DPI (if scale is None)
 // rotations and translations are always in relation to the lower left corner
 image.add_to_layer(current_layer.clone(), ImageTransform::default());

 // you can also construct images manually from your data:
 let mut image_file_2 = ImageXObject {
 width: Px(200),
 height: Px(200),
 color_space: ColorSpace::Greyscale,
 bits_per_component: ColorBits::Bit8,
 interpolate: true,
 /* put your bytes here. Make sure the total number of bytes =
 width * height * (bytes per component * number of components)
 (e.g. 2 (bytes) x 3 (colors) for RGB 16bit) */
 image_data: Vec::new(),
 image_filter: None, /* does not work yet */
 clipping_bbox: None, /* doesn't work either, untested */
 };

 let image2 = Image::from(image_file_2);
}

§Adding fonts

Note: Fonts are shared between pages. This means that they are added to the document first
and then a reference to this one object can be passed to multiple pages. This is different to
images, for example, which can only be used once on the page they are created on (since that’s
the most common use-case).

use printpdf::*;
use std::fs::File;

let (doc, page1, layer1) = PdfDocument::new("PDF_Document_title", Mm(247.0), Mm(210.0), "Layer 1");
let current_layer = doc.get_page(page1).get_layer(layer1);

let text = "Lorem ipsum";
let text2 = "unicode: стуфхfцчшщъыьэюя";

let font = doc.add_external_font(File::open("assets/fonts/RobotoMedium.ttf").unwrap()).unwrap();
let font2 = doc.add_external_font(File::open("assets/fonts/RobotoMedium.ttf").unwrap()).unwrap();

// text, font size, x from left edge, y from bottom edge, font
current_layer.use_text(text, 48.0, Mm(200.0), Mm(200.0), &font);

// For more complex layout of text, you can use functions
// defined on the PdfLayerReference
// Make sure to wrap your commands
// in a `begin_text_section()` and `end_text_section()` wrapper
current_layer.begin_text_section();

 // setup the general fonts.
 // see the docs for these functions for details
 current_layer.set_font(&font2, 33.0);
 current_layer.set_text_cursor(Mm(10.0), Mm(10.0));
 current_layer.set_line_height(33.0);
 current_layer.set_word_spacing(3000.0);
 current_layer.set_character_spacing(10.0);
 current_layer.set_text_rendering_mode(TextRenderingMode::Stroke);

 // write two lines (one line break)
 current_layer.write_text(text.clone(), &font2);
 current_layer.add_line_break();
 current_layer.write_text(text2.clone(), &font2);
 current_layer.add_line_break();

 // write one line, but write text2 in superscript
 current_layer.write_text(text.clone(), &font2);
 current_layer.set_line_offset(10.0);
 current_layer.write_text(text2.clone(), &font2);

current_layer.end_text_section();

§Changelog

See the CHANGELOG.md file.

§Further reading

The PdfDocument is hidden behind a PdfDocumentReference, which locks
the things you can do behind a facade. Pretty much all functions operate
on a PdfLayerReference, so that would be where to look for existing
functions or where to implement new functions. The PdfDocumentReference
is a reference-counted document. It uses the pages and layers for inner
mutablility, because
I ran into borrowing issues with the document. IMPORTANT: All functions
that mutate the state of the document, “borrow” the document mutably for
the duration of the function. It is important that you don’t borrow the
document twice (your program will crash if you do so). I have prevented
this wherever possible, by making the document only public to the crate
so you cannot lock it from outside of this library.

Images have to be added to the pages resources before using them. Meaning,
you can only use an image on the page that you added it to. Otherwise,
you may end up with a corrupt PDF.

Fonts are embedded using freetype. There is a rusttype branch in this
repository, but rusttype does fails to get the height of an unscaled
font correctly, so that’s why you currently have to use freetype

Please report issues if you have any, especially if you see BorrowMut
errors (they should not happen). Kerning is currently not done, because
neither freetype nor rusttype can reliably read kerning data.
However, “correct” kerning / placement requires a full font shaping
engine, etc. This would be a completely different project.

For learning how a PDF is actually made, please read the
wiki (currently not
completely finished). When I began making this library, these resources
were not available anywhere, so I hope to help other people
with these topics. Reading the wiki is essential if you want to
contribute to this library.

§Goals and Roadmap

The goal of printpdf is to be a general-use PDF library, such as
libharu or similar. PDFs generated by printpdf should always adhere
to a PDF standard, except if you turn it off. Currently, only the
standard PDF/X-3:2002 is covered (i.e. valid PDF according to Adobe
Acrobat). Over time, there will be more standards supported. Checking a
PDF for errors is currently only a stub.

§Planned features / Not done yet

The following features aren’t implemented yet, most

	Clipping
	Aligning / layouting text
	Open Prepress Interface
	Halftoning images, Gradients, Patterns
	SVG / instantiated content
	Forms, annotations
	Bookmarks / Table of contents
	Conformance / error checking for various PDF standards
	Embedded Javascript
	Reading PDF
	Completion of printpdf wiki

§Testing

Currently the testing is pretty much non-existent, because PDF is very hard to test.
This should change over time: Testing should be done in two stages. First, test
the individual PDF objects, if the conversion into a PDF object is done correctly.
The second stage is manual inspection of PDF objects via Adobe Preflight.

Put the tests of the first stage in /tests/mod.rs. The second stage tests are
better to be handled inside the plugins’ mod.rs file. printpdf depends highly
on lopdf, so you can either construct your
test object against a real type or a debug string of your serialized type.
Either way is fine - you just have to check that the test object is conform to
what PDF expects.

§Useful links

Here are some resources I found while working on this library:

PDFXPlorer, shows the DOM tree of a PDF, needs .NET 2.0

Official PDF 1.7 reference

[GERMAN] How to embed unicode fonts in PDF

PDF X/1-a Validator

PDF X/3 technical notes

Re-exports§
	pub extern crate image as image_crate;

	pub extern crate log;

	pub use lopdf;

Modules§
	color
Color module (CMYK or RGB). Shared between 2D and 3D module.

	ctm
Current transformation matrix, for transforming shapes (rotate, translate, scale)

	date

	document_info
Info dictionary of a PDF document

	errors
Errors for printpdf

	extgstate
Extended graphics state, for advanced graphical operation (overprint, black point control, etc.)

	font
Embedding fonts in 2D for Pdf

	icc_profile
ICC profile that can be embedded into a PDF

	image
Abstraction class for images. Please use this class
instead of adding ImageXObjects yourself

	indices
These indices are for library internal use only.
Use the add_* functions to get an index instead.

	line

	link_annotation

	ocg

	path
Utilities to work with path objects.

	pattern

	pdf_conformance
Module regulating the comparison and feature sets / allowed plugins of a PDF document

	pdf_document
A PDFDocument represents the whole content of the file

	pdf_layer
PDF layer management. Layers can contain referenced or real content.

	pdf_metadata
Wapper type for shared metadata between XMP Metadata and the DocumentInfo dictionary

	pdf_page
PDF page management

	pdf_resources

	point

	rectangle
Utilities for rectangle paths.

	scale
Scaling types for reducing errors between conversions between point (pt) and millimeter (mm)

	svg
Abstraction class for images. Please use this class
instead of adding ImageXObjects yourself

	utils
Utility / conveniece functions for commonly use graphical shapes

	xmp_metadata
Stub plugin for XMP Metadata streams, to be expanded later

	xobject

Structs§
	Actions

	Cmyk
CMYK color

	CustomPdfConformance
Allows building custom conformance profiles. This is useful if you want very small documents for example and
you don’t need conformance with any PDF standard, you just want a PDF file.

	DashPhase

	DirectFontRef
Direct reference (wrapper for lopdf::Object::Reference)
for increased type safety

	DocumentInfo
“Info” dictionary of a PDF document.
Actual data is contained in DocumentMetadata, to keep it in sync with the XmpMetadata
(if the timestamps / settings are not in sync, Preflight will complain)

	ExtendedGraphicsState
ExtGState dictionary

	ExtendedGraphicsStateBuilder

	ExtendedGraphicsStateList
List of many ExtendedGraphicsState

	ExtendedGraphicsStateRef
A reference to the graphics state, for reusing the
graphics state during a stream without adding new graphics states all the time

	ExternalFont

	FontIndex
Index of a font

	FontList
Font list for tracking fonts within a single PDF document

	FontMetrics
The unscaled base metrics for a font provided by a FontData
implementation.

	FormXObject
THIS IS NOT A PDF FORM! A form XObject can be nearly everything.
PDF allows you to reuse content for the graphics stream in a FormXObject.
A FormXObject is basically a layer-like content stream and can contain anything
as long as it’s a valid strem. A FormXObject is intended to be used for reapeated
content on one page.

	FormXObjectRef

	GlyphMetrics
The metrics for a glyph provided by a FontData implementation.

	Greyscale
Greyscale color

	GroupXObject

	IccProfile
Icc profile

	IccProfileList

	IccProfileRef
Named reference for an ICC profile

	Image
Image - wrapper around an ImageXObject to allow for more control
within the library

	ImageRotation

	ImageTransform
Transform that is applied immediately before the
image gets painted. Does not affect anything other
than the image.

	ImageXObject

	ImageXObjectRef
Named reference to an image

	IndirectFontRef
Indexed reference to a font that was added to the document
This is a “reference by postscript name”

	Line

	LineDashPattern
Line dash pattern is made up of a total width

	LinkAnnotation

	LinkAnnotationList

	LinkAnnotationRef
Named reference to a LinkAnnotation

	Mm
Scale in millimeter

	OCGList

	OCGRef

	OffsetDateTime
A PrimitiveDateTime with a UtcOffset.

	OptionalContentGroup
Optional content group, for PDF layers. Only available in PDF 1.4
but (I think) lower versions of PDF allow this, too. Used to create
Adobe Illustrator-like layers in PDF

	Pattern
STUB

	PatternList

	PatternRef
Named reference to a pattern

	PdfContentIndex
Index of the arbitrary content data

	PdfDocument
PDF document

	PdfDocumentReference
Marker struct for a document. Used to make the API a bit nicer.
It simply calls PdfDocument functions.

	PdfLayer
One layer of PDF data

	PdfLayerIndex
Index of the layer on the nth page

	PdfLayerReference
A “reference” to the current layer, allows for inner mutability
but only inside this library

	PdfMetadata
This is a wrapper in order to keep shared data between the documents XMP metadata and
the “Info” dictionary in sync

	PdfPage
PDF page

	PdfPageIndex
Index of the page (0-based)

	PdfPageReference
A “reference” to the current page, allows for inner mutability
but only inside this library

	PdfResources
Struct for storing the PDF Resources, to be used on a PDF page

	Point

	Polygon

	PostScriptXObject
TODO, very low priority

	Pt
Scale in point

	Px
Scale in pixels

	Rect
A helper struct to insert rectangular shapes into a PDF.

	ReferenceXObject
PDF 1.4 and higher
Contains a PDF file to be embedded in the current PDF

	Rgb
RGB color

	SMask
SMask dictionary. A soft mask (or SMask) is a greyscale image
that is used to mask another image

	SoftMask
A soft mask is used for transparent images such as PNG with an alpha component
The bytes range from 0xFF (opaque) to 0x00 (transparent). The alpha channel of a
PNG image have to be sorted out.
Can also be used for Vignettes, etc.
Beware of color spaces!
See PDF Reference Page 545 - Soft masks

	SpotColor
Spot color
Spot colors are like Cmyk, but without color space
They are essentially “named” colors from specific vendors
currently they are the same as a CMYK color.

	Svg
SVG - wrapper around an XObject to allow for more
control within the library.

	SvgIndex
Index of a svg file

	SvgRotation

	SvgTransform
Transform that is applied immediately before the
image gets painted. Does not affect anything other
than the image.

	SvgXObjectRef

	XObjectList
List of XObjects

	XObjectRef
Named reference to an XObject

	XmpMetadata
Initial struct for Xmp metatdata. This should be expanded later for XML handling, etc.
Right now it just fills out the necessary fields

Enums§
	BlackGenerationExtraFunction

	BlackGenerationFunction
Black generation calculates the amount of black to be used when trying to
reproduce a particular color.

	BlendMode

	BorderArray

	BuiltinFont
Standard built-in PDF fonts

	Color
Wrapper for Rgb, Cmyk and other color types

	ColorArray

	ColorBits
How many bits does a color have?

	ColorSpace
Color space (enum for marking the number of bits a color has)

	CurTransMat
PDF “current transformation matrix”. Once set, will operate on all following shapes,
until the layer.restore_graphics_state() is called. It is important to
call layer.save_graphics_state() earlier.

	Error

	Font
The font

	FormType

	GroupXObjectType

	HalftoneType
In PDF 1.2, the graphics state includes a current halftone parameter,
which determines the halftoning process to be used by the painting operators.
It may be defined by either a dictionary or a stream, depending on the
type of halftone; the term halftone dictionary is used generically
throughout this section to refer to either a dictionary object or the
dictionary portion of a stream object. (The halftones that are defined
by streams are specifically identified as such in the descriptions
of particular halftone types; unless otherwise stated, they are
understood to be defined by simple dictionaries instead.)
Deserialized into Integer: 1, 5, 6, 10 or 16

	HighlightingMode

	IccProfileType
Type of the icc profile

	ImageFilter
Describes the format the image bytes are compressed with.

	IndexError

	LineCapStyle
See PDF Reference (Page 216) - Line cap (ending) style

	LineJoinStyle
See PDF Reference Page 216 - Line join style

	NonSeperableBlendMode
Since the nonseparable blend modes consider all color components in combination, their
computation depends on the blending color space in which the components are interpreted.
They may be applied to all multiple-component color spaces that are allowed as blending
color spaces (see Section 7.2.3, “Blending Color Space”).

	OCGIntent
Intent to use for the optional content groups

	OverprintMode
(PDF 1.3) A code specifying whether a color component value of 0
in a DeviceCMYK color space should erase that component (EraseUnderlying) or
leave it unchanged (KeepUnderlying) when overprinting (see Section 4.5.6, “Over-
print Control”). Initial value: EraseUnderlying

	PdfColor
Tuple for differentiating outline and fill colors

	PdfConformance
List of (relevant) PDF versions
Please note the difference between PDF/A (archiving), PDF/UA (universal acessibility),
PDF/X (printing), PDF/E (engineering / CAD), PDF/VT (large volume transactions with
repeated content)

	PdfError

	RenderingIntent
Although CIE-based color specifications are theoretically device-independent,
they are subject to practical limitations in the color reproduction capabilities of
the output device. Such limitations may sometimes require compromises to be
made among various properties of a color specification when rendering colors for
a given device. Specifying a rendering intent (PDF 1.1) allows a PDF file to set priorities
regarding which of these properties to preserve and which to sacrifice.

	SeperableBlendMode
PDF Reference 1.7, Page 520, Table 7.2
Blending modes for objects
In the following reference, each function gets one new color (the thing to paint on top)
and an old color (the color that was already present before the object gets painted)

	SoftMaskFunction

	SpotFunction
Spot functions, Table 6.1, Page 489 in Pdf Reference v1.7
The code is pseudo code, returning the grey component at (x, y).

	SvgParseError

	TextMatrix
Text matrix. Text placement is a bit different, but uses the same
concepts as a CTM that’s why it’s merged here

	TextRenderingMode
The text rendering mode determines how a text is drawn
The default rendering mode is Fill. The color of the
fill / stroke is determine by the current pages outline /
fill color.

	TransferExtraFunction

	TransferFunction

	UnderColorRemovalExtraFunction

	UnderColorRemovalFunction
See BlackGenerationFunction, too. Undercolor removal reduces the amounts
of the cyan, magenta, and yellow components to compensate for the amount of
black that was added by black generation.

	XObject
External object that gets reference outside the PDF content stream
Gets constructed similar to the ExtGState, then inserted into the /XObject dictionary
on the page. You can instantiate XObjects with the /Do operator. The layer.add_xobject()
(or better yet, the layer.add_image(), layer.add_form()) methods will do this for you.

Constants§
	ICC_PROFILE_ECI_V2

	OP_COLOR_SET_FILL_COLOR
set fill color (PDF 1.1)

	OP_COLOR_SET_FILL_COLOR_ICC
set fill color (PDF 1.2) with support for Icc, etc.

	OP_COLOR_SET_FILL_CS
non-stroking color space (PDF 1.1)

	OP_COLOR_SET_FILL_CS_DEVICECMYK
Set the fill color to DeviceCMYK

	OP_COLOR_SET_FILL_CS_DEVICEGRAY
Set the fill color space to DeviceGray

	OP_COLOR_SET_FILL_CS_DEVICERGB
Set the fill color space to DeviceRGB

	OP_COLOR_SET_STROKE_COLOR
set stroking color (PDF 1.1)

	OP_COLOR_SET_STROKE_COLOR_ICC
set stroking color (PDF 1.2) with support for ICC, etc.

	OP_COLOR_SET_STROKE_CS
Color

	OP_COLOR_SET_STROKE_CS_DEVICECMYK
Set the stroking color space to DeviceCMYK

	OP_COLOR_SET_STROKE_CS_DEVICEGRAY
Set the stroking color space to DeviceGray

	OP_COLOR_SET_STROKE_CS_DEVICERGB
Set the stroking color space to DeviceRGB

	OP_PATH_CONST_3BEZIER_V1
Cubic bezier with two points in v1

	OP_PATH_CONST_3BEZIER_V2
Cubic bezier with two points in v2

	OP_PATH_CONST_4BEZIER
Cubic bezier over four following points

	OP_PATH_CONST_CLIP_EO
Current path is a clip path, non-zero winding order

	OP_PATH_CONST_CLIP_NZ
Current path is a clip path, non-zero winding order (usually in like h W S)

	OP_PATH_CONST_CLOSE_SUBPATH
Close current sub-path (for appending custom patterns along line)

	OP_PATH_CONST_LINE_TO
Straight line to the two following points

	OP_PATH_CONST_MOVE_TO
Path construction
Move to point

	OP_PATH_CONST_RECT
Add rectangle to the path (width / height): x y width height re

	OP_PATH_PAINT_END
End path without filling or stroking

	OP_PATH_PAINT_FILL_EO
Fill path using even-odd rule

	OP_PATH_PAINT_FILL_NZ
Fill path using nonzero winding number rule

	OP_PATH_PAINT_FILL_NZ_OLD
Fill path using nonzero winding number rule (obsolete)

	OP_PATH_PAINT_FILL_STROKE_CLOSE_EO
Close, fill and stroke path using even odd rule

	OP_PATH_PAINT_FILL_STROKE_CLOSE_NZ
Close, fill and stroke path using nonzero winding number rule

	OP_PATH_PAINT_FILL_STROKE_EO
Fill and stroke path using even-odd rule

	OP_PATH_PAINT_FILL_STROKE_NZ
Fill and stroke path using nonzero winding number rule

	OP_PATH_PAINT_STROKE
Path painting
Stroke path

	OP_PATH_PAINT_STROKE_CLOSE
Close and stroke path

	OP_PATH_STATE_SET_FLATNESS_TOLERANCE
Set flatness tolerance

	OP_PATH_STATE_SET_GS_FROM_PARAM_DICT
(PDF 1.2) Set graphics state from parameter dictionary

	OP_PATH_STATE_SET_LINE_CAP
Set line cap

	OP_PATH_STATE_SET_LINE_DASH
Set line dash pattern

	OP_PATH_STATE_SET_LINE_JOIN
Set line join

	OP_PATH_STATE_SET_LINE_WIDTH
General graphics state

	OP_PATH_STATE_SET_MITER_LIMIT
Set miter limit

	OP_PATH_STATE_SET_RENDERING_INTENT
Set rendering intent

Traits§
	FontData
Provides access to font metrics.

	FontDataClone
Helper trait for cloning boxed FontData implementors.

Functions§
	calculate_points_for_circle
Calculates and returns the points for an approximated circle, given a radius and an
offset into the centre of circle (starting from bottom left corner of page).

	calculate_points_for_rect
Calculates and returns the points for a rectangle, given a horizontal and vertical scale.
and an offset into the centre of rectangle (starting from bottom left corner of page).

