1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
use std::fmt;
use std::ops::{Index, IndexMut};
use std::slice;
use std::vec;

use crate::Dimension;

/// A multi-dimensional array.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Array<T> {
    dims: Vec<Dimension>,
    data: Vec<T>,
}

impl<T: fmt::Display> fmt::Display for Array<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.dims.iter().any(|dim| dim.lower_bound != 1) {
            for dim in &self.dims {
                write!(
                    fmt,
                    "[{}:{}]",
                    dim.lower_bound,
                    dim.lower_bound + dim.len - 1
                )?;
            }
            write!(fmt, "=")?;
        }
        fmt_helper(0, &self.dims, &mut self.data.iter(), fmt)
    }
}

fn fmt_helper<'a, T, I>(
    depth: usize,
    dims: &[Dimension],
    data: &mut I,
    fmt: &mut fmt::Formatter<'_>,
) -> fmt::Result
where
    I: Iterator<Item = &'a T>,
    T: 'a + fmt::Display,
{
    if depth == dims.len() {
        return write!(fmt, "{}", data.next().unwrap());
    }

    write!(fmt, "{{")?;
    for i in 0..dims[depth].len {
        if i != 0 {
            write!(fmt, ",")?;
        }
        fmt_helper(depth + 1, dims, data, fmt)?;
    }
    write!(fmt, "}}")
}

impl<T> Array<T> {
    /// Creates a new `Array` from its underlying components.
    ///
    /// The data array should be provided in the higher-dimensional equivalent
    /// of row-major order.
    ///
    /// # Panics
    ///
    /// Panics if the number of elements provided does not match the number of
    /// elements specified by the dimensions.
    pub fn from_parts(data: Vec<T>, dimensions: Vec<Dimension>) -> Array<T> {
        assert!(
            (data.is_empty() && dimensions.is_empty())
                || data.len() as i32 == dimensions.iter().fold(1, |acc, i| acc * i.len),
            "size mismatch"
        );
        Array {
            dims: dimensions,
            data,
        }
    }

    /// Creates a new one-dimensional array.
    pub fn from_vec(data: Vec<T>, lower_bound: i32) -> Array<T> {
        Array {
            dims: vec![Dimension {
                len: data.len() as i32,
                lower_bound,
            }],
            data,
        }
    }

    /// Wraps this array in a new dimension of size 1.
    ///
    /// For example, the one dimensional array `[1, 2]` would turn into the
    /// two-dimensional array `[[1, 2]]`.
    pub fn wrap(&mut self, lower_bound: i32) {
        self.dims.insert(
            0,
            Dimension {
                len: 1,
                lower_bound,
            },
        );
    }

    /// Consumes another array, appending it to the top level dimension of this
    /// array.
    ///
    /// The dimensions of the other array must be the same as the dimensions
    /// of this array with the first dimension removed. This includes lower
    /// bounds as well as lengths.
    ///
    /// For example, if `[3, 4]` is pushed onto `[[1, 2]]`, the result is
    /// `[[1, 2], [3, 4]]`.
    ///
    /// # Panics
    ///
    /// Panics if the dimensions of the two arrays do not match.
    pub fn push(&mut self, other: Array<T>) {
        assert!(
            self.dims.len() - 1 == other.dims.len(),
            "cannot append differently shaped arrays"
        );
        for (dim1, dim2) in self.dims.iter().skip(1).zip(other.dims.iter()) {
            assert!(dim1 == dim2, "cannot append differently shaped arrays");
        }
        self.dims[0].len += 1;
        self.data.extend(other.data);
    }

    /// Returns the dimensions of this array.
    pub fn dimensions(&self) -> &[Dimension] {
        &self.dims
    }

    fn shift_idx(&self, indices: &[i32]) -> i32 {
        assert_eq!(self.dims.len(), indices.len());
        self.dims
            .iter()
            .zip(indices.iter().cloned())
            .rev()
            .fold((0, 1), |(acc, stride), (dim, idx)| {
                let shifted = dim.shift(idx);
                (acc + shifted * stride, dim.len * stride)
            })
            .0
    }

    /// Returns an iterator over references to the elements of the array in the
    /// higher-dimensional equivalent of row-major order.
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            inner: self.data.iter(),
        }
    }

    /// Returns an iterator over mutable references to the elements of the
    /// array in the higher-dimensional equivalent of row-major order.
    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        IterMut {
            inner: self.data.iter_mut(),
        }
    }

    /// Returns the underlying data vector for this Array in the
    /// higher-dimensional equivalent of row-major order.
    pub fn into_inner(self) -> Vec<T> {
        self.data
    }
}

/// A trait implemented by types that can index into an `Array`.
pub trait ArrayIndex {
    /// Calculates the index into the `Array`'s underlying storage specified
    /// by the value of `self`.
    ///
    /// # Panics
    ///
    /// Panics if the value of `self` does not correspond to an in-bounds
    /// element of the `Array`.
    fn index<T>(&self, array: &Array<T>) -> i32;
}

impl<'a> ArrayIndex for &'a [i32] {
    fn index<T>(&self, array: &Array<T>) -> i32 {
        array.shift_idx(*self)
    }
}

impl ArrayIndex for i32 {
    fn index<T>(&self, array: &Array<T>) -> i32 {
        let slice: &[i32] = &[*self];
        ArrayIndex::index(&slice, array)
    }
}

macro_rules! tuple_impl {
    ($($name:ident : $t:ty),+) => {
        impl ArrayIndex for ($($t,)+) {
            fn index<T>(&self, array: &Array<T>) -> i32 {
                let ($($name,)+) = *self;
                let slice: &[i32] = &[$($name),+];
                ArrayIndex::index(&slice, array)
            }
        }
    }
}

tuple_impl!(a: i32);
tuple_impl!(a: i32, b: i32);
tuple_impl!(a: i32, b: i32, c: i32);
tuple_impl!(a: i32, b: i32, c: i32, d: i32);
tuple_impl!(a: i32, b: i32, c: i32, d: i32, e: i32);
tuple_impl!(a: i32, b: i32, c: i32, d: i32, e: i32, f: i32);
tuple_impl!(a: i32, b: i32, c: i32, d: i32, e: i32, f: i32, g: i32);
tuple_impl!(
    a: i32,
    b: i32,
    c: i32,
    d: i32,
    e: i32,
    f: i32,
    g: i32,
    h: i32
);
tuple_impl!(
    a: i32,
    b: i32,
    c: i32,
    d: i32,
    e: i32,
    f: i32,
    g: i32,
    h: i32,
    i: i32
);

/// Indexes into the `Array`, retrieving a reference to the contained
/// value.
///
/// Since `Array`s can be multi-dimensional, the `Index` trait is
/// implemented for a variety of index types. In the most generic case, a
/// `&[i32]` can be used. In addition, a bare `i32` as well as tuples
/// of up to 10 `i32` values may be used for convenience.
///
/// # Panics
///
/// Panics if the index does not correspond to an in-bounds element of the
/// `Array`.
///
/// # Examples
///
/// ```rust
/// # use postgres_array::Array;
/// let mut array = Array::from_vec(vec![0i32, 1, 2, 3], 0);
/// assert_eq!(2, array[2]);
///
/// array.wrap(0);
/// array.push(Array::from_vec(vec![4, 5, 6, 7], 0));
///
/// assert_eq!(6, array[(1, 2)]);
/// ```
impl<T, I: ArrayIndex> Index<I> for Array<T> {
    type Output = T;
    fn index(&self, idx: I) -> &T {
        let idx = idx.index(self);
        &self.data[idx as usize]
    }
}

impl<T, I: ArrayIndex> IndexMut<I> for Array<T> {
    fn index_mut(&mut self, idx: I) -> &mut T {
        let idx = idx.index(self);
        &mut self.data[idx as usize]
    }
}

impl<'a, T: 'a> IntoIterator for &'a Array<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

impl<'a, T: 'a> IntoIterator for &'a mut Array<T> {
    type Item = &'a mut T;
    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> IterMut<'a, T> {
        self.iter_mut()
    }
}

impl<T> IntoIterator for Array<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        IntoIter {
            inner: self.data.into_iter(),
        }
    }
}

/// An iterator over references to values of an `Array` in the
/// higher-dimensional equivalent of row-major order.
pub struct Iter<'a, T> {
    inner: slice::Iter<'a, T>,
}

impl<'a, T: 'a> Iterator for Iter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        self.inner.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, T: 'a> DoubleEndedIterator for Iter<'a, T> {
    fn next_back(&mut self) -> Option<&'a T> {
        self.inner.next_back()
    }
}

impl<'a, T: 'a> ExactSizeIterator for Iter<'a, T> {
    fn len(&self) -> usize {
        self.inner.len()
    }
}

/// An iterator over mutable references to values of an `Array` in the
/// higher-dimensional equivalent of row-major order.
pub struct IterMut<'a, T> {
    inner: slice::IterMut<'a, T>,
}

impl<'a, T: 'a> Iterator for IterMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<&'a mut T> {
        self.inner.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, T: 'a> DoubleEndedIterator for IterMut<'a, T> {
    fn next_back(&mut self) -> Option<&'a mut T> {
        self.inner.next_back()
    }
}

impl<'a, T: 'a> ExactSizeIterator for IterMut<'a, T> {
    fn len(&self) -> usize {
        self.inner.len()
    }
}

/// An iterator over values of an `Array` in the higher-dimensional
/// equivalent of row-major order.
pub struct IntoIter<T> {
    inner: vec::IntoIter<T>,
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.inner.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    fn next_back(&mut self) -> Option<T> {
        self.inner.next_back()
    }
}

impl<T> ExactSizeIterator for IntoIter<T> {
    fn len(&self) -> usize {
        self.inner.len()
    }
}