1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
use crate::graph_frame::GraphFrame;
use polars::prelude::*;

type FnBox<'a> = Box<dyn FnMut() -> Expr + 'a>;

/// This defines an enumeration type `ColumnIdentifier` in Rust. It  has several
/// variants: `VertexId`, `Subject`, `Predicate`, `Object`, `Edge`, `Msg`, `Pregel`,
/// and `Custom` which takes a `String` parameter. This enum can be used to represent
/// different types of columns in a data structure or database table for it to be used
/// in a Pregel program.
pub enum Column {
    /// The `VertexId` variant represents the column that contains the vertex IDs.
    VertexId,
    /// The `Subject` variant represents the column that contains the source vertex IDs.
    Subject,
    /// The `Predicate` variant represents the column that contains the IDs of the predicates.
    Predicate,
    /// The `Object` variant represents the column that contains the destination vertex IDs.
    Object,
    /// The `Edge` variant represents the column that contains the edge IDs.
    Edge,
    /// The `Msg` variant represents the column that contains the messages sent to a vertex.
    Msg,
    /// The `Pregel` variant represents the column that contains the messages sent to a vertex.
    Pregel,
    /// The `Custom` variant represents a column that is not one of the predefined columns.
    Custom(&'static str),
}

/// This is the implementation of the `AsRef` trait for the `Column` enum. This
/// allows instances of the `Column` enum to be used as references to strings. The
/// `as_ref` method returns a reference to a string that corresponds to the variant
/// of the `Column` enum. If the variant is `Custom`, the string is the custom
/// identifier provided as an argument to the variant. This allows the `Column`
/// enum to be used as a reference to a string in a Pregel program.
///
/// # Examples
///
/// ```rust
/// use polars::prelude::*;
/// use pregel_rs::pregel::Column::{Custom, VertexId};
///
/// let vertices = df![
///     VertexId.as_ref() => [0, 1, 2, 3],
///     Custom("value").as_ref() => [3, 6, 2, 1],
/// ];
///
/// ```
impl AsRef<str> for Column {
    fn as_ref(&self) -> &str {
        match self {
            Column::VertexId => "vertex_id",
            Column::Subject => "subject",
            Column::Predicate => "predicate",
            Column::Object => "object",
            Column::Edge => "edge",
            Column::Msg => "msg",
            Column::Pregel => "_pregel_msg_",
            Column::Custom(id) => id,
        }
    }
}

impl Column {
    fn alias(prefix: &Column, column_name: Column) -> String {
        format!("{}.{}", prefix.as_ref(), column_name.as_ref())
    }

    /// This function returns an expression for a column identifier representing
    ///  the source vertex in a Pregel graph.
    ///
    /// Arguments:
    ///
    /// * `column_name`: `column_name` is a parameter of type `ColumnIdentifier`. It is
    /// used to identify the name of a column in a table or data source. The `subject`
    /// function takes this parameter and returns an expression that represents the
    /// value of the column with the given name.
    ///
    /// Returns:
    ///
    /// The function `subject` returns an `Expr` which represents a reference to the source
    /// vertex ID column in a Pregel graph computation. The `Expr` is created using the
    /// `col` function and the `alias` method of the `Pregel` struct to generate the
    /// appropriate column name.
    pub fn subject(column_name: Column) -> Expr {
        col(&Self::alias(&Column::Subject, column_name))
    }

    /// This function returns an expression for a column identifier representing
    ///  the destination vertex in a Pregel graph.
    ///
    /// Arguments:
    ///
    /// * `column_name`: `column_name` is a parameter of type `ColumnIdentifier` which
    /// represents the name of a column in a table. It is used as an argument to the
    /// `object` function to create an expression that refers to the column with the given
    /// name in the context of a Pregel computation.
    ///
    /// Returns:
    ///
    /// The function `object` returns an expression that represents the value of the column
    /// with the given `column_name` in the context of a `Pregel` graph computation. The
    /// expression is created using the `col` function and the `alias` method of the
    /// `Pregel` struct to ensure that the column name is properly qualified.
    pub fn object(column_name: Column) -> Expr {
        col(&Self::alias(&Column::Object, column_name))
    }

    /// This function returns an expression for a column name in a graph edge table.
    ///
    /// Arguments:
    ///
    /// * `column_name`: `column_name` is a parameter of type `ColumnIdentifier` which
    /// represents the name of a column in a graph edge table. The `edge` function
    /// returns an expression that refers to this column using the `col` function and
    /// the `alias` function from the `Pregel` struct.
    ///
    /// Returns:
    ///
    /// The function `edge` returns an `Expr` which represents a reference to a column
    /// in a graph edge table. The column name is passed as an argument to the function
    /// and is used to construct the full column identifier using the `Column::alias`
    /// method.
    pub fn edge(column_name: Column) -> Expr {
        col(&Self::alias(&Column::Edge, column_name))
    }

    /// This function returns an expression for a column name, either using a default
    /// value or a specified value.
    ///
    /// Arguments:
    ///
    /// * `column_name`: An optional parameter of type `ColumnIdentifier`. It represents
    /// the name of a column in a table. If it is `None`, the function returns a
    /// reference to the `Pregel` column. If it is `Some(column_name)`, the function
    /// returns a reference to a column with the name
    ///
    /// Returns:
    ///
    /// an `Expr` which is either a reference to the `ColumnIdentifier::Pregel` column
    /// if `column_name` is `None`, or a reference to a column with an alias created by
    /// `Column::alias` if `column_name` is `Some`.
    pub fn msg(column_name: Option<Column>) -> Expr {
        match column_name {
            None => col(Column::Pregel.as_ref()),
            Some(column_name) => col(&Self::alias(&Column::Msg, column_name)),
        }
    }
}

/// This defines a struct `SendMessage` in Rust. It has two properties:
/// `message_direction` and `send_message`. The `message_direction` property
/// is the identifier for the direction of the message. The `send_message`
/// property is the function that determines which messages to send from a
/// vertex to its neighbors.
pub struct SendMessage<'a> {
    /// `message_direction` is the identifier for the direction of the message.
    pub message_direction: Expr,
    /// `send_message` is the function that determines which messages to send from a
    /// vertex to its neighbors.
    pub send_message: FnBox<'a>,
}

impl<'a> SendMessage<'a> {
    /// The function creates a new instance of the `SendMessage` struct with the
    /// specified message direction and send message expression.
    ///
    /// Arguments:
    ///
    /// * `message_direction`: An enum that specifies whether the message should be sent
    /// to the source vertex or the destination vertex of an edge.
    /// * `send_message`: `send_message` is an expression that represents the message
    /// that will be sent from a vertex to its neighbors during the Pregel computation.
    /// It can be any valid Rust expression that evaluates to a DataFrame.
    ///
    /// Returns:
    ///
    /// A new instance of the `SendMessage` struct.
    pub fn new(message_direction: MessageReceiver, send_message: FnBox) -> SendMessage {
        // We make this in this manner because we want to use the `src.id` and `edge.dst` columns
        // in the send_messages function. This is because how polars works, when joining DataFrames,
        // it will keep only the left-hand side of the joins, thus, we need to use the `src.id` and
        // `edge.dst` columns to get the correct vertex IDs.
        let message_direction = match message_direction {
            MessageReceiver::Subject => Column::subject(Column::VertexId),
            MessageReceiver::Object => Column::edge(Column::Object),
        };
        let send_message = Box::new(send_message);
        // Now we create the `SendMessage` struct with everything set up.
        SendMessage {
            message_direction,
            send_message,
        }
    }
}

/// The Pregel struct represents a Pregel computation with various parameters and
/// expressions.
///
/// Properties:
///
/// * `graph`: The `graph` property is a `GraphFrame` struct that represents the
/// graph data structure used in the Pregel algorithm. It contains information about
/// the vertices and edges of the graph.
///
/// * `max_iterations`: The maximum number of iterations that the Pregel algorithm
/// will run for.
///
/// * `vertex_column`: `vertex_column` is a property of the `PregelBuilder` struct
/// that represents the name of the column in the graph's vertex DataFrame that
/// contains the vertex IDs. This column is used to identify and locate a column
/// where we apply some of the provided operations during the Pregel computation.
///
/// * `initial_message`: `initial_message` is an expression that defines the initial
/// message that each vertex in the graph will receive before the computation
/// starts. This message can be used to initialize the state of each vertex or to
/// provide some initial information to the computation.
///
/// * `send_messages`: `send_messages` is a tuple containing two expressions. The
/// first expression represents the message sending function that determines whether
/// the message will go from Src to Dst or vice-versa. The second expression
/// represents the message sending function that determines which messages to send
///  from a vertex to its neighbors.
///
/// * `aggregate_messages`: `aggregate_messages` is an expression that defines how
/// messages sent to a vertex should be aggregated. In Pregel, messages are sent
/// from one vertex to another and can be aggregated before being processed by the
/// receiving vertex. The `aggregate_messages` expression specifies how these
/// messages should be combined.
///
/// * `v_prog`: `v_prog` is an expression that defines the vertex program for the
/// Pregel algorithm. It specifies the computation that each vertex performs during
/// each iteration of the algorithm. The vertex program can take as input the current
/// state of the vertex, the messages received from its neighbors or and any other
/// relevant information.
pub struct Pregel<'a> {
    /// The `graph` property is a `GraphFrame` struct that represents the
    /// graph data structure used in the Pregel algorithm. It contains information about
    /// the vertices and edges of the graph.
    graph: GraphFrame,
    /// The maximum number of iterations that the Pregel algorithm.
    max_iterations: u8,
    /// `vertex_column` is a property of the `PregelBuilder` struct that  identifies
    /// and locates a column where we apply some of the provided operations during
    /// the Pregel computation.
    vertex_column: Column,
    /// `initial_message` is an expression that defines the initial message that
    /// each vertex in the graph will receive before the computation starts.
    initial_message: Expr,
    /// The `send_messages` property is a vector of `SendMessage` structs that represent
    /// the message sending functions. The `SendMessage` struct contains two expressions.
    /// The first expression represents the message sending function that determines whether
    /// the message will go from Src to Dst or vice-versa. The second expression represents
    /// the message sending function that determines which messages to send from a
    /// vertex to its neighbors.
    send_messages: Vec<SendMessage<'a>>,
    /// `aggregate_messages` is an expression that defines how messages sent to a
    /// vertex should be aggregated. In Pregel, messages are sent from one vertex
    /// to another and can be aggregated before being processed by the receiving
    /// vertex. The `aggregate_messages` expression specifies how these messages
    /// should be combined.
    aggregate_messages: FnBox<'a>,
    /// `v_prog` is an expression that defines the vertex program for the Pregel
    /// algorithm. It specifies the computation that each vertex performs during
    /// each iteration of the algorithm. The vertex program can take as input the
    /// current state of the vertex, the messages received from its neighbors or
    /// and any other relevant information.
    v_prog: FnBox<'a>,
}

/// The `PregelBuilder` struct represents a builder for configuring the Pregel
/// algorithm to be executed on a given graph.
///
/// Properties:
///
/// * `graph`: The `graph` property is a `GraphFrame` struct that represents the
/// graph data structure used in the Pregel algorithm. It contains information about
/// the vertices and edges of the graph.
///
/// * `max_iterations`: The maximum number of iterations that the Pregel algorithm
/// will run for.
///
/// * `vertex_column`: `vertex_column` is a property of the `PregelBuilder` struct
/// that represents the name of the column in the graph's vertex DataFrame that
/// contains the vertex IDs. This column is used to identify and locate a column
/// where we apply some of the provided operations during the Pregel computation.
///
/// * `initial_message`: `initial_message` is an expression that defines the initial
/// message that each vertex in the graph will receive before the computation
/// starts. This message can be used to initialize the state of each vertex or to
/// provide some initial information to the computation.
///
/// * `send_messages`: `send_messages` is a tuple containing two expressions. The
/// first expression represents the message sending function that determines whether
/// the message will go from Src to Dst or vice-versa. The second expression
/// represents the message sending function that determines which messages to send
///  from a vertex to its neighbors.
///
/// * `aggregate_messages`: `aggregate_messages` is an expression that defines how
/// messages sent to a vertex should be aggregated. In Pregel, messages are sent
/// from one vertex to another and can be aggregated before being processed by the
/// receiving vertex. The `aggregate_messages` expression specifies how these
/// messages should be combined.
///
/// * `v_prog`: `v_prog` is an expression that defines the vertex program for the
/// Pregel algorithm. It specifies the computation that each vertex performs during
/// each iteration of the algorithm. The vertex program can take as input the current
/// state of the vertex, the messages received from its neighbors or and any other
/// relevant information.
pub struct PregelBuilder<'a> {
    /// The `graph` property is a `GraphFrame` struct that represents the
    /// graph data structure used in the Pregel algorithm. It contains information about
    /// the vertices and edges of the graph.
    graph: GraphFrame,
    /// The maximum number of iterations that the Pregel algorithm.
    max_iterations: u8,
    /// `vertex_column` is a property of the `PregelBuilder` struct that  identifies
    /// and locates a column where we apply some of the provided operations during
    /// the Pregel computation.
    vertex_column: Column,
    /// `initial_message` is an expression that defines the initial message that
    /// each vertex in the graph will receive before the computation starts.
    initial_message: Expr,
    /// The `send_messages` property is a vector of `SendMessage` structs that represent
    /// the message sending functions. The `SendMessage` struct contains two expressions.
    /// The first expression represents the message sending function that determines whether
    /// the message will go from Src to Dst or vice-versa. The second expression represents
    /// the message sending function that determines which messages to send from a
    /// vertex to its neighbors.
    send_messages: Vec<SendMessage<'a>>,
    /// `aggregate_messages` is an expression that defines how messages sent to a
    /// vertex should be aggregated. In Pregel, messages are sent from one vertex
    /// to another and can be aggregated before being processed by the receiving
    /// vertex. The `aggregate_messages` expression specifies how these messages
    /// should be combined.
    aggregate_messages: FnBox<'a>,
    /// `v_prog` is an expression that defines the vertex program for the Pregel
    /// algorithm. It specifies the computation that each vertex performs during
    /// each iteration of the algorithm. The vertex program can take as input the
    /// current state of the vertex, the messages received from its neighbors or
    /// and any other relevant information.
    v_prog: FnBox<'a>,
}

/// This code is defining an enumeration type `MessageReceiver` in Rust with
/// two variants: `Subject` and `Object`. This can be used to represent the source and
/// destination of a message in a Pregel program.
pub enum MessageReceiver {
    /// The `Subject` variant indicates that a message should go to the source of
    /// an edge.
    Subject,
    /// The `Object` variant indicates that a message should go to the destination
    /// of an edge.
    Object,
}

/// The above code is implementing the `From` trait for the `Column` enum, which
/// allows creating a `Column` instance from a `MessageReceiver` instance. The
/// `match` statement maps the `MessageReceiver` variants to the corresponding
/// `Column` variants.
impl From<MessageReceiver> for Column {
    fn from(message_receiver: MessageReceiver) -> Column {
        match message_receiver {
            MessageReceiver::Subject => Column::Subject,
            MessageReceiver::Object => Column::Object,
        }
    }
}

impl<'a> PregelBuilder<'a> {
    /// This function creates a new instance of a PregelBuilder with default values.
    ///
    /// Arguments:
    ///
    /// * `graph`: The graph parameter is of type GraphFrame and represents the graph on
    /// which the Pregel algorithm will be executed.
    ///
    /// Returns:
    ///
    /// A new instance of the `PregelBuilder` struct.
    pub fn new(graph: GraphFrame) -> Self {
        PregelBuilder {
            graph,
            max_iterations: 10,
            vertex_column: Column::Custom("aux"),
            initial_message: Default::default(),
            send_messages: Default::default(),
            aggregate_messages: Box::new(Default::default),
            v_prog: Box::new(Default::default),
        }
    }

    /// This function sets the maximum number of iterations for the Pregel algorithm and
    /// returns the modified PregelBuilder.
    ///
    /// Arguments:
    ///
    /// * `max_iterations`: The `max_iterations` parameter is an unsigned 8-bit integer
    /// that represents the maximum number of iterations that the Pregel algorithm or
    /// process can perform. This method sets the `max_iterations` field of a struct to
    /// the provided value and returns the modified struct instance.
    ///
    /// Returns:
    ///
    /// The `max_iterations` method returns `Self`, which refers to the same struct
    /// instance that the method was called on. This allows for method chaining, where
    /// multiple methods can be called on the same struct instance in a single
    /// expression.
    pub fn max_iterations(mut self, max_iterations: u8) -> Self {
        self.max_iterations = max_iterations;
        self
    }

    /// This function sets the vertex column identifier for a struct and returns the
    /// struct.
    ///
    /// Arguments:
    ///
    /// * `vertex_column`: `vertex_column` is a parameter of type `ColumnIdentifier`
    /// which represents the column identifier for the vertex column in a graph
    /// database. The `with_vertex_column` method takes in a `ColumnIdentifier` value
    /// and sets it as the `vertex_column` property of the struct instance. It then
    /// returns
    ///
    /// Returns:
    ///
    /// The `with_vertex_column` method returns `Self`, which refers to the same struct
    /// instance that the method was called on. This allows for method chaining, where
    /// multiple methods can be called on the same struct instance in a single
    /// expression.
    pub fn with_vertex_column(mut self, vertex_column: Column) -> Self {
        self.vertex_column = vertex_column;
        self
    }

    /// This function sets the initial message for a Rust struct and returns the struct.
    ///
    /// Arguments:
    ///
    /// * `initial_message`: `initial_message` is a parameter of type `Expr` that is
    /// used in a method of a struct. The method takes ownership of `self` and returns
    /// it after setting the `initial_message` field of the struct to the value of the
    /// `initial_message` parameter. This method can be used
    ///
    /// Returns:
    ///
    /// The `initial_message` method returns `Self`, which refers to the same struct
    /// instance that the method was called on. This allows for method chaining, where
    /// multiple methods can be called on the same struct instance in a single
    /// expression.
    pub fn initial_message(mut self, initial_message: Expr) -> Self {
        self.initial_message = initial_message;
        self
    }

    /// This function sets the message sending behavior for a Pregel computation in
    /// Rust. Chaining this method allows for multiple message sending behaviors to be
    /// specified for a single Pregel computation.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use polars::prelude::*;
    /// use pregel_rs::graph_frame::GraphFrame;
    /// use pregel_rs::pregel::Column;
    /// use pregel_rs::pregel::Column::{Custom, Object, VertexId, Subject};
    /// use pregel_rs::pregel::{MessageReceiver, Pregel, PregelBuilder};
    /// use std::error::Error;
    ///
    /// // Simple example of a Pregel algorithm where we chain several `send_messages` calls. In
    /// // this example, we send a message to the source of an edge and then to the destination of
    /// // the same edge. It has no real use case, but it demonstrates how to chain multiple calls.
    /// fn main() -> Result<(), Box<dyn Error>> {
    ///
    ///     let edges = df![
    ///         Subject.as_ref() => [0, 1, 1, 2, 2, 3],
    ///         Object.as_ref() => [1, 0, 3, 1, 3, 2],
    ///     ]?;
    ///
    ///     let vertices = df![
    ///         VertexId.as_ref() => [0, 1, 2, 3],
    ///         Custom("value").as_ref() => [3, 6, 2, 1],
    ///     ]?;
    ///
    ///     let pregel = PregelBuilder::new(GraphFrame::new(vertices, edges)?)
    ///         .max_iterations(4)
    ///         .with_vertex_column(Custom("aux"))
    ///         .initial_message(lit(0))
    ///         .send_messages(MessageReceiver::Subject, lit(1))
    ///         .send_messages(MessageReceiver::Object, lit(-1))
    ///         .aggregate_messages(Column::msg(None).sum())
    ///         .v_prog(Column::msg(None) + lit(1))
    ///         .build();
    ///
    ///     Ok(println!("{:?}", pregel.run()))
    /// }
    /// ```
    ///
    /// Arguments:
    ///
    /// * `to`: `to` is a parameter of type `MessageReceiver`. It represents the
    /// destination vertex or vertices to which messages will be sent during the
    /// computation.
    /// * `send_messages`: `send_messages` is a parameter of type `Expr`. It is used to
    /// specify the function that will be applied to each vertex in the graph to send
    /// messages to its neighboring vertices.
    ///
    /// Returns:
    ///
    /// The `send_messages` method returns `Self`, which refers to the same struct
    /// instance that the method was called on. This allows for method chaining, where
    /// multiple methods can be called on the same struct instance in a single
    /// expression.
    pub fn send_messages(mut self, to: MessageReceiver, send_messages: Expr) -> Self {
        self.send_messages.push(SendMessage::new(
            to,
            Box::new(move || send_messages.clone()),
        ));
        self
    }

    /// This is a Rust function that adds a new message to be sent to a message receiver
    /// using a closure that returns an expression.
    ///
    /// Arguments:
    ///
    /// * `to`: `to` is a parameter of type `MessageReceiver` which represents the
    /// recipient of the message being sent. It could be an email address, phone number,
    /// or any other means of communication.
    ///
    /// * `send_messages`: `send_messages` is a closure that takes no arguments and
    /// returns an `Expr`. It is used to generate the messages that will be sent to the
    /// `to` message receiver. The closure is passed as an argument to the
    /// `send_messages_function` method and is stored in a `SendMessage` struct
    ///
    /// Returns:
    ///
    /// The `Self` object is being returned, which allows for method chaining.
    pub fn send_messages_function(
        mut self,
        to: MessageReceiver,
        send_messages: impl FnMut() -> Expr + 'a,
    ) -> Self {
        self.send_messages
            .push(SendMessage::new(to, Box::new(send_messages)));
        self
    }

    /// This function sets the aggregate_messages field of a struct to a given
    /// expression and returns the struct.
    ///
    /// Arguments:
    ///
    /// * `aggregate_messages`: `aggregate_messages` is a parameter of type `Expr` that
    /// is used in a method of a struct. The method takes ownership of the struct
    /// instance (`self`) and assigns the value of `aggregate_messages` to the
    /// corresponding field of the struct. The method then returns the modified struct
    /// instance. This
    ///
    /// Returns:
    ///
    /// The `aggregate_messages` method returns `Self`, which refers to the same struct
    /// instance that the method was called on. This allows for method chaining, where
    /// multiple methods can be called on the same struct instance in a single
    /// expression.
    pub fn aggregate_messages(mut self, aggregate_messages: Expr) -> Self {
        self.aggregate_messages = Box::new(move || aggregate_messages.clone());
        self
    }

    /// This function sets the aggregate_messages field of a struct to a closure that
    /// returns an Expr.
    ///
    /// Arguments:
    ///
    /// * `aggregate_messages`: `aggregate_messages` is a closure that takes no
    /// arguments and returns an `Expr` object. The closure is passed as an argument to
    /// the `aggregate_messages_function` method and is stored in the
    /// `self.aggregate_messages` field. The closure is expected to be implemented by
    /// the caller and will be used
    ///
    /// Returns:
    ///
    /// The `Self` object is being returned. This allows for method chaining, where
    /// multiple methods can be called on the same object in a single expression.
    pub fn aggregate_messages_function(
        mut self,
        aggregate_messages: impl FnMut() -> Expr + 'a,
    ) -> Self {
        self.aggregate_messages = Box::new(aggregate_messages);
        self
    }

    /// This function sets the value of a field in a struct and returns the struct
    /// itself.
    ///
    /// Arguments:
    ///
    /// * `v_prog`: `v_prog` is a parameter of type `Expr` that is being passed to a
    /// method called `v_prog`. The method takes ownership of `self` (which is of the
    /// same type as the struct or object that the method belongs to) and assigns the
    /// value of `v_prog` to
    ///
    /// Returns:
    ///
    /// The `v_prog` method returns `Self`, which refers to the same struct
    /// instance that the method was called on. This allows for method chaining, where
    /// multiple methods can be called on the same struct instance in a single
    /// expression.
    pub fn v_prog(mut self, v_prog: Expr) -> Self {
        self.v_prog = Box::new(move || v_prog.clone());
        self
    }

    /// This is a Rust function that takes a closure that returns an expression and sets
    /// it as a field in a struct.
    ///
    /// Arguments:
    ///
    /// * `v_prog`: `v_prog` is a closure that takes no arguments and returns an `Expr`
    /// object. The closure is passed as an argument to the `v_prog_function` method.
    /// The `impl FnMut() -> Expr + 'a` syntax specifies that the closure must be
    /// mutable (`FnMut`) and that it must not capture any variables from the enclosing
    /// scope (`'a`). The closure is stored in the `self.v_prog` field of the struct.
    ///
    /// Returns:
    ///
    /// The `Self` object is being returned. This allows for method chaining, where
    /// multiple methods can be called on the same object in a single expression.
    pub fn v_prog_function(mut self, v_prog: impl FnMut() -> Expr + 'a) -> Self {
        self.v_prog = Box::new(v_prog);
        self
    }

    /// The function returns a Pregel struct with the specified properties. This is,
    /// Pregel structs are to be created using the `Builder Pattern`, a creational
    /// design pattern that provides a way to construct complex structs in a
    /// step-by-step manner, allowing for the creation of several different configurations
    /// or variations of the same struct without directly exposing the underlying
    /// complexity. It allows for flexibility in creating different variations of
    /// objects while keeping the construction process modular and manageable.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use polars::prelude::*;
    /// use pregel_rs::graph_frame::GraphFrame;
    /// use pregel_rs::pregel::Column;
    /// use pregel_rs::pregel::Column::{Custom, Object, VertexId, Subject};
    /// use pregel_rs::pregel::{MessageReceiver, Pregel, PregelBuilder};
    /// use std::error::Error;
    ///
    /// // Simple example of a Pregel algorithm that finds the maximum value in a graph.
    /// fn main() -> Result<(), Box<dyn Error>> {
    /// let edges = df![
    ///         Subject.as_ref() => [0, 1, 1, 2, 2, 3],
    ///         Object.as_ref() => [1, 0, 3, 1, 3, 2],
    ///     ]?;
    ///
    ///     let vertices = df![
    ///         VertexId.as_ref() => [0, 1, 2, 3],
    ///         Custom("value").as_ref() => [3, 6, 2, 1],
    ///     ]?;
    ///
    ///     let pregel = PregelBuilder::new(GraphFrame::new(vertices, edges)?)
    ///         .max_iterations(4)
    ///         .with_vertex_column(Custom("max_value"))
    ///         .initial_message(col(Custom("value").as_ref()))
    ///         .send_messages(MessageReceiver::Object, Column::subject(Custom("max_value")))
    ///         .aggregate_messages(Column::msg(None).max())
    ///         .v_prog(max_exprs([col(Custom("max_value").as_ref()), Column::msg(None)]))
    ///         .build();
    ///
    ///     Ok(println!("{}", pregel.run()?))
    /// }
    /// ```
    ///
    /// Returns:
    ///
    /// The `build` method is returning an instance of the `Pregel` struct with the
    /// values of the fields set to the values of the corresponding fields in the
    /// `Builder` struct.
    pub fn build(self) -> Pregel<'a> {
        Pregel {
            graph: self.graph,
            max_iterations: self.max_iterations,
            vertex_column: self.vertex_column,
            initial_message: self.initial_message,
            send_messages: self.send_messages,
            aggregate_messages: self.aggregate_messages,
            v_prog: self.v_prog,
        }
    }
}

impl<'a> Pregel<'a> {
    /// Represents the Pregel model for large-scale graph processing, introduced
    /// by Google in a paper titled "Pregel: A System for Large-Scale Graph
    /// Processing" in 2010.
    ///
    /// The Pregel model is a distributed computing model for processing graph data
    /// in a distributed and parallel manner. It is designed for efficiently processing
    /// large-scale graphs with billions or trillions of vertices and edges.
    ///
    /// # Components
    ///
    /// - Vertices: Represent the entities in the graph and store the local state
    ///   of each entity. Vertices can perform computations and communicate with their
    ///   neighboring vertices.
    ///
    /// - Edges: Represent the relationships between vertices and are used for
    ///   communication between vertices during computation.
    ///
    /// - Computation: Each vertex performs a user-defined computation during each
    ///   super-step, based on its local state and the messages received from its
    ///   neighboring vertices.
    ///
    /// - Messages: Vertices can send messages to their neighboring vertices during
    ///   each super-step, which are then delivered in the next super-step. Messages
    ///   are used for communication and coordination between vertices.
    ///
    /// - Aggregators: functions that can be used to collect and aggregate
    ///   information from vertices during computation. Aggregators allow for global
    ///   coordination and information gathering across the entire graph.
    ///
    /// # Usage
    ///
    /// The Pregel model follows a sequence of super-step, where each super-step consists
    /// of computation, message exchange, and aggregation. Vertices perform their computations
    /// in parallel, and messages are exchanged between vertices to coordinate their activities.
    /// The computation continues in a series of super-steps until a termination condition is met.
    ///
    /// This Rust function provides an implementation of the Pregel model for graph processing,
    /// allowing users to run vertex-centric algorithms that operate on the local state
    /// of each vertex and communicate through messages.
    ///
    /// # Notes
    ///
    /// - This is a simplified example of the Pregel model and may require further customization
    ///   based on the specific graph processing requirements.
    ///
    /// Returns:
    ///
    /// a `PolarsResult<DataFrame>`, which is a result type that can either contain
    /// the resulting `DataFrame` or an error of type `PolarsError`.
    pub fn run(mut self) -> PolarsResult<DataFrame> {
        // We create a DataFrame that contains the edges of the graph. This DataFrame is used to
        // compute the triplets of the graph, which are used to send messages to the neighboring
        // vertices of each vertex in the graph. For us to do so, we select all the columns of the
        // graph edges and we prefix them with the `Edge` column name.
        let edges = &self
            .graph
            .edges
            .lazy()
            .select([all().prefix(&format!("{}.", Column::Edge.as_ref()))]);
        // We create a DataFrame that contains the vertices of the graph
        let vertices = &self.graph.vertices.lazy();
        // We start the execution of the algorithm from the super-step 0; that is, all the nodes
        // are set to active, and the initial messages are sent to each vertex in the graph. What's more,
        // The initial messages are stored in the `initial_message` column of the `current_vertices` DataFrame.
        // We use the `lazy` method to create a lazy DataFrame. This is done to avoid the execution of
        // the DataFrame until the end of the algorithm.
        let initial_message = &self.initial_message;
        let mut current_vertices = vertices
            .to_owned()
            .select([
                all(), // we select all the columns of the graph vertices
                initial_message
                    .to_owned()
                    .alias(self.vertex_column.as_ref()), // initial message column name is set by the user
            ])
            .with_common_subplan_elimination(false)
            .with_streaming(true)
            .collect()?;
        // After computing the super-step 0, we start the execution of the Pregel algorithm. This
        // execution is performed until all the nodes vote to halt, or the number of iterations is
        // greater than the maximum number of iterations set by the user at the initialization of
        // the model (see the `Pregel::new` method). We start by setting the number of iterations to 1.
        let mut iteration = 1;
        while iteration <= self.max_iterations {
            // TODO: check that nodes are not halted.
            // We create a DataFrame that contains the triplets of the graph. Those triplets are
            // computed by joining the `current_vertices` DataFrame with the `edges` DataFrame
            // first, and with the `current_vertices` second. The first join is performed on the `src`
            // column of the `edges` DataFrame and the `id` column of the `current_vertices` DataFrame.
            // The second join is performed on the `dst` column of the resulting DataFrame from the previous
            // join and the `id` column of the `current_vertices` DataFrame.
            let current_vertices_df = &current_vertices.lazy();
            let triplets_df = current_vertices_df
                .to_owned()
                .select([all().prefix(&format!("{}.", Column::Subject.as_ref()))])
                .inner_join(
                    edges.to_owned().select([all()]),
                    Column::subject(Column::VertexId), // src column of the current_vertices DataFrame
                    Column::edge(Column::Subject),     // src column of the edges DataFrame
                )
                .inner_join(
                    current_vertices_df
                        .to_owned()
                        .select([all().prefix(&format!("{}.", Column::Object.as_ref()))]),
                    Column::edge(Column::Object), // dst column of the resulting DataFrame
                    Column::object(Column::VertexId), // id column of the current_vertices DataFrame
                );
            // We create a DataFrame that contains the messages sent by the vertices. The messages
            // are computed by performing an aggregation on the `triplets_df` DataFrame. The aggregation
            // is performed on the `msg` column of the `triplets_df` DataFrame, and the aggregation
            // function is the one set by the user at the initialization of the model.
            // We create a tuple where we store the column names of the `send_messages` DataFrame. We use
            // the `alias` method to ensure that the column names are properly qualified. We also
            // do the same for the `aggregate_messages` Expr. And the same with the `v_prog` Expr.
            let (mut send_messages_ids, mut send_messages_msg): (Vec<Expr>, Vec<Expr>) = self
                .send_messages
                .iter_mut()
                .map(|send_message| {
                    let message_direction = &send_message.message_direction;
                    let send_message_expr = &mut send_message.send_message;
                    (
                        message_direction
                            .to_owned()
                            .alias(&Column::alias(&Column::Msg, Column::VertexId)),
                        send_message_expr().alias(Column::Pregel.as_ref()),
                    )
                })
                .unzip();
            let send_messages = &mut send_messages_ids; // we create a mutable reference to the `send_messages_ids` Vector
            let send_messages_msg_df = &mut send_messages_msg; // we create a mutable reference to the `send_messages_msg` Vector
            send_messages.append(send_messages_msg_df); // we append the `send_messages_msg` Vector to the `send_messages` Vector
            let aggregate_messages = &mut self.aggregate_messages;
            let message_df = triplets_df
                .select(send_messages)
                .groupby([Column::msg(Some(Column::VertexId))])
                .agg([aggregate_messages().alias(Column::Pregel.as_ref())]);
            // We Compute the new values for the vertices. Note that we have to check for possibly
            // null values after performing the outer join. This is, columns where the join key does
            // not exist in the source DataFrame. In case we find any; for example, given a certain
            // node having no incoming edges, we have to replace the null value by 0 for the aggregation
            // to work properly.
            let v_prog = &mut self.v_prog;
            let vertex_columns = current_vertices_df
                .to_owned()
                .outer_join(
                    message_df,
                    col(Column::VertexId.as_ref()), // id column of the current_vertices DataFrame
                    Column::msg(Some(Column::VertexId)), // msg.id column of the message_df DataFrame
                )
                .select(&[
                    col(Column::VertexId.as_ref()),
                    v_prog().alias(self.vertex_column.as_ref()),
                ]);
            // We update the `current_vertices` DataFrame with the new values for the vertices. We
            // do so by performing an inner join between the `current_vertices` DataFrame and the
            // `vertex_columns` DataFrame. The join is performed on the `id` column of the
            // `current_vertices` DataFrame and the `id` column of the `vertex_columns` DataFrame.
            current_vertices = vertices
                .to_owned()
                .inner_join(
                    vertex_columns,
                    col(Column::VertexId.as_ref()),
                    col(Column::VertexId.as_ref()),
                )
                .with_common_subplan_elimination(false)
                .with_streaming(true)
                .collect()?;

            iteration += 1; // increment the counter so we now which iteration is being executed
        }

        Ok(current_vertices)
    }
}

#[cfg(test)]
mod tests {
    use crate::graph_frame::GraphFrame;
    use crate::pregel::Column::VertexId;
    use crate::pregel::{Column, MessageReceiver, Pregel, PregelBuilder, SendMessage};
    use polars::prelude::*;
    use std::error::Error;

    fn pagerank_graph() -> Result<GraphFrame, String> {
        let edges = match df![
            Column::Subject.as_ref() => [0, 0, 1, 2, 3, 4, 4, 4],
            Column::Object.as_ref() => [1, 2, 2, 3, 3, 1, 2, 3],
        ] {
            Ok(edges) => edges,
            Err(_) => return Err(String::from("Error creating the edges DataFrame")),
        };

        let graph = match GraphFrame::from_edges(edges.clone()) {
            Ok(graph) => graph,
            Err(_) => return Err(String::from("Error creating the vertices DataFrame")),
        };

        let vertices = match graph.out_degrees() {
            Ok(vertices) => vertices,
            Err(_) => {
                return Err(String::from(
                    "Error creating the vertices out degree DataFrame",
                ))
            }
        };

        match GraphFrame::new(vertices, edges) {
            Ok(graph) => Ok(graph),
            Err(_) => Err(String::from("Error creating the graph")),
        }
    }

    fn pagerank_builder<'a>(iterations: u8) -> Result<Pregel<'a>, Box<dyn Error>> {
        let graph = pagerank_graph()?;
        let damping_factor = 0.85;
        let num_vertices: f64 = graph.vertices.column(Column::VertexId.as_ref())?.len() as f64;

        Ok(PregelBuilder::new(graph)
            .max_iterations(iterations)
            .with_vertex_column(Column::Custom("rank"))
            .initial_message(lit(1.0 / num_vertices))
            .send_messages(
                MessageReceiver::Subject,
                Column::subject(Column::Custom("rank"))
                    / Column::subject(Column::Custom("out_degree")),
            )
            .send_messages(
                MessageReceiver::Object,
                Column::subject(Column::Custom("rank"))
                    / Column::subject(Column::Custom("out_degree")),
            )
            .aggregate_messages(Column::msg(None).sum())
            .v_prog(
                Column::msg(None) * lit(damping_factor)
                    + lit((1.0 - damping_factor) / num_vertices),
            )
            .build())
    }

    fn agg_pagerank(pagerank: Pregel) -> Result<f64, String> {
        let result = match pagerank.run() {
            Ok(result) => result,
            Err(_) => return Err(String::from("Error running the PageRank algorithm")),
        };
        let rank = match result.column("rank") {
            Ok(rank) => rank,
            Err(_) => {
                return Err(String::from(
                    "Error retrieving the rank column from the DataFrame",
                ))
            }
        };
        let rank_f64 = match rank.f64() {
            Ok(rank_f64) => rank_f64,
            Err(_) => return Err(String::from("Error casting the rank column to f64")),
        };

        match rank_f64.sum() {
            Some(aggregated_rank) => Ok(aggregated_rank),
            None => Err(String::from(
                "Error computing the aggregation of PageRank values",
            )),
        }
    }

    fn pagerank_helper(iterations: u8) -> Result<(), String> {
        let pagerank = match pagerank_builder(iterations) {
            Ok(pagerank) => pagerank,
            Err(_) => return Err(String::from("Error building the Pregel algorithm :(")),
        };

        let agg_pagerank = match agg_pagerank(pagerank) {
            Ok(agg_pagerank) => agg_pagerank,
            Err(error) => return Err(error),
        };

        if (agg_pagerank - 1.0).abs() < 10e-3 {
            Ok(())
        } else {
            Err(String::from(
                "The sum of the aggregated PageRank values should be 1",
            ))
        }
    }

    #[test]
    fn test_pagerank() -> Result<(), String> {
        for i in 1..3 {
            pagerank_helper(i)?;
        }

        Ok(())
    }

    fn max_value_graph() -> Result<GraphFrame, String> {
        let edges = match df![
            Column::Subject.as_ref() => [0, 1, 1, 2, 2, 3],
            Column::Object.as_ref() => [1, 0, 3, 1, 3, 2],
        ] {
            Ok(edges) => edges,
            Err(_) => return Err(String::from("Error creating the edges DataFrame")),
        };

        let vertices = match df![
            Column::VertexId.as_ref() => [0, 1, 2, 3],
            Column::Custom("value").as_ref() => [3, 6, 2, 1],
        ] {
            Ok(vertices) => vertices,
            Err(_) => return Err(String::from("Error creating the vertices DataFrame")),
        };

        match GraphFrame::new(vertices, edges) {
            Ok(graph) => Ok(graph),
            Err(_) => Err(String::from("Error creating the graph")),
        }
    }

    fn max_value_builder<'a>(iterations: u8) -> Result<Pregel<'a>, String> {
        Ok(Pregel {
            graph: max_value_graph()?,
            max_iterations: iterations,
            vertex_column: Column::Custom("max_value"),
            initial_message: col(Column::Custom("value").as_ref()),
            send_messages: vec![SendMessage::new(
                MessageReceiver::Object,
                Box::new(|| Column::subject(Column::Custom("value"))),
            )],
            aggregate_messages: Box::new(|| Column::msg(None).max()),
            v_prog: Box::new(|| {
                max_exprs([col(Column::Custom("max_value").as_ref()), Column::msg(None)])
            }),
        })
    }

    fn max_value_helper(iterations: u8) -> Result<(), String> {
        let max_value = match max_value_builder(iterations) {
            Ok(max_value) => max_value,
            Err(_) => return Err(String::from("Error building the Pregel algorithm :(")),
        };

        let result = match max_value.run() {
            Ok(result) => result,
            Err(_) => return Err(String::from("Error running the Max algorithm")),
        };

        let max = match result.column("max_value") {
            Ok(max) => max,
            Err(_) => {
                return Err(String::from(
                    "Error retrieving the max column from the DataFrame",
                ))
            }
        };

        let max_i32 = match max.i32() {
            Ok(max_i32) => max_i32,
            Err(_) => return Err(String::from("Error casting the max column to i32")),
        };

        match max_i32.max() {
            Some(max) => {
                // In case the maximum value is computed
                if max == 6 {
                    // In case MAX equals to 6, that means that the algorithm has converged
                    Ok(())
                } else {
                    // In any other case, the algorithm has not converged: ERROR
                    Err(String::from("The maximum value should be 4"))
                }
            }
            None => Err(String::from("Error computing the maximum value")),
        }
    }

    #[test]
    fn test_max_value() -> Result<(), String> {
        for i in 1..3 {
            max_value_helper(i)?;
        }

        Ok(())
    }

    #[test]
    fn test_literals() -> Result<(), String> {
        // We create a graph using the exact same vertices and edges as the one used in the
        // MaxValue algorithm. The graph itself is not important, we just need to test the
        // Pregel model.
        let graph = max_value_graph()?;

        // We create a Pregel algorithm that computes nothing, just sends literals to all the vertices
        // and then returns the same literal. Note that the algorithm computes nothing, but it is
        // useful to test the Pregel model.
        match PregelBuilder::new(graph)
            .max_iterations(4)
            .with_vertex_column(Column::Custom("aux"))
            .initial_message(lit(0)) // we pass the Undefined state to all vertices
            .send_messages(MessageReceiver::Subject, lit(0))
            .aggregate_messages(lit(0))
            .v_prog(lit(0))
            .build()
            .run()
        {
            Ok(_) => Ok(()),
            Err(_) => Err(String::from("Error running the algorithm")),
        }
    }

    #[test]
    fn test_send_messages_src_dst() -> Result<(), String> {
        let graph = pagerank_graph()?;

        let pregel = match PregelBuilder::new(graph)
            .max_iterations(4)
            .with_vertex_column(Column::Custom("aux"))
            .initial_message(lit(0))
            .send_messages(MessageReceiver::Subject, lit(1))
            .send_messages(MessageReceiver::Object, lit(-1))
            .aggregate_messages(Column::msg(None).sum())
            .v_prog(Column::msg(None) + lit(1))
            .build()
            .run()
        {
            Ok(pregel) => pregel,
            Err(_) => return Err(String::from("Error running pregel")),
        };

        let sorted_pregel = match pregel.sort(&[VertexId.as_ref()], false) {
            Ok(sorted_pregel) => sorted_pregel,
            Err(_) => return Err(String::from("Error sorting the DataFrame")),
        };

        let ans = match sorted_pregel.column("aux") {
            Ok(ans) => ans,
            Err(_) => return Err(String::from("Error retrieving the column")),
        };

        let expected = Series::new("aux", [3, 2, 2, 2, 4]);

        if ans.eq(&expected) {
            Ok(())
        } else {
            Err(String::from("The resulting DataFrame is not correct"))
        }
    }
}