1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
//! PrefixSet, that is implemened as a simple binary tree, based on the [`PrefixMap`].
use crate::{Prefix, PrefixMap};
mod difference;
mod intersection;
mod union;
pub use difference::Difference;
pub use intersection::Intersection;
pub use union::Union;
/// Set of prefixes, organized in a tree. This strucutre gives efficient access to the longest
/// prefix in the set that contains another prefix.
#[derive(Clone)]
pub struct PrefixSet<P>(pub(crate) PrefixMap<P, ()>);
impl<P: Prefix> PrefixSet<P> {
/// Create a new, empty prefixset.
pub fn new() -> Self {
Self(Default::default())
}
/// Check wether some prefix is present in the set, without using longest prefix match.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// set.insert("192.168.1.0/24".parse()?);
/// assert!(set.contains(&"192.168.1.0/24".parse()?));
/// assert!(!set.contains(&"192.168.2.0/24".parse()?));
/// assert!(!set.contains(&"192.168.0.0/23".parse()?));
/// assert!(!set.contains(&"192.168.1.128/25".parse()?));
/// # Ok(())
/// # }
/// ```
pub fn contains(&self, prefix: &P) -> bool {
self.0.contains_key(prefix)
}
/// Get the longest prefix in the set that contains the given preifx.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// set.insert("192.168.1.0/24".parse()?);
/// set.insert("192.168.0.0/23".parse()?);
/// assert_eq!(set.get_lpm(&"192.168.1.1/32".parse()?), Some(&"192.168.1.0/24".parse()?));
/// assert_eq!(set.get_lpm(&"192.168.1.0/24".parse()?), Some(&"192.168.1.0/24".parse()?));
/// assert_eq!(set.get_lpm(&"192.168.0.0/24".parse()?), Some(&"192.168.0.0/23".parse()?));
/// assert_eq!(set.get_lpm(&"192.168.2.0/24".parse()?), None);
/// # Ok(())
/// # }
/// ```
pub fn get_lpm<'a, 'b>(&'a self, prefix: &'b P) -> Option<&'a P> {
self.0.get_lpm(prefix).map(|(p, _)| p)
}
/// Adds a value to the set.
///
/// Returns whether the value was newly inserted. That is:
/// - If the set did not previously contain this value, `true` is returned.
/// - If the set already contained this value, `false` is returned.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// assert!(set.insert("192.168.0.0/23".parse()?));
/// assert!(set.insert("192.168.1.0/24".parse()?));
/// assert!(!set.insert("192.168.1.0/24".parse()?));
/// # Ok(())
/// # }
/// ```
pub fn insert(&mut self, prefix: P) -> bool {
self.0.insert(prefix, ()).is_none()
}
/// Removes a value from the set. Returns whether the value was present in the set.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// let prefix = "192.168.1.0/24".parse()?;
/// set.insert(prefix);
/// assert!(set.contains(&prefix));
/// assert!(set.remove(&prefix));
/// assert!(!set.contains(&prefix));
/// # Ok(())
/// # }
/// ```
pub fn remove(&mut self, prefix: &P) -> bool {
self.0.remove(prefix).is_some()
}
/// Removes a prefix from the set, returning wether the prefix was present or not. In contrast
/// to [`Self::remove`], his operation will keep the tree structure as is, but only remove the
/// element from it. This allows any future `insert` on the same prefix to be faster. However
/// future reads from the tree might be a bit slower because they need to traverse more nodes.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// let prefix = "192.168.1.0/24".parse()?;
/// set.insert(prefix);
/// assert!(set.contains(&prefix));
/// assert!(set.remove_keep_tree(&prefix));
/// assert!(!set.contains(&prefix));
///
/// // future inserts of the same key are now faster!
/// set.insert(prefix);
/// # Ok(())
/// # }
/// ```
pub fn remove_keep_tree(&mut self, prefix: &P) -> bool {
self.0.remove_keep_tree(prefix).is_some()
}
/// Remove all elements that are contained within `prefix`. This will change the tree
/// structure. This operation is `O(n)`, as the entries must be freed up one-by-one.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// set.insert("192.168.0.0/22".parse()?);
/// set.insert("192.168.0.0/23".parse()?);
/// set.insert("192.168.0.0/24".parse()?);
/// set.insert("192.168.2.0/23".parse()?);
/// set.insert("192.168.2.0/24".parse()?);
/// set.remove_children(&"192.168.0.0/23".parse()?);
/// assert!(!set.contains(&"192.168.0.0/23".parse()?));
/// assert!(!set.contains(&"192.168.0.0/24".parse()?));
/// assert!(set.contains(&"192.168.2.0/23".parse()?));
/// assert!(set.contains(&"192.168.2.0/24".parse()?));
/// # Ok(())
/// # }
/// ```
pub fn remove_children(&mut self, prefix: &P) {
self.0.remove_children(prefix)
}
/// Clear the set but keep the allocated memory.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// set.insert("192.168.0.0/24".parse()?);
/// set.insert("192.168.1.0/24".parse()?);
/// set.clear();
/// assert!(!set.contains(&"192.168.0.0/24".parse()?));
/// assert!(!set.contains(&"192.168.1.0/24".parse()?));
/// # Ok(())
/// # }
/// ```
pub fn clear(&mut self) {
self.0.clear()
}
/// Iterate over all prefixes in the set
pub fn iter(&self) -> Iter<'_, P> {
self.into_iter()
}
/// Keep only the elements in the map that satisfy the given condition `f`.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set: PrefixSet<Ipv4Net> = PrefixSet::new();
/// set.insert("192.168.0.0/24".parse()?);
/// set.insert("192.168.1.0/24".parse()?);
/// set.insert("192.168.2.0/24".parse()?);
/// set.insert("192.168.2.0/25".parse()?);
/// set.retain(|p| p.prefix_len() == 24);
/// assert!(set.contains(&"192.168.0.0/24".parse()?));
/// assert!(set.contains(&"192.168.1.0/24".parse()?));
/// assert!(set.contains(&"192.168.2.0/24".parse()?));
/// assert!(!set.contains(&"192.168.2.0/25".parse()?));
/// # Ok(())
/// # }
/// ```
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&P) -> bool,
{
let _ = self.0._retain(0, None, false, None, false, |p, _| f(p));
}
/// Return an iterator that traverses both trees simultaneously and yields the union of both
/// sets in lexicographic order.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set_a: PrefixSet<Ipv4Net> = PrefixSet::from_iter([
/// "192.168.0.0/22".parse()?,
/// "192.168.0.0/24".parse()?,
/// "192.168.2.0/23".parse()?,
/// ]);
/// let mut set_b: PrefixSet<Ipv4Net> = PrefixSet::from_iter([
/// "192.168.0.0/22".parse()?,
/// "192.168.0.0/23".parse()?,
/// "192.168.2.0/24".parse()?,
/// ]);
/// assert_eq!(
/// set_a.union(&set_b).copied().collect::<Vec<_>>(),
/// vec![
/// "192.168.0.0/22".parse()?,
/// "192.168.0.0/23".parse()?,
/// "192.168.0.0/24".parse()?,
/// "192.168.2.0/23".parse()?,
/// "192.168.2.0/24".parse()?,
/// ]
/// );
/// # Ok(())
/// # }
/// ```
pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, P> {
Union {
set_a: &self.0,
set_b: &other.0,
nodes: vec![union::UnionIndex::Both(0, 0)],
}
}
/// Return an iterator that traverses both trees simultaneously and yields the intersection of
/// both sets in lexicographic order.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set_a: PrefixSet<Ipv4Net> = PrefixSet::from_iter([
/// "192.168.0.0/22".parse()?,
/// "192.168.0.0/24".parse()?,
/// "192.168.2.0/23".parse()?,
/// ]);
/// let mut set_b: PrefixSet<Ipv4Net> = PrefixSet::from_iter([
/// "192.168.0.0/22".parse()?,
/// "192.168.0.0/24".parse()?,
/// "192.168.2.0/24".parse()?,
/// ]);
/// assert_eq!(
/// set_a.intersection(&set_b).copied().collect::<Vec<_>>(),
/// vec!["192.168.0.0/22".parse()?, "192.168.0.0/24".parse()?]
/// );
/// # Ok(())
/// # }
/// ```
pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, P> {
Intersection {
set_a: &self.0,
set_b: &other.0,
nodes: vec![intersection::IntersectionIndex::Both(0, 0)],
}
}
/// Return an iterator that traverses both trees simultaneously and yields the difference of
/// both sets in lexicographic order.
///
/// ```
/// # use prefix_trie::*;
/// # use ipnet::Ipv4Net;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut set_a: PrefixSet<Ipv4Net> = PrefixSet::from_iter([
/// "192.168.0.0/22".parse()?,
/// "192.168.0.0/24".parse()?,
/// "192.168.2.0/23".parse()?,
/// ]);
/// let mut set_b: PrefixSet<Ipv4Net> = PrefixSet::from_iter([
/// "192.168.0.0/22".parse()?,
/// "192.168.0.0/24".parse()?,
/// "192.168.2.0/24".parse()?,
/// ]);
/// assert_eq!(
/// set_a.difference(&set_b).copied().collect::<Vec<_>>(),
/// vec!["192.168.2.0/23".parse()?]
/// );
/// # Ok(())
/// # }
/// ```
pub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, P> {
Difference {
set_a: &self.0,
set_b: &other.0,
nodes: vec![difference::DifferenceIndex::Both(0, 0)],
}
}
}
impl<P: Prefix> Default for PrefixSet<P> {
fn default() -> Self {
Self::new()
}
}
impl<P> PartialEq for PrefixSet<P>
where
P: Prefix + PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.iter().zip(other.iter()).all(|(a, b)| a == b)
}
}
impl<P> Eq for PrefixSet<P> where P: Prefix + Eq {}
#[derive(Clone)]
/// An iterator over all entries of a [`PrefixSet`] in lexicographic order.
pub struct Iter<'a, P>(crate::map::Iter<'a, P, ()>);
impl<'a, P: Prefix> Iterator for Iter<'a, P> {
type Item = &'a P;
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|(p, _)| p)
}
}
#[derive(Clone)]
/// A consuming iterator over all entries of a [`PrefixSet`] in lexicographic order.
pub struct IntoIter<P>(crate::map::IntoIter<P, ()>);
impl<P: Prefix> Iterator for IntoIter<P> {
type Item = P;
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|(p, _)| p)
}
}
impl<P: Prefix> IntoIterator for PrefixSet<P> {
type Item = P;
type IntoIter = IntoIter<P>;
fn into_iter(self) -> Self::IntoIter {
IntoIter(self.0.into_iter())
}
}
impl<'a, P: Prefix> IntoIterator for &'a PrefixSet<P> {
type Item = &'a P;
type IntoIter = Iter<'a, P>;
fn into_iter(self) -> Self::IntoIter {
Iter(self.0.iter())
}
}
impl<P: Prefix> FromIterator<P> for PrefixSet<P> {
fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> Self {
let mut set = Self::new();
for p in iter {
set.insert(p);
}
set
}
}