portable_rustls/
quic.rs

1use alloc::boxed::Box;
2use alloc::collections::VecDeque;
3use alloc::vec::Vec;
4#[cfg(feature = "std")]
5use core::fmt::Debug;
6
7/// This module contains optional APIs for implementing QUIC TLS.
8use crate::common_state::Side;
9use crate::crypto::cipher::{AeadKey, Iv};
10use crate::crypto::tls13::{Hkdf, HkdfExpander, OkmBlock};
11use crate::enums::AlertDescription;
12use crate::error::Error;
13use crate::tls13::key_schedule::{
14    hkdf_expand_label, hkdf_expand_label_aead_key, hkdf_expand_label_block,
15};
16use crate::tls13::Tls13CipherSuite;
17
18#[cfg(feature = "std")]
19mod connection {
20    use alloc::vec;
21    use alloc::vec::Vec;
22    use core::fmt::{self, Debug};
23    use core::ops::{Deref, DerefMut};
24
25    use pki_types::ServerName;
26
27    use super::{DirectionalKeys, KeyChange, Version};
28    use crate::client::{ClientConfig, ClientConnectionData};
29    use crate::common_state::{CommonState, Protocol, DEFAULT_BUFFER_LIMIT};
30    use crate::conn::{ConnectionCore, SideData};
31    use crate::enums::{AlertDescription, ContentType, ProtocolVersion};
32    use crate::error::Error;
33    use crate::msgs::deframer::buffers::{DeframerVecBuffer, Locator};
34    use crate::msgs::handshake::{ClientExtension, ServerExtension};
35    use crate::msgs::message::InboundPlainMessage;
36    use crate::server::{ServerConfig, ServerConnectionData};
37    use crate::sync::Arc;
38    use crate::vecbuf::ChunkVecBuffer;
39
40    /// A QUIC client or server connection.
41    #[derive(Debug)]
42    pub enum Connection {
43        /// A client connection
44        Client(ClientConnection),
45        /// A server connection
46        Server(ServerConnection),
47    }
48
49    impl Connection {
50        /// Return the TLS-encoded transport parameters for the session's peer.
51        ///
52        /// See [`ConnectionCommon::quic_transport_parameters()`] for more details.
53        pub fn quic_transport_parameters(&self) -> Option<&[u8]> {
54            match self {
55                Self::Client(conn) => conn.quic_transport_parameters(),
56                Self::Server(conn) => conn.quic_transport_parameters(),
57            }
58        }
59
60        /// Compute the keys for encrypting/decrypting 0-RTT packets, if available
61        pub fn zero_rtt_keys(&self) -> Option<DirectionalKeys> {
62            match self {
63                Self::Client(conn) => conn.zero_rtt_keys(),
64                Self::Server(conn) => conn.zero_rtt_keys(),
65            }
66        }
67
68        /// Consume unencrypted TLS handshake data.
69        ///
70        /// Handshake data obtained from separate encryption levels should be supplied in separate calls.
71        pub fn read_hs(&mut self, plaintext: &[u8]) -> Result<(), Error> {
72            match self {
73                Self::Client(conn) => conn.read_hs(plaintext),
74                Self::Server(conn) => conn.read_hs(plaintext),
75            }
76        }
77
78        /// Emit unencrypted TLS handshake data.
79        ///
80        /// When this returns `Some(_)`, the new keys must be used for future handshake data.
81        pub fn write_hs(&mut self, buf: &mut Vec<u8>) -> Option<KeyChange> {
82            match self {
83                Self::Client(conn) => conn.write_hs(buf),
84                Self::Server(conn) => conn.write_hs(buf),
85            }
86        }
87
88        /// Emit the TLS description code of a fatal alert, if one has arisen.
89        ///
90        /// Check after `read_hs` returns `Err(_)`.
91        pub fn alert(&self) -> Option<AlertDescription> {
92            match self {
93                Self::Client(conn) => conn.alert(),
94                Self::Server(conn) => conn.alert(),
95            }
96        }
97
98        /// Derives key material from the agreed connection secrets.
99        ///
100        /// This function fills in `output` with `output.len()` bytes of key
101        /// material derived from the master session secret using `label`
102        /// and `context` for diversification. Ownership of the buffer is taken
103        /// by the function and returned via the Ok result to ensure no key
104        /// material leaks if the function fails.
105        ///
106        /// See RFC5705 for more details on what this does and is for.
107        ///
108        /// For TLS1.3 connections, this function does not use the
109        /// "early" exporter at any point.
110        ///
111        /// This function fails if called prior to the handshake completing;
112        /// check with [`CommonState::is_handshaking`] first.
113        #[inline]
114        pub fn export_keying_material<T: AsMut<[u8]>>(
115            &self,
116            output: T,
117            label: &[u8],
118            context: Option<&[u8]>,
119        ) -> Result<T, Error> {
120            match self {
121                Self::Client(conn) => conn
122                    .core
123                    .export_keying_material(output, label, context),
124                Self::Server(conn) => conn
125                    .core
126                    .export_keying_material(output, label, context),
127            }
128        }
129    }
130
131    impl Deref for Connection {
132        type Target = CommonState;
133
134        fn deref(&self) -> &Self::Target {
135            match self {
136                Self::Client(conn) => &conn.core.common_state,
137                Self::Server(conn) => &conn.core.common_state,
138            }
139        }
140    }
141
142    impl DerefMut for Connection {
143        fn deref_mut(&mut self) -> &mut Self::Target {
144            match self {
145                Self::Client(conn) => &mut conn.core.common_state,
146                Self::Server(conn) => &mut conn.core.common_state,
147            }
148        }
149    }
150
151    /// A QUIC client connection.
152    pub struct ClientConnection {
153        inner: ConnectionCommon<ClientConnectionData>,
154    }
155
156    impl ClientConnection {
157        /// Make a new QUIC ClientConnection.
158        ///
159        /// This differs from `ClientConnection::new()` in that it takes an extra `params` argument,
160        /// which contains the TLS-encoded transport parameters to send.
161        pub fn new(
162            config: Arc<ClientConfig>,
163            quic_version: Version,
164            name: ServerName<'static>,
165            params: Vec<u8>,
166        ) -> Result<Self, Error> {
167            if !config.supports_version(ProtocolVersion::TLSv1_3) {
168                return Err(Error::General(
169                    "TLS 1.3 support is required for QUIC".into(),
170                ));
171            }
172
173            if !config.supports_protocol(Protocol::Quic) {
174                return Err(Error::General(
175                    "at least one ciphersuite must support QUIC".into(),
176                ));
177            }
178
179            let ext = match quic_version {
180                Version::V1Draft => ClientExtension::TransportParametersDraft(params),
181                Version::V1 | Version::V2 => ClientExtension::TransportParameters(params),
182            };
183
184            let mut inner = ConnectionCore::for_client(config, name, vec![ext], Protocol::Quic)?;
185            inner.common_state.quic.version = quic_version;
186            Ok(Self {
187                inner: inner.into(),
188            })
189        }
190
191        /// Returns True if the server signalled it will process early data.
192        ///
193        /// If you sent early data and this returns false at the end of the
194        /// handshake then the server will not process the data.  This
195        /// is not an error, but you may wish to resend the data.
196        pub fn is_early_data_accepted(&self) -> bool {
197            self.inner.core.is_early_data_accepted()
198        }
199    }
200
201    impl Deref for ClientConnection {
202        type Target = ConnectionCommon<ClientConnectionData>;
203
204        fn deref(&self) -> &Self::Target {
205            &self.inner
206        }
207    }
208
209    impl DerefMut for ClientConnection {
210        fn deref_mut(&mut self) -> &mut Self::Target {
211            &mut self.inner
212        }
213    }
214
215    impl Debug for ClientConnection {
216        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
217            f.debug_struct("quic::ClientConnection")
218                .finish()
219        }
220    }
221
222    impl From<ClientConnection> for Connection {
223        fn from(c: ClientConnection) -> Self {
224            Self::Client(c)
225        }
226    }
227
228    /// A QUIC server connection.
229    pub struct ServerConnection {
230        inner: ConnectionCommon<ServerConnectionData>,
231    }
232
233    impl ServerConnection {
234        /// Make a new QUIC ServerConnection.
235        ///
236        /// This differs from `ServerConnection::new()` in that it takes an extra `params` argument,
237        /// which contains the TLS-encoded transport parameters to send.
238        pub fn new(
239            config: Arc<ServerConfig>,
240            quic_version: Version,
241            params: Vec<u8>,
242        ) -> Result<Self, Error> {
243            if !config.supports_version(ProtocolVersion::TLSv1_3) {
244                return Err(Error::General(
245                    "TLS 1.3 support is required for QUIC".into(),
246                ));
247            }
248
249            if !config.supports_protocol(Protocol::Quic) {
250                return Err(Error::General(
251                    "at least one ciphersuite must support QUIC".into(),
252                ));
253            }
254
255            if config.max_early_data_size != 0 && config.max_early_data_size != 0xffff_ffff {
256                return Err(Error::General(
257                    "QUIC sessions must set a max early data of 0 or 2^32-1".into(),
258                ));
259            }
260
261            let ext = match quic_version {
262                Version::V1Draft => ServerExtension::TransportParametersDraft(params),
263                Version::V1 | Version::V2 => ServerExtension::TransportParameters(params),
264            };
265
266            let mut core = ConnectionCore::for_server(config, vec![ext])?;
267            core.common_state.protocol = Protocol::Quic;
268            core.common_state.quic.version = quic_version;
269            Ok(Self { inner: core.into() })
270        }
271
272        /// Explicitly discard early data, notifying the client
273        ///
274        /// Useful if invariants encoded in `received_resumption_data()` cannot be respected.
275        ///
276        /// Must be called while `is_handshaking` is true.
277        pub fn reject_early_data(&mut self) {
278            self.inner.core.reject_early_data()
279        }
280
281        /// Retrieves the server name, if any, used to select the certificate and
282        /// private key.
283        ///
284        /// This returns `None` until some time after the client's server name indication
285        /// (SNI) extension value is processed during the handshake. It will never be
286        /// `None` when the connection is ready to send or process application data,
287        /// unless the client does not support SNI.
288        ///
289        /// This is useful for application protocols that need to enforce that the
290        /// server name matches an application layer protocol hostname. For
291        /// example, HTTP/1.1 servers commonly expect the `Host:` header field of
292        /// every request on a connection to match the hostname in the SNI extension
293        /// when the client provides the SNI extension.
294        ///
295        /// The server name is also used to match sessions during session resumption.
296        pub fn server_name(&self) -> Option<&str> {
297            self.inner.core.get_sni_str()
298        }
299    }
300
301    impl Deref for ServerConnection {
302        type Target = ConnectionCommon<ServerConnectionData>;
303
304        fn deref(&self) -> &Self::Target {
305            &self.inner
306        }
307    }
308
309    impl DerefMut for ServerConnection {
310        fn deref_mut(&mut self) -> &mut Self::Target {
311            &mut self.inner
312        }
313    }
314
315    impl Debug for ServerConnection {
316        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
317            f.debug_struct("quic::ServerConnection")
318                .finish()
319        }
320    }
321
322    impl From<ServerConnection> for Connection {
323        fn from(c: ServerConnection) -> Self {
324            Self::Server(c)
325        }
326    }
327
328    /// A shared interface for QUIC connections.
329    pub struct ConnectionCommon<Data> {
330        core: ConnectionCore<Data>,
331        deframer_buffer: DeframerVecBuffer,
332        sendable_plaintext: ChunkVecBuffer,
333    }
334
335    impl<Data: SideData> ConnectionCommon<Data> {
336        /// Return the TLS-encoded transport parameters for the session's peer.
337        ///
338        /// While the transport parameters are technically available prior to the
339        /// completion of the handshake, they cannot be fully trusted until the
340        /// handshake completes, and reliance on them should be minimized.
341        /// However, any tampering with the parameters will cause the handshake
342        /// to fail.
343        pub fn quic_transport_parameters(&self) -> Option<&[u8]> {
344            self.core
345                .common_state
346                .quic
347                .params
348                .as_ref()
349                .map(|v| v.as_ref())
350        }
351
352        /// Compute the keys for encrypting/decrypting 0-RTT packets, if available
353        pub fn zero_rtt_keys(&self) -> Option<DirectionalKeys> {
354            let suite = self
355                .core
356                .common_state
357                .suite
358                .and_then(|suite| suite.tls13())?;
359            Some(DirectionalKeys::new(
360                suite,
361                suite.quic?,
362                self.core
363                    .common_state
364                    .quic
365                    .early_secret
366                    .as_ref()?,
367                self.core.common_state.quic.version,
368            ))
369        }
370
371        /// Consume unencrypted TLS handshake data.
372        ///
373        /// Handshake data obtained from separate encryption levels should be supplied in separate calls.
374        pub fn read_hs(&mut self, plaintext: &[u8]) -> Result<(), Error> {
375            let range = self.deframer_buffer.extend(plaintext);
376
377            self.core.hs_deframer.input_message(
378                InboundPlainMessage {
379                    typ: ContentType::Handshake,
380                    version: ProtocolVersion::TLSv1_3,
381                    payload: &self.deframer_buffer.filled()[range.clone()],
382                },
383                &Locator::new(self.deframer_buffer.filled()),
384                range.end,
385            );
386
387            self.core
388                .hs_deframer
389                .coalesce(self.deframer_buffer.filled_mut())?;
390
391            self.core
392                .process_new_packets(&mut self.deframer_buffer, &mut self.sendable_plaintext)?;
393
394            Ok(())
395        }
396
397        /// Emit unencrypted TLS handshake data.
398        ///
399        /// When this returns `Some(_)`, the new keys must be used for future handshake data.
400        pub fn write_hs(&mut self, buf: &mut Vec<u8>) -> Option<KeyChange> {
401            self.core
402                .common_state
403                .quic
404                .write_hs(buf)
405        }
406
407        /// Emit the TLS description code of a fatal alert, if one has arisen.
408        ///
409        /// Check after `read_hs` returns `Err(_)`.
410        pub fn alert(&self) -> Option<AlertDescription> {
411            self.core.common_state.quic.alert
412        }
413    }
414
415    impl<Data> Deref for ConnectionCommon<Data> {
416        type Target = CommonState;
417
418        fn deref(&self) -> &Self::Target {
419            &self.core.common_state
420        }
421    }
422
423    impl<Data> DerefMut for ConnectionCommon<Data> {
424        fn deref_mut(&mut self) -> &mut Self::Target {
425            &mut self.core.common_state
426        }
427    }
428
429    impl<Data> From<ConnectionCore<Data>> for ConnectionCommon<Data> {
430        fn from(core: ConnectionCore<Data>) -> Self {
431            Self {
432                core,
433                deframer_buffer: DeframerVecBuffer::default(),
434                sendable_plaintext: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
435            }
436        }
437    }
438}
439
440#[cfg(feature = "std")]
441pub use connection::{ClientConnection, Connection, ConnectionCommon, ServerConnection};
442
443#[derive(Default)]
444pub(crate) struct Quic {
445    /// QUIC transport parameters received from the peer during the handshake
446    pub(crate) params: Option<Vec<u8>>,
447    pub(crate) alert: Option<AlertDescription>,
448    pub(crate) hs_queue: VecDeque<(bool, Vec<u8>)>,
449    pub(crate) early_secret: Option<OkmBlock>,
450    pub(crate) hs_secrets: Option<Secrets>,
451    pub(crate) traffic_secrets: Option<Secrets>,
452    /// Whether keys derived from traffic_secrets have been passed to the QUIC implementation
453    #[cfg(feature = "std")]
454    pub(crate) returned_traffic_keys: bool,
455    pub(crate) version: Version,
456}
457
458#[cfg(feature = "std")]
459impl Quic {
460    pub(crate) fn write_hs(&mut self, buf: &mut Vec<u8>) -> Option<KeyChange> {
461        while let Some((_, msg)) = self.hs_queue.pop_front() {
462            buf.extend_from_slice(&msg);
463            if let Some(&(true, _)) = self.hs_queue.front() {
464                if self.hs_secrets.is_some() {
465                    // Allow the caller to switch keys before proceeding.
466                    break;
467                }
468            }
469        }
470
471        if let Some(secrets) = self.hs_secrets.take() {
472            return Some(KeyChange::Handshake {
473                keys: Keys::new(&secrets),
474            });
475        }
476
477        if let Some(mut secrets) = self.traffic_secrets.take() {
478            if !self.returned_traffic_keys {
479                self.returned_traffic_keys = true;
480                let keys = Keys::new(&secrets);
481                secrets.update();
482                return Some(KeyChange::OneRtt {
483                    keys,
484                    next: secrets,
485                });
486            }
487        }
488
489        None
490    }
491}
492
493/// Secrets used to encrypt/decrypt traffic
494#[derive(Clone)]
495pub struct Secrets {
496    /// Secret used to encrypt packets transmitted by the client
497    pub(crate) client: OkmBlock,
498    /// Secret used to encrypt packets transmitted by the server
499    pub(crate) server: OkmBlock,
500    /// Cipher suite used with these secrets
501    suite: &'static Tls13CipherSuite,
502    quic: &'static dyn Algorithm,
503    side: Side,
504    version: Version,
505}
506
507impl Secrets {
508    pub(crate) fn new(
509        client: OkmBlock,
510        server: OkmBlock,
511        suite: &'static Tls13CipherSuite,
512        quic: &'static dyn Algorithm,
513        side: Side,
514        version: Version,
515    ) -> Self {
516        Self {
517            client,
518            server,
519            suite,
520            quic,
521            side,
522            version,
523        }
524    }
525
526    /// Derive the next set of packet keys
527    pub fn next_packet_keys(&mut self) -> PacketKeySet {
528        let keys = PacketKeySet::new(self);
529        self.update();
530        keys
531    }
532
533    pub(crate) fn update(&mut self) {
534        self.client = hkdf_expand_label_block(
535            self.suite
536                .hkdf_provider
537                .expander_for_okm(&self.client)
538                .as_ref(),
539            self.version.key_update_label(),
540            &[],
541        );
542        self.server = hkdf_expand_label_block(
543            self.suite
544                .hkdf_provider
545                .expander_for_okm(&self.server)
546                .as_ref(),
547            self.version.key_update_label(),
548            &[],
549        );
550    }
551
552    fn local_remote(&self) -> (&OkmBlock, &OkmBlock) {
553        match self.side {
554            Side::Client => (&self.client, &self.server),
555            Side::Server => (&self.server, &self.client),
556        }
557    }
558}
559
560/// Keys used to communicate in a single direction
561pub struct DirectionalKeys {
562    /// Encrypts or decrypts a packet's headers
563    pub header: Box<dyn HeaderProtectionKey>,
564    /// Encrypts or decrypts the payload of a packet
565    pub packet: Box<dyn PacketKey>,
566}
567
568impl DirectionalKeys {
569    pub(crate) fn new(
570        suite: &'static Tls13CipherSuite,
571        quic: &'static dyn Algorithm,
572        secret: &OkmBlock,
573        version: Version,
574    ) -> Self {
575        let builder = KeyBuilder::new(secret, version, quic, suite.hkdf_provider);
576        Self {
577            header: builder.header_protection_key(),
578            packet: builder.packet_key(),
579        }
580    }
581}
582
583/// All AEADs we support have 16-byte tags.
584const TAG_LEN: usize = 16;
585
586/// Authentication tag from an AEAD seal operation.
587pub struct Tag([u8; TAG_LEN]);
588
589impl From<&[u8]> for Tag {
590    fn from(value: &[u8]) -> Self {
591        let mut array = [0u8; TAG_LEN];
592        array.copy_from_slice(value);
593        Self(array)
594    }
595}
596
597impl AsRef<[u8]> for Tag {
598    fn as_ref(&self) -> &[u8] {
599        &self.0
600    }
601}
602
603/// How a `Tls13CipherSuite` generates `PacketKey`s and `HeaderProtectionKey`s.
604pub trait Algorithm: Send + Sync {
605    /// Produce a `PacketKey` encrypter/decrypter for this suite.
606    ///
607    /// `suite` is the entire suite this `Algorithm` appeared in.
608    /// `key` and `iv` is the key material to use.
609    fn packet_key(&self, key: AeadKey, iv: Iv) -> Box<dyn PacketKey>;
610
611    /// Produce a `HeaderProtectionKey` encrypter/decrypter for this suite.
612    ///
613    /// `key` is the key material, which is `aead_key_len()` bytes in length.
614    fn header_protection_key(&self, key: AeadKey) -> Box<dyn HeaderProtectionKey>;
615
616    /// The length in bytes of keys for this Algorithm.
617    ///
618    /// This controls the size of `AeadKey`s presented to `packet_key()` and `header_protection_key()`.
619    fn aead_key_len(&self) -> usize;
620
621    /// Whether this algorithm is FIPS-approved.
622    #[cfg(unstable_api_not_supported)] // [FIPS REMOVED FROM THIS FORK]
623    fn fips(&self) -> bool {
624        false
625    }
626}
627
628/// A QUIC header protection key
629pub trait HeaderProtectionKey: Send + Sync {
630    /// Adds QUIC Header Protection.
631    ///
632    /// `sample` must contain the sample of encrypted payload; see
633    /// [Header Protection Sample].
634    ///
635    /// `first` must reference the first byte of the header, referred to as
636    /// `packet[0]` in [Header Protection Application].
637    ///
638    /// `packet_number` must reference the Packet Number field; this is
639    /// `packet[pn_offset:pn_offset+pn_length]` in [Header Protection Application].
640    ///
641    /// Returns an error without modifying anything if `sample` is not
642    /// the correct length (see [Header Protection Sample] and [`Self::sample_len()`]),
643    /// or `packet_number` is longer than allowed (see [Packet Number Encoding and Decoding]).
644    ///
645    /// Otherwise, `first` and `packet_number` will have the header protection added.
646    ///
647    /// [Header Protection Application]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.1
648    /// [Header Protection Sample]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.2
649    /// [Packet Number Encoding and Decoding]: https://datatracker.ietf.org/doc/html/rfc9000#section-17.1
650    fn encrypt_in_place(
651        &self,
652        sample: &[u8],
653        first: &mut u8,
654        packet_number: &mut [u8],
655    ) -> Result<(), Error>;
656
657    /// Removes QUIC Header Protection.
658    ///
659    /// `sample` must contain the sample of encrypted payload; see
660    /// [Header Protection Sample].
661    ///
662    /// `first` must reference the first byte of the header, referred to as
663    /// `packet[0]` in [Header Protection Application].
664    ///
665    /// `packet_number` must reference the Packet Number field; this is
666    /// `packet[pn_offset:pn_offset+pn_length]` in [Header Protection Application].
667    ///
668    /// Returns an error without modifying anything if `sample` is not
669    /// the correct length (see [Header Protection Sample] and [`Self::sample_len()`]),
670    /// or `packet_number` is longer than allowed (see
671    /// [Packet Number Encoding and Decoding]).
672    ///
673    /// Otherwise, `first` and `packet_number` will have the header protection removed.
674    ///
675    /// [Header Protection Application]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.1
676    /// [Header Protection Sample]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.2
677    /// [Packet Number Encoding and Decoding]: https://datatracker.ietf.org/doc/html/rfc9000#section-17.1
678    fn decrypt_in_place(
679        &self,
680        sample: &[u8],
681        first: &mut u8,
682        packet_number: &mut [u8],
683    ) -> Result<(), Error>;
684
685    /// Expected sample length for the key's algorithm
686    fn sample_len(&self) -> usize;
687}
688
689/// Keys to encrypt or decrypt the payload of a packet
690pub trait PacketKey: Send + Sync {
691    /// Encrypt a QUIC packet
692    ///
693    /// Takes a `packet_number`, used to derive the nonce; the packet `header`, which is used as
694    /// the additional authenticated data; and the `payload`. The authentication tag is returned if
695    /// encryption succeeds.
696    ///
697    /// Fails if and only if the payload is longer than allowed by the cipher suite's AEAD algorithm.
698    fn encrypt_in_place(
699        &self,
700        packet_number: u64,
701        header: &[u8],
702        payload: &mut [u8],
703    ) -> Result<Tag, Error>;
704
705    /// Decrypt a QUIC packet
706    ///
707    /// Takes the packet `header`, which is used as the additional authenticated data, and the
708    /// `payload`, which includes the authentication tag.
709    ///
710    /// If the return value is `Ok`, the decrypted payload can be found in `payload`, up to the
711    /// length found in the return value.
712    fn decrypt_in_place<'a>(
713        &self,
714        packet_number: u64,
715        header: &[u8],
716        payload: &'a mut [u8],
717    ) -> Result<&'a [u8], Error>;
718
719    /// Tag length for the underlying AEAD algorithm
720    fn tag_len(&self) -> usize;
721
722    /// Number of QUIC messages that can be safely encrypted with a single key of this type.
723    ///
724    /// Once a `MessageEncrypter` produced for this suite has encrypted more than
725    /// `confidentiality_limit` messages, an attacker gains an advantage in distinguishing it
726    /// from an ideal pseudorandom permutation (PRP).
727    ///
728    /// This is to be set on the assumption that messages are maximally sized --
729    /// 2 ** 16. For non-QUIC TCP connections see [`CipherSuiteCommon::confidentiality_limit`][csc-limit].
730    ///
731    /// [csc-limit]: crate::crypto::CipherSuiteCommon::confidentiality_limit
732    fn confidentiality_limit(&self) -> u64;
733
734    /// Number of QUIC messages that can be safely decrypted with a single key of this type
735    ///
736    /// Once a `MessageDecrypter` produced for this suite has failed to decrypt `integrity_limit`
737    /// messages, an attacker gains an advantage in forging messages.
738    ///
739    /// This is not relevant for TLS over TCP (which is also implemented in this crate)
740    /// because a single failed decryption is fatal to the connection.
741    /// However, this quantity is used by QUIC.
742    fn integrity_limit(&self) -> u64;
743}
744
745/// Packet protection keys for bidirectional 1-RTT communication
746pub struct PacketKeySet {
747    /// Encrypts outgoing packets
748    pub local: Box<dyn PacketKey>,
749    /// Decrypts incoming packets
750    pub remote: Box<dyn PacketKey>,
751}
752
753impl PacketKeySet {
754    fn new(secrets: &Secrets) -> Self {
755        let (local, remote) = secrets.local_remote();
756        let (version, alg, hkdf) = (secrets.version, secrets.quic, secrets.suite.hkdf_provider);
757        Self {
758            local: KeyBuilder::new(local, version, alg, hkdf).packet_key(),
759            remote: KeyBuilder::new(remote, version, alg, hkdf).packet_key(),
760        }
761    }
762}
763
764pub(crate) struct KeyBuilder<'a> {
765    expander: Box<dyn HkdfExpander>,
766    version: Version,
767    alg: &'a dyn Algorithm,
768}
769
770impl<'a> KeyBuilder<'a> {
771    pub(crate) fn new(
772        secret: &OkmBlock,
773        version: Version,
774        alg: &'a dyn Algorithm,
775        hkdf: &'a dyn Hkdf,
776    ) -> Self {
777        Self {
778            expander: hkdf.expander_for_okm(secret),
779            version,
780            alg,
781        }
782    }
783
784    /// Derive packet keys
785    pub(crate) fn packet_key(&self) -> Box<dyn PacketKey> {
786        let aead_key_len = self.alg.aead_key_len();
787        let packet_key = hkdf_expand_label_aead_key(
788            self.expander.as_ref(),
789            aead_key_len,
790            self.version.packet_key_label(),
791            &[],
792        );
793
794        let packet_iv =
795            hkdf_expand_label(self.expander.as_ref(), self.version.packet_iv_label(), &[]);
796        self.alg
797            .packet_key(packet_key, packet_iv)
798    }
799
800    /// Derive header protection keys
801    pub(crate) fn header_protection_key(&self) -> Box<dyn HeaderProtectionKey> {
802        let header_key = hkdf_expand_label_aead_key(
803            self.expander.as_ref(),
804            self.alg.aead_key_len(),
805            self.version.header_key_label(),
806            &[],
807        );
808        self.alg
809            .header_protection_key(header_key)
810    }
811}
812
813/// Produces QUIC initial keys from a TLS 1.3 ciphersuite and a QUIC key generation algorithm.
814#[derive(Clone, Copy)]
815pub struct Suite {
816    /// The TLS 1.3 ciphersuite used to derive keys.
817    pub suite: &'static Tls13CipherSuite,
818    /// The QUIC key generation algorithm used to derive keys.
819    pub quic: &'static dyn Algorithm,
820}
821
822impl Suite {
823    /// Produce a set of initial keys given the connection ID, side and version
824    pub fn keys(&self, client_dst_connection_id: &[u8], side: Side, version: Version) -> Keys {
825        Keys::initial(
826            version,
827            self.suite,
828            self.quic,
829            client_dst_connection_id,
830            side,
831        )
832    }
833}
834
835/// Complete set of keys used to communicate with the peer
836pub struct Keys {
837    /// Encrypts outgoing packets
838    pub local: DirectionalKeys,
839    /// Decrypts incoming packets
840    pub remote: DirectionalKeys,
841}
842
843impl Keys {
844    /// Construct keys for use with initial packets
845    pub fn initial(
846        version: Version,
847        suite: &'static Tls13CipherSuite,
848        quic: &'static dyn Algorithm,
849        client_dst_connection_id: &[u8],
850        side: Side,
851    ) -> Self {
852        const CLIENT_LABEL: &[u8] = b"client in";
853        const SERVER_LABEL: &[u8] = b"server in";
854        let salt = version.initial_salt();
855        let hs_secret = suite
856            .hkdf_provider
857            .extract_from_secret(Some(salt), client_dst_connection_id);
858
859        let secrets = Secrets {
860            version,
861            client: hkdf_expand_label_block(hs_secret.as_ref(), CLIENT_LABEL, &[]),
862            server: hkdf_expand_label_block(hs_secret.as_ref(), SERVER_LABEL, &[]),
863            suite,
864            quic,
865            side,
866        };
867        Self::new(&secrets)
868    }
869
870    fn new(secrets: &Secrets) -> Self {
871        let (local, remote) = secrets.local_remote();
872        Self {
873            local: DirectionalKeys::new(secrets.suite, secrets.quic, local, secrets.version),
874            remote: DirectionalKeys::new(secrets.suite, secrets.quic, remote, secrets.version),
875        }
876    }
877}
878
879/// Key material for use in QUIC packet spaces
880///
881/// QUIC uses 4 different sets of keys (and progressive key updates for long-running connections):
882///
883/// * Initial: these can be created from [`Keys::initial()`]
884/// * 0-RTT keys: can be retrieved from [`ConnectionCommon::zero_rtt_keys()`]
885/// * Handshake: these are returned from [`ConnectionCommon::write_hs()`] after `ClientHello` and
886///   `ServerHello` messages have been exchanged
887/// * 1-RTT keys: these are returned from [`ConnectionCommon::write_hs()`] after the handshake is done
888///
889/// Once the 1-RTT keys have been exchanged, either side may initiate a key update. Progressive
890/// update keys can be obtained from the [`Secrets`] returned in [`KeyChange::OneRtt`]. Note that
891/// only packet keys are updated by key updates; header protection keys remain the same.
892pub enum KeyChange {
893    /// Keys for the handshake space
894    Handshake {
895        /// Header and packet keys for the handshake space
896        keys: Keys,
897    },
898    /// Keys for 1-RTT data
899    OneRtt {
900        /// Header and packet keys for 1-RTT data
901        keys: Keys,
902        /// Secrets to derive updated keys from
903        next: Secrets,
904    },
905}
906
907/// QUIC protocol version
908///
909/// Governs version-specific behavior in the TLS layer
910#[non_exhaustive]
911#[derive(Clone, Copy, Debug)]
912pub enum Version {
913    /// Draft versions 29, 30, 31 and 32
914    V1Draft,
915    /// First stable RFC
916    V1,
917    /// Anti-ossification variant of V1
918    V2,
919}
920
921impl Version {
922    fn initial_salt(self) -> &'static [u8; 20] {
923        match self {
924            Self::V1Draft => &[
925                // https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-32#section-5.2
926                0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61,
927                0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99,
928            ],
929            Self::V1 => &[
930                // https://www.rfc-editor.org/rfc/rfc9001.html#name-initial-secrets
931                0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8,
932                0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a,
933            ],
934            Self::V2 => &[
935                // https://www.ietf.org/archive/id/draft-ietf-quic-v2-10.html#name-initial-salt-2
936                0x0d, 0xed, 0xe3, 0xde, 0xf7, 0x00, 0xa6, 0xdb, 0x81, 0x93, 0x81, 0xbe, 0x6e, 0x26,
937                0x9d, 0xcb, 0xf9, 0xbd, 0x2e, 0xd9,
938            ],
939        }
940    }
941
942    /// Key derivation label for packet keys.
943    pub(crate) fn packet_key_label(&self) -> &'static [u8] {
944        match self {
945            Self::V1Draft | Self::V1 => b"quic key",
946            Self::V2 => b"quicv2 key",
947        }
948    }
949
950    /// Key derivation label for packet "IV"s.
951    pub(crate) fn packet_iv_label(&self) -> &'static [u8] {
952        match self {
953            Self::V1Draft | Self::V1 => b"quic iv",
954            Self::V2 => b"quicv2 iv",
955        }
956    }
957
958    /// Key derivation for header keys.
959    pub(crate) fn header_key_label(&self) -> &'static [u8] {
960        match self {
961            Self::V1Draft | Self::V1 => b"quic hp",
962            Self::V2 => b"quicv2 hp",
963        }
964    }
965
966    fn key_update_label(&self) -> &'static [u8] {
967        match self {
968            Self::V1Draft | Self::V1 => b"quic ku",
969            Self::V2 => b"quicv2 ku",
970        }
971    }
972}
973
974impl Default for Version {
975    fn default() -> Self {
976        Self::V1
977    }
978}
979
980#[cfg(test)]
981mod tests {
982    use std::prelude::v1::*;
983
984    use super::PacketKey;
985    use crate::quic::HeaderProtectionKey;
986
987    #[test]
988    fn auto_traits() {
989        fn assert_auto<T: Send + Sync>() {}
990        assert_auto::<Box<dyn PacketKey>>();
991        assert_auto::<Box<dyn HeaderProtectionKey>>();
992    }
993}