1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
// Copyright (c) 2021-2022 The Pennsylvania State University and the project contributors.
// SPDX-License-Identifier: MIT OR Apache-2.0
//! Types and functions for the safe use of `printf(3)`-style format strings.
//!
//! `printf(3)` ([POSIX], [Linux], and [FreeBSD] man pages) and its variants
//! present some challenges for memory-safe use from Rust:
//! the passed-in arguments
//! are interpreted as different types based on the content of the format
//! string, with each conversion specification (e.g., `%s`) consuming up to
//! three arguments (e.g, `%*.*d`), and the `%n` specification even writing
//! to memory!
//! For memory- and type-safe use, we must make sure a given format string
//! is only used in invocations with the correct argument number and type.
//!
//! This crate contains mechanisms you can use to ensure such agreement.
//! [`PrintfFmt`]`<(A, B, ...)>` wraps a format string, doing verification to ensure
//! it can be safely used with the list of arguments corresponding to
//! the tuple of types
//! `(A: `[`PrintfArgument`]`, B: `[`PrintfArgument`]`, ...)`.
//! This verification may be performed at
//! compile time, allowing for safe wrappers with zero runtime overhead.
//!
//! A brief example of how this crate might be used:
//!
//! ```no_run
//! use printf_wrap::{PrintfFmt, PrintfArgument};
//! use libc::{c_int, printf};
//!
//! /// Safe wrapper for calling printf with two value arguments.
//! pub fn printf_with_2_args<T, U>(fmt: PrintfFmt<(T, U)>, arg1: T, arg2: U) -> c_int
//! where
//! T: PrintfArgument,
//! U: PrintfArgument,
//! {
//! unsafe { printf(fmt.as_ptr(), arg1.as_c_val(), arg2.as_c_val()) }
//! }
//!
//! fn main() {
//! const MY_FMT: PrintfFmt<(u32, i32)> =
//! PrintfFmt::new_or_panic("unsigned = %u, signed = %d\0");
//! printf_with_2_args(MY_FMT, 42, -7);
//! }
//! ```
//!
//! The
#![cfg_attr(any(feature = "example", all(doc, feature = "doccfg")), doc = " [`example`]")]
#![cfg_attr(not(any(feature = "example", all(doc, feature = "doccfg"))), doc = " `example`")]
//! module has a more worked-out example of this crate's use, using
//! `printf(3)` and `snprintf(3)` as the functions to wrap.
//!
//! Only a subset of all possible `printf` format strings are accepted:
//!
//! * Numbered argument conversion specifications (e.g., `%2$d`) are not
//! supported.
//! * `%lc`, `%ls`, `%C`, `%S`, and `%L[fFeEgGaA]` are not supported.
//! * `%n` is not supported.
//!
//! [POSIX]: https://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html
//! [Linux]: https://man7.org/linux/man-pages/man3/printf.3.html
//! [FreeBSD]: https://www.freebsd.org/cgi/man.cgi?printf%283%29
#![no_std]
#![cfg_attr(feature = "doccfg", feature(doc_cfg))]
// We only aim for compatibility with printf(3) as specified in POSIX:
#[cfg(unix)]
/// Marker structure used to ensure this crate only sucessfully compiles for
/// known-compatible systems.
#[derive(Clone, Copy, Debug)]
struct CompatibleSystem {}
// We use `libc` for types.
extern crate libc;
// We optionally provide support for a couple of relevant types in `std`.
#[cfg(any(feature = "std", doc))]
extern crate std;
use core::marker::PhantomData;
use libc::c_char;
use crate::private::PrintfArgumentPrivate;
use crate::validate::is_fmt_valid_for_args;
/// Traits used to implement private details of [sealed traits].
///
/// [sealed traits]: https://rust-lang.github.io/api-guidelines/future-proofing.html#c-sealed
pub(crate) mod private {
/// Marker trait for [`PrintfArgument`](`super::PrintfArgument`).
pub trait PrintfArgumentPrivate {}
}
mod larger_of;
mod printf_arg_impls;
mod validate;
/// A wrapper for a `'static` null-terminated string.
///
/// Sometimes used in favor of [`std`]'s
/// [`CStr`](std::ffi::CStr) or [`CString`](std::ffi::CString) types,
/// as [`NullString`]s can be made as compile-time constants.
#[derive(Clone, Copy, Debug)]
pub struct NullString {
s: *const c_char,
}
impl NullString {
/// Creates a [`NullString`] from `s`
/// or panics if `s` is not null-terminated.
///
/// # Panics
///
/// Panics if the string `s` does not end in the null character.
#[allow(unconditional_panic)]
#[deny(const_err)]
pub const fn new(s: &'static str) -> NullString {
let bytes = s.as_bytes();
if bytes.len() == 0 || bytes[bytes.len() - 1] != b'\0' {
panic!("string passed to NullString::new is not null-terminated!");
}
NullString { s: bytes.as_ptr() as *const c_char }
}
/// Returns a pointer to the beginning of the wrapped string.
#[inline]
pub const fn as_ptr(self) -> *const c_char {
self.s
}
/// Returns a `&`[`CStr`](std::ffi::CStr) pointing to the wrapped string.
#[cfg(any(feature = "std", all(doc, feature = "doccfg")))]
#[cfg_attr(feature = "doccfg", doc(cfg(feature = "std")))]
#[inline]
pub fn as_cstr(self) -> &'static std::ffi::CStr {
unsafe { std::ffi::CStr::from_ptr(self.s) }
}
}
#[cfg(any(feature = "std", all(doc, feature = "doccfg")))]
#[cfg_attr(feature = "doccfg", doc(cfg(feature = "std")))]
impl From<&'static std::ffi::CStr> for NullString {
#[inline]
fn from(cstr: &'static std::ffi::CStr) -> Self {
NullString { s: cstr.as_ptr() }
}
}
#[cfg(any(feature = "std", all(doc, feature = "doccfg")))]
#[cfg_attr(feature = "doccfg", doc(cfg(feature = "std")))]
impl From<NullString> for &'static std::ffi::CStr {
#[inline]
fn from(nstr: NullString) -> Self {
nstr.as_cstr()
}
}
/// Convenience macro for creating a `const` [`NullString`],
/// including appending a null character.
#[macro_export]
macro_rules! null_str {
($str:literal) => {{
const STR: $crate::NullString = $crate::NullString::new(concat!($str, "\0"));
STR
}};
}
/// A Rust-side argument to a safe wrapper around a `printf(3)`-like function.
///
/// This is a [sealed trait]; consumers of this crate are not allowed
/// to create their own `impl`s in order to unconditionally preserve
/// safety.
///
/// [sealed trait]: https://rust-lang.github.io/api-guidelines/future-proofing.html#c-sealed
pub trait PrintfArgument: PrintfArgumentPrivate + Copy {
/// The C type corresponding to `Self` that we should _really_ send
/// as an argument to a `printf(3)`-like function.
type CPrintfType;
/// Converts `self` to a value suitable for sending to `printf(3)`.
fn as_c_val(self) -> Self::CPrintfType;
/// Whether the type is consistent with C's `char`.
const IS_CHAR: bool = false;
/// Whether the type is consistent with C's `short int`.
const IS_SHORT: bool = false;
/// Whether the type is consistent with C's `int`.
const IS_INT: bool = false;
/// Whether the type is consistent with C's `long int`.
const IS_LONG: bool = false;
/// Whether the type is consistent with C's `long long int`.
const IS_LONG_LONG: bool = false;
/// Whether the type is consistent with C's `size_t`.
const IS_SIZE: bool = false;
/// Whether the type is consistent with C's `intmax_t`.
const IS_MAX: bool = false;
/// Whether the type is consistent with C's `ptrdiff_t`.
const IS_PTRDIFF: bool = false;
/// Whether the type is a signed integer type, as opposed to unsigned.
const IS_SIGNED: bool = false;
/// Whether the type is floating-point.
const IS_FLOAT: bool = false;
/// Whether the type is a null-terminated string.
const IS_C_STRING: bool = false;
/// Whether the type is a pointer.
const IS_POINTER: bool = false;
}
/// Are types `T` and `U` ABI-compatible, in the sense that using
/// one in the place of the other wouldn't affect structure layout,
/// stack layout if used as arguments (assuming they're both integer-like),
/// etc.?
///
/// Note that this doesn't check for whether substituting `T` with `U` (or vice
/// versa) is sensible or even valid;
/// the use-case is for types where any bit-pattern is
/// sensible and the types don't have non-trivial drop behavior.
const fn is_compat<T: Sized, U: Sized>() -> bool {
use core::mem::{align_of, size_of};
size_of::<T>() == size_of::<U>() && align_of::<T>() == align_of::<U>()
}
/// Utility trait for determining which of two integer types is larger.
///
/// The type alias [`LargerOf`] is usually more convenient to use outside
/// of implementations of this trait.
pub trait LargerOfOp<Rhs> {
/// If `Rhs` is a larger type than `Self`, this should be `Rhs`; otherwise
/// it should be `Self`.
type Output;
}
/// Type alias that better conveys [`LargerOfOp`]'s nature as a type-level
/// function.
pub type LargerOf<T, U> = <T as LargerOfOp<U>>::Output;
/// A list of Rust-side arguments to a `printf(3)`-style function.
pub trait PrintfArgs {
/// The [`PrintfArgsList`] equivalent to `Self`.
type AsList: PrintfArgsList;
}
/// A [`PrintfArgs`] in a form more amenable to recursive processing.
pub trait PrintfArgsList {
/// Whether this type represents an empty list.
const IS_EMPTY: bool;
/// The first element of the list.
type First: PrintfArgument;
/// The elements of the list after the first.
type Rest: PrintfArgsList;
}
impl PrintfArgsList for () {
const IS_EMPTY: bool = true;
/// This isn't _really_ the first element of an empty list,
/// but to fulfil the type constraint, we need _something_ here.
type First = u8;
type Rest = ();
}
impl<CAR: PrintfArgument, CDR: PrintfArgsList> PrintfArgsList for (CAR, CDR) {
const IS_EMPTY: bool = false;
type First = CAR;
type Rest = CDR;
}
impl<T: PrintfArgument> PrintfArgs for T {
type AsList = (T, ());
}
impl PrintfArgs for () {
type AsList = ();
}
macro_rules! nested_list_from_flat {
($t:ident $(, $u:ident )*) => { ($t, nested_list_from_flat!($( $u ),*)) };
() => { () };
}
macro_rules! make_printf_arguments_tuple {
($( $t:ident ),+) => {
impl<$( $t ),+> PrintfArgs for ($( $t, )+)
where $( $t: PrintfArgument ),+ {
type AsList = nested_list_from_flat!($( $t ),+);
}
};
}
make_printf_arguments_tuple!(A);
make_printf_arguments_tuple!(A, B);
make_printf_arguments_tuple!(A, B, C);
make_printf_arguments_tuple!(A, B, C, D);
make_printf_arguments_tuple!(A, B, C, D, E);
make_printf_arguments_tuple!(A, B, C, D, E, F);
make_printf_arguments_tuple!(A, B, C, D, E, F, G);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I, J);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I, J, K);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I, J, K, L);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O);
make_printf_arguments_tuple!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P);
/// A type-safe wrapper around a C-style string verified to be compatible
/// with use as a format string for `printf(3)`-style functions called with
/// `T` as the varargs.
#[derive(Debug)]
pub struct PrintfFmt<T: PrintfArgs> {
fmt: *const c_char,
_x: CompatibleSystem,
_y: PhantomData<T>,
}
/// Utility conversion from [`u8`] to [`libc::c_char`].
const fn c(x: u8) -> c_char {
x as c_char
}
/// The empty C string.
const EMPTY_C_STRING: *const c_char = &c(b'\0') as *const c_char;
impl<T: PrintfArgs> PrintfFmt<T> {
/// If `fmt` represents a valid, supported format string for `printf(3)`
/// when given Rust-side arguments `T`, returns a [`PrintfFmt`];
/// panics otherwise.
///
/// # Panics
///
/// See above.
#[allow(unconditional_panic)]
#[inline]
pub const fn new_or_panic(fmt: &'static str) -> Self {
if !is_compat::<u8, c_char>() {
panic!("u8 and c_char have different sizes/alignments, somehow");
}
let fmt_as_cstr: &'static [c_char] = unsafe {
// Following is safe, as (1) we've verified u8 has the same
// size and alignment as c_char and (2) references to T have the
// same layout as pointers to T
core::mem::transmute(fmt.as_bytes() as *const [u8] as *const [c_char])
};
let s = if is_fmt_valid_for_args::<T>(fmt_as_cstr, true) {
fmt_as_cstr.as_ptr()
} else {
EMPTY_C_STRING
};
PrintfFmt { fmt: s, _x: CompatibleSystem {}, _y: PhantomData }
}
/// If `fmt` represents a valid, supported format string for `printf(3)`
/// when given Rust-side arguments `T`, returns it as a [`PrintfFmt`].
///
/// # Errors
///
/// Returns `Err(())` if `fmt` is _not_ a valid, supported format string
/// corresponding to varargs `T`.
#[inline]
pub const fn new(fmt: &'static str) -> Result<Self, ()> {
if !is_compat::<u8, c_char>() {
return Err(());
}
let fmt_as_cstr: &'static [c_char] = unsafe {
// Following is safe, as (1) we've verified u8 has the same
// size and alignment as c_char and (2) references to T have the
// same layout as pointers to T
core::mem::transmute(fmt.as_bytes() as *const [u8] as *const [c_char])
};
if is_fmt_valid_for_args::<T>(fmt_as_cstr, false) {
Ok(PrintfFmt { fmt: fmt_as_cstr.as_ptr(), _x: CompatibleSystem {}, _y: PhantomData })
} else {
Err(())
}
}
/// Returns a pointer to the beginning of the format string.
#[inline]
pub const fn as_ptr(self) -> *const c_char {
self.fmt
}
}
impl<T: PrintfArgs> Clone for PrintfFmt<T> {
fn clone(&self) -> Self {
*self
}
}
impl<T: PrintfArgs> Copy for PrintfFmt<T> {}
/// Returns whether `fmt` is (1) a valid C-style string and (2) a format
/// string compatible with the tuple of arguments `T` when used in a
/// `printf(3)`-like function.
#[deny(unconditional_panic)]
#[inline]
pub const fn is_fmt_valid<T: PrintfArgs>(fmt: &[c_char]) -> bool {
is_fmt_valid_for_args::<T>(fmt, false)
}
#[cfg(any(feature = "example", all(doc, feature = "doccfg")))]
#[cfg_attr(feature = "doccfg", doc(cfg(feature = "example")))]
pub mod example;
#[cfg(test)]
mod tests;