portable_rustls/conn.rs
1use alloc::boxed::Box;
2use core::fmt::Debug;
3use core::mem;
4use core::ops::{Deref, DerefMut, Range};
5#[cfg(feature = "std")]
6use std::io;
7
8use crate::common_state::{CommonState, Context, IoState, State, DEFAULT_BUFFER_LIMIT};
9use crate::enums::{AlertDescription, ContentType, ProtocolVersion};
10use crate::error::{Error, PeerMisbehaved};
11use crate::log::trace;
12use crate::msgs::deframer::buffers::{BufferProgress, DeframerVecBuffer, Delocator, Locator};
13use crate::msgs::deframer::handshake::HandshakeDeframer;
14use crate::msgs::deframer::DeframerIter;
15use crate::msgs::handshake::Random;
16use crate::msgs::message::{InboundPlainMessage, Message, MessagePayload};
17use crate::record_layer::Decrypted;
18use crate::suites::{ExtractedSecrets, PartiallyExtractedSecrets};
19use crate::vecbuf::ChunkVecBuffer;
20
21pub(crate) mod unbuffered;
22
23#[cfg(feature = "std")]
24mod connection {
25 use alloc::vec::Vec;
26 use core::fmt::Debug;
27 use core::ops::{Deref, DerefMut};
28 use std::io::{self, BufRead, Read};
29
30 use crate::common_state::{CommonState, IoState};
31 use crate::error::Error;
32 use crate::msgs::message::OutboundChunks;
33 use crate::suites::ExtractedSecrets;
34 use crate::vecbuf::ChunkVecBuffer;
35 use crate::ConnectionCommon;
36
37 /// A client or server connection.
38 #[derive(Debug)]
39 pub enum Connection {
40 /// A client connection
41 Client(crate::client::ClientConnection),
42 /// A server connection
43 Server(crate::server::ServerConnection),
44 }
45
46 impl Connection {
47 /// Read TLS content from `rd`.
48 ///
49 /// See [`ConnectionCommon::read_tls()`] for more information.
50 pub fn read_tls(&mut self, rd: &mut dyn Read) -> Result<usize, io::Error> {
51 match self {
52 Self::Client(conn) => conn.read_tls(rd),
53 Self::Server(conn) => conn.read_tls(rd),
54 }
55 }
56
57 /// Writes TLS messages to `wr`.
58 ///
59 /// See [`ConnectionCommon::write_tls()`] for more information.
60 pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
61 self.sendable_tls.write_to(wr)
62 }
63
64 /// Returns an object that allows reading plaintext.
65 pub fn reader(&mut self) -> Reader<'_> {
66 match self {
67 Self::Client(conn) => conn.reader(),
68 Self::Server(conn) => conn.reader(),
69 }
70 }
71
72 /// Returns an object that allows writing plaintext.
73 pub fn writer(&mut self) -> Writer<'_> {
74 match self {
75 Self::Client(conn) => Writer::new(&mut **conn),
76 Self::Server(conn) => Writer::new(&mut **conn),
77 }
78 }
79
80 /// Processes any new packets read by a previous call to [`Connection::read_tls`].
81 ///
82 /// See [`ConnectionCommon::process_new_packets()`] for more information.
83 pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
84 match self {
85 Self::Client(conn) => conn.process_new_packets(),
86 Self::Server(conn) => conn.process_new_packets(),
87 }
88 }
89
90 /// Derives key material from the agreed connection secrets.
91 ///
92 /// See [`ConnectionCommon::export_keying_material()`] for more information.
93 pub fn export_keying_material<T: AsMut<[u8]>>(
94 &self,
95 output: T,
96 label: &[u8],
97 context: Option<&[u8]>,
98 ) -> Result<T, Error> {
99 match self {
100 Self::Client(conn) => conn.export_keying_material(output, label, context),
101 Self::Server(conn) => conn.export_keying_material(output, label, context),
102 }
103 }
104
105 /// This function uses `io` to complete any outstanding IO for this connection.
106 ///
107 /// See [`ConnectionCommon::complete_io()`] for more information.
108 pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
109 where
110 Self: Sized,
111 T: Read + io::Write,
112 {
113 match self {
114 Self::Client(conn) => conn.complete_io(io),
115 Self::Server(conn) => conn.complete_io(io),
116 }
117 }
118
119 /// Extract secrets, so they can be used when configuring kTLS, for example.
120 /// Should be used with care as it exposes secret key material.
121 pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
122 match self {
123 Self::Client(client) => client.dangerous_extract_secrets(),
124 Self::Server(server) => server.dangerous_extract_secrets(),
125 }
126 }
127
128 /// Sets a limit on the internal buffers
129 ///
130 /// See [`ConnectionCommon::set_buffer_limit()`] for more information.
131 pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
132 match self {
133 Self::Client(client) => client.set_buffer_limit(limit),
134 Self::Server(server) => server.set_buffer_limit(limit),
135 }
136 }
137
138 /// Sends a TLS1.3 `key_update` message to refresh a connection's keys
139 ///
140 /// See [`ConnectionCommon::refresh_traffic_keys()`] for more information.
141 pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
142 match self {
143 Self::Client(client) => client.refresh_traffic_keys(),
144 Self::Server(server) => server.refresh_traffic_keys(),
145 }
146 }
147 }
148
149 impl Deref for Connection {
150 type Target = CommonState;
151
152 fn deref(&self) -> &Self::Target {
153 match self {
154 Self::Client(conn) => &conn.core.common_state,
155 Self::Server(conn) => &conn.core.common_state,
156 }
157 }
158 }
159
160 impl DerefMut for Connection {
161 fn deref_mut(&mut self) -> &mut Self::Target {
162 match self {
163 Self::Client(conn) => &mut conn.core.common_state,
164 Self::Server(conn) => &mut conn.core.common_state,
165 }
166 }
167 }
168
169 /// A structure that implements [`std::io::Read`] for reading plaintext.
170 pub struct Reader<'a> {
171 pub(super) received_plaintext: &'a mut ChunkVecBuffer,
172 pub(super) has_received_close_notify: bool,
173 pub(super) has_seen_eof: bool,
174 }
175
176 impl<'a> Reader<'a> {
177 /// Check the connection's state if no bytes are available for reading.
178 fn check_no_bytes_state(&self) -> io::Result<()> {
179 match (self.has_received_close_notify, self.has_seen_eof) {
180 // cleanly closed; don't care about TCP EOF: express this as Ok(0)
181 (true, _) => Ok(()),
182 // unclean closure
183 (false, true) => Err(io::Error::new(
184 io::ErrorKind::UnexpectedEof,
185 UNEXPECTED_EOF_MESSAGE,
186 )),
187 // connection still going, but needs more data: signal `WouldBlock` so that
188 // the caller knows this
189 (false, false) => Err(io::ErrorKind::WouldBlock.into()),
190 }
191 }
192
193 /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
194 ///
195 /// This method consumes `self` so that it can return a slice whose lifetime is bounded by
196 /// the [`ConnectionCommon`] that created this `Reader`.
197 pub fn into_first_chunk(self) -> io::Result<&'a [u8]> {
198 match self.received_plaintext.chunk() {
199 Some(chunk) => Ok(chunk),
200 None => {
201 self.check_no_bytes_state()?;
202 Ok(&[])
203 }
204 }
205 }
206 }
207
208 impl Read for Reader<'_> {
209 /// Obtain plaintext data received from the peer over this TLS connection.
210 ///
211 /// If the peer closes the TLS session cleanly, this returns `Ok(0)` once all
212 /// the pending data has been read. No further data can be received on that
213 /// connection, so the underlying TCP connection should be half-closed too.
214 ///
215 /// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
216 /// `close_notify` alert) this function returns a `std::io::Error` of type
217 /// `ErrorKind::UnexpectedEof` once any pending data has been read.
218 ///
219 /// Note that support for `close_notify` varies in peer TLS libraries: many do not
220 /// support it and uncleanly close the TCP connection (this might be
221 /// vulnerable to truncation attacks depending on the application protocol).
222 /// This means applications using rustls must both handle EOF
223 /// from this function, *and* unexpected EOF of the underlying TCP connection.
224 ///
225 /// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
226 ///
227 /// You may learn the number of bytes available at any time by inspecting
228 /// the return of [`Connection::process_new_packets`].
229 fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
230 let len = self.received_plaintext.read(buf)?;
231 if len > 0 || buf.is_empty() {
232 return Ok(len);
233 }
234
235 self.check_no_bytes_state()
236 .map(|()| len)
237 }
238
239 /// Obtain plaintext data received from the peer over this TLS connection.
240 ///
241 /// If the peer closes the TLS session, this returns `Ok(())` without filling
242 /// any more of the buffer once all the pending data has been read. No further
243 /// data can be received on that connection, so the underlying TCP connection
244 /// should be half-closed too.
245 ///
246 /// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
247 /// `close_notify` alert) this function returns a `std::io::Error` of type
248 /// `ErrorKind::UnexpectedEof` once any pending data has been read.
249 ///
250 /// Note that support for `close_notify` varies in peer TLS libraries: many do not
251 /// support it and uncleanly close the TCP connection (this might be
252 /// vulnerable to truncation attacks depending on the application protocol).
253 /// This means applications using rustls must both handle EOF
254 /// from this function, *and* unexpected EOF of the underlying TCP connection.
255 ///
256 /// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
257 ///
258 /// You may learn the number of bytes available at any time by inspecting
259 /// the return of [`Connection::process_new_packets`].
260 #[cfg(read_buf)]
261 fn read_buf(&mut self, mut cursor: core::io::BorrowedCursor<'_>) -> io::Result<()> {
262 let before = cursor.written();
263 self.received_plaintext
264 .read_buf(cursor.reborrow())?;
265 let len = cursor.written() - before;
266 if len > 0 || cursor.capacity() == 0 {
267 return Ok(());
268 }
269
270 self.check_no_bytes_state()
271 }
272 }
273
274 impl BufRead for Reader<'_> {
275 /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
276 /// This reads the same data as [`Reader::read()`], but returns a reference instead of
277 /// copying the data.
278 ///
279 /// The caller should call [`Reader::consume()`] afterward to advance the buffer.
280 ///
281 /// See [`Reader::into_first_chunk()`] for a version of this function that returns a
282 /// buffer with a longer lifetime.
283 fn fill_buf(&mut self) -> io::Result<&[u8]> {
284 Reader {
285 // reborrow
286 received_plaintext: self.received_plaintext,
287 ..*self
288 }
289 .into_first_chunk()
290 }
291
292 fn consume(&mut self, amt: usize) {
293 self.received_plaintext
294 .consume_first_chunk(amt)
295 }
296 }
297
298 const UNEXPECTED_EOF_MESSAGE: &str =
299 "peer closed connection without sending TLS close_notify: \
300https://docs.rs/portable-rustls/latest/portable_rustls/manual/_03_howto/index.html#unexpected-eof";
301
302 /// A structure that implements [`std::io::Write`] for writing plaintext.
303 pub struct Writer<'a> {
304 sink: &'a mut dyn PlaintextSink,
305 }
306
307 impl<'a> Writer<'a> {
308 /// Create a new Writer.
309 ///
310 /// This is not an external interface. Get one of these objects
311 /// from [`Connection::writer`].
312 pub(crate) fn new(sink: &'a mut dyn PlaintextSink) -> Self {
313 Writer { sink }
314 }
315 }
316
317 impl io::Write for Writer<'_> {
318 /// Send the plaintext `buf` to the peer, encrypting
319 /// and authenticating it. Once this function succeeds
320 /// you should call [`Connection::write_tls`] which will output the
321 /// corresponding TLS records.
322 ///
323 /// This function buffers plaintext sent before the
324 /// TLS handshake completes, and sends it as soon
325 /// as it can. See [`ConnectionCommon::set_buffer_limit`] to control
326 /// the size of this buffer.
327 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
328 self.sink.write(buf)
329 }
330
331 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
332 self.sink.write_vectored(bufs)
333 }
334
335 fn flush(&mut self) -> io::Result<()> {
336 self.sink.flush()
337 }
338 }
339
340 /// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`]
341 /// allowing them to be the subject of a [`Writer`].
342 ///
343 /// [`ServerConnection`]: crate::ServerConnection
344 /// [`ClientConnection`]: crate::ClientConnection
345 pub(crate) trait PlaintextSink {
346 fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
347 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>;
348 fn flush(&mut self) -> io::Result<()>;
349 }
350
351 impl<T> PlaintextSink for ConnectionCommon<T> {
352 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
353 let len = self
354 .core
355 .common_state
356 .buffer_plaintext(buf.into(), &mut self.sendable_plaintext);
357 self.core.maybe_refresh_traffic_keys();
358 Ok(len)
359 }
360
361 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
362 let payload_owner: Vec<&[u8]>;
363 let payload = match bufs.len() {
364 0 => return Ok(0),
365 1 => OutboundChunks::Single(bufs[0].deref()),
366 _ => {
367 payload_owner = bufs
368 .iter()
369 .map(|io_slice| io_slice.deref())
370 .collect();
371
372 OutboundChunks::new(&payload_owner)
373 }
374 };
375 let len = self
376 .core
377 .common_state
378 .buffer_plaintext(payload, &mut self.sendable_plaintext);
379 self.core.maybe_refresh_traffic_keys();
380 Ok(len)
381 }
382
383 fn flush(&mut self) -> io::Result<()> {
384 Ok(())
385 }
386 }
387}
388
389#[cfg(feature = "std")]
390pub use connection::{Connection, Reader, Writer};
391
392#[derive(Debug)]
393pub(crate) struct ConnectionRandoms {
394 pub(crate) client: [u8; 32],
395 pub(crate) server: [u8; 32],
396}
397
398impl ConnectionRandoms {
399 pub(crate) fn new(client: Random, server: Random) -> Self {
400 Self {
401 client: client.0,
402 server: server.0,
403 }
404 }
405}
406
407/// Interface shared by client and server connections.
408pub struct ConnectionCommon<Data> {
409 pub(crate) core: ConnectionCore<Data>,
410 deframer_buffer: DeframerVecBuffer,
411 sendable_plaintext: ChunkVecBuffer,
412}
413
414impl<Data> ConnectionCommon<Data> {
415 /// Processes any new packets read by a previous call to
416 /// [`Connection::read_tls`].
417 ///
418 /// Errors from this function relate to TLS protocol errors, and
419 /// are fatal to the connection. Future calls after an error will do
420 /// no new work and will return the same error. After an error is
421 /// received from [`process_new_packets`], you should not call [`read_tls`]
422 /// any more (it will fill up buffers to no purpose). However, you
423 /// may call the other methods on the connection, including `write`,
424 /// `send_close_notify`, and `write_tls`. Most likely you will want to
425 /// call `write_tls` to send any alerts queued by the error and then
426 /// close the underlying connection.
427 ///
428 /// Success from this function comes with some sundry state data
429 /// about the connection.
430 ///
431 /// [`read_tls`]: Connection::read_tls
432 /// [`process_new_packets`]: Connection::process_new_packets
433 #[inline]
434 pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
435 self.core
436 .process_new_packets(&mut self.deframer_buffer, &mut self.sendable_plaintext)
437 }
438
439 /// Derives key material from the agreed connection secrets.
440 ///
441 /// This function fills in `output` with `output.len()` bytes of key
442 /// material derived from the master session secret using `label`
443 /// and `context` for diversification. Ownership of the buffer is taken
444 /// by the function and returned via the Ok result to ensure no key
445 /// material leaks if the function fails.
446 ///
447 /// See RFC5705 for more details on what this does and is for.
448 ///
449 /// For TLS1.3 connections, this function does not use the
450 /// "early" exporter at any point.
451 ///
452 /// This function fails if called prior to the handshake completing;
453 /// check with [`CommonState::is_handshaking`] first.
454 ///
455 /// This function fails if `output.len()` is zero.
456 #[inline]
457 pub fn export_keying_material<T: AsMut<[u8]>>(
458 &self,
459 output: T,
460 label: &[u8],
461 context: Option<&[u8]>,
462 ) -> Result<T, Error> {
463 self.core
464 .export_keying_material(output, label, context)
465 }
466
467 /// Extract secrets, so they can be used when configuring kTLS, for example.
468 /// Should be used with care as it exposes secret key material.
469 pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
470 if !self.enable_secret_extraction {
471 return Err(Error::General("Secret extraction is disabled".into()));
472 }
473
474 let st = self.core.state?;
475
476 let record_layer = self.core.common_state.record_layer;
477 let PartiallyExtractedSecrets { tx, rx } = st.extract_secrets()?;
478 Ok(ExtractedSecrets {
479 tx: (record_layer.write_seq(), tx),
480 rx: (record_layer.read_seq(), rx),
481 })
482 }
483
484 /// Sets a limit on the internal buffers used to buffer
485 /// unsent plaintext (prior to completing the TLS handshake)
486 /// and unsent TLS records. This limit acts only on application
487 /// data written through [`Connection::writer`].
488 ///
489 /// By default the limit is 64KB. The limit can be set
490 /// at any time, even if the current buffer use is higher.
491 ///
492 /// [`None`] means no limit applies, and will mean that written
493 /// data is buffered without bound -- it is up to the application
494 /// to appropriately schedule its plaintext and TLS writes to bound
495 /// memory usage.
496 ///
497 /// For illustration: `Some(1)` means a limit of one byte applies:
498 /// [`Connection::writer`] will accept only one byte, encrypt it and
499 /// add a TLS header. Once this is sent via [`Connection::write_tls`],
500 /// another byte may be sent.
501 ///
502 /// # Internal write-direction buffering
503 /// rustls has two buffers whose size are bounded by this setting:
504 ///
505 /// ## Buffering of unsent plaintext data prior to handshake completion
506 ///
507 /// Calls to [`Connection::writer`] before or during the handshake
508 /// are buffered (up to the limit specified here). Once the
509 /// handshake completes this data is encrypted and the resulting
510 /// TLS records are added to the outgoing buffer.
511 ///
512 /// ## Buffering of outgoing TLS records
513 ///
514 /// This buffer is used to store TLS records that rustls needs to
515 /// send to the peer. It is used in these two circumstances:
516 ///
517 /// - by [`Connection::process_new_packets`] when a handshake or alert
518 /// TLS record needs to be sent.
519 /// - by [`Connection::writer`] post-handshake: the plaintext is
520 /// encrypted and the resulting TLS record is buffered.
521 ///
522 /// This buffer is emptied by [`Connection::write_tls`].
523 ///
524 /// [`Connection::writer`]: crate::Connection::writer
525 /// [`Connection::write_tls`]: crate::Connection::write_tls
526 /// [`Connection::process_new_packets`]: crate::Connection::process_new_packets
527 pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
528 self.sendable_plaintext.set_limit(limit);
529 self.sendable_tls.set_limit(limit);
530 }
531
532 /// Sends a TLS1.3 `key_update` message to refresh a connection's keys.
533 ///
534 /// This call refreshes our encryption keys. Once the peer receives the message,
535 /// it refreshes _its_ encryption and decryption keys and sends a response.
536 /// Once we receive that response, we refresh our decryption keys to match.
537 /// At the end of this process, keys in both directions have been refreshed.
538 ///
539 /// Note that this process does not happen synchronously: this call just
540 /// arranges that the `key_update` message will be included in the next
541 /// `write_tls` output.
542 ///
543 /// This fails with `Error::HandshakeNotComplete` if called before the initial
544 /// handshake is complete, or if a version prior to TLS1.3 is negotiated.
545 ///
546 /// # Usage advice
547 /// Note that other implementations (including rustls) may enforce limits on
548 /// the number of `key_update` messages allowed on a given connection to prevent
549 /// denial of service. Therefore, this should be called sparingly.
550 ///
551 /// rustls implicitly and automatically refreshes traffic keys when needed
552 /// according to the selected cipher suite's cryptographic constraints. There
553 /// is therefore no need to call this manually to avoid cryptographic keys
554 /// "wearing out".
555 ///
556 /// The main reason to call this manually is to roll keys when it is known
557 /// a connection will be idle for a long period.
558 pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
559 self.core.refresh_traffic_keys()
560 }
561}
562
563#[cfg(feature = "std")]
564impl<Data> ConnectionCommon<Data> {
565 /// Returns an object that allows reading plaintext.
566 pub fn reader(&mut self) -> Reader<'_> {
567 let common = &mut self.core.common_state;
568 Reader {
569 received_plaintext: &mut common.received_plaintext,
570 // Are we done? i.e., have we processed all received messages, and received a
571 // close_notify to indicate that no new messages will arrive?
572 has_received_close_notify: common.has_received_close_notify,
573 has_seen_eof: common.has_seen_eof,
574 }
575 }
576
577 /// Returns an object that allows writing plaintext.
578 pub fn writer(&mut self) -> Writer<'_> {
579 Writer::new(self)
580 }
581
582 /// This function uses `io` to complete any outstanding IO for
583 /// this connection.
584 ///
585 /// This is a convenience function which solely uses other parts
586 /// of the public API.
587 ///
588 /// What this means depends on the connection state:
589 ///
590 /// - If the connection [`is_handshaking`], then IO is performed until
591 /// the handshake is complete.
592 /// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked
593 /// until it is all written.
594 /// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked
595 /// once.
596 ///
597 /// The return value is the number of bytes read from and written
598 /// to `io`, respectively.
599 ///
600 /// This function will block if `io` blocks.
601 ///
602 /// Errors from TLS record handling (i.e., from [`process_new_packets`])
603 /// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
604 ///
605 /// [`is_handshaking`]: CommonState::is_handshaking
606 /// [`wants_read`]: CommonState::wants_read
607 /// [`wants_write`]: CommonState::wants_write
608 /// [`write_tls`]: ConnectionCommon::write_tls
609 /// [`read_tls`]: ConnectionCommon::read_tls
610 /// [`process_new_packets`]: ConnectionCommon::process_new_packets
611 pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
612 where
613 Self: Sized,
614 T: io::Read + io::Write,
615 {
616 let mut eof = false;
617 let mut wrlen = 0;
618 let mut rdlen = 0;
619
620 loop {
621 let until_handshaked = self.is_handshaking();
622
623 if !self.wants_write() && !self.wants_read() {
624 // We will make no further progress.
625 return Ok((rdlen, wrlen));
626 }
627
628 while self.wants_write() {
629 match self.write_tls(io)? {
630 0 => {
631 io.flush()?;
632 return Ok((rdlen, wrlen)); // EOF.
633 }
634 n => wrlen += n,
635 }
636 }
637 io.flush()?;
638
639 if !until_handshaked && wrlen > 0 {
640 return Ok((rdlen, wrlen));
641 }
642
643 while !eof && self.wants_read() {
644 let read_size = match self.read_tls(io) {
645 Ok(0) => {
646 eof = true;
647 Some(0)
648 }
649 Ok(n) => {
650 rdlen += n;
651 Some(n)
652 }
653 Err(ref err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do
654 Err(err) => return Err(err),
655 };
656 if read_size.is_some() {
657 break;
658 }
659 }
660
661 match self.process_new_packets() {
662 Ok(_) => {}
663 Err(e) => {
664 // In case we have an alert to send describing this error,
665 // try a last-gasp write -- but don't predate the primary
666 // error.
667 let _ignored = self.write_tls(io);
668 let _ignored = io.flush();
669
670 return Err(io::Error::new(io::ErrorKind::InvalidData, e));
671 }
672 };
673
674 // if we're doing IO until handshaked, and we believe we've finished handshaking,
675 // but process_new_packets() has queued TLS data to send, loop around again to write
676 // the queued messages.
677 if until_handshaked && !self.is_handshaking() && self.wants_write() {
678 continue;
679 }
680
681 match (eof, until_handshaked, self.is_handshaking()) {
682 (_, true, false) => return Ok((rdlen, wrlen)),
683 (_, false, _) => return Ok((rdlen, wrlen)),
684 (true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
685 (..) => {}
686 }
687 }
688 }
689
690 /// Extract the first handshake message.
691 ///
692 /// This is a shortcut to the `process_new_packets()` -> `process_msg()` ->
693 /// `process_handshake_messages()` path, specialized for the first handshake message.
694 pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message<'static>>, Error> {
695 let mut buffer_progress = self.core.hs_deframer.progress();
696
697 let res = self
698 .core
699 .deframe(
700 None,
701 self.deframer_buffer.filled_mut(),
702 &mut buffer_progress,
703 )
704 .map(|opt| opt.map(|pm| Message::try_from(pm).map(|m| m.into_owned())));
705
706 match res? {
707 Some(Ok(msg)) => {
708 self.deframer_buffer
709 .discard(buffer_progress.take_discard());
710 Ok(Some(msg))
711 }
712 Some(Err(err)) => Err(self.send_fatal_alert(AlertDescription::DecodeError, err)),
713 None => Ok(None),
714 }
715 }
716
717 pub(crate) fn replace_state(&mut self, new: Box<dyn State<Data>>) {
718 self.core.state = Ok(new);
719 }
720
721 /// Read TLS content from `rd` into the internal buffer.
722 ///
723 /// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like
724 /// a socket or pipe might).
725 ///
726 /// You should call [`process_new_packets()`] each time a call to this function succeeds in order
727 /// to empty the incoming TLS data buffer.
728 ///
729 /// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when
730 /// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through
731 /// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure:
732 ///
733 /// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`]
734 /// each time a call to this function succeeds.
735 /// * In order to empty the incoming plaintext data buffer, you should empty it through
736 /// the [`reader()`] after the call to [`process_new_packets()`].
737 ///
738 /// This function also returns `Ok(0)` once a `close_notify` alert has been successfully
739 /// received. No additional data is ever read in this state.
740 ///
741 /// [`process_new_packets()`]: ConnectionCommon::process_new_packets
742 /// [`reader()`]: ConnectionCommon::reader
743 pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
744 if self.received_plaintext.is_full() {
745 return Err(io::Error::new(
746 io::ErrorKind::Other,
747 "received plaintext buffer full",
748 ));
749 }
750
751 if self.has_received_close_notify {
752 return Ok(0);
753 }
754
755 let res = self
756 .deframer_buffer
757 .read(rd, self.core.hs_deframer.is_active());
758 if let Ok(0) = res {
759 self.has_seen_eof = true;
760 }
761 res
762 }
763
764 /// Writes TLS messages to `wr`.
765 ///
766 /// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr`
767 /// (after encoding and encryption).
768 ///
769 /// After this function returns, the connection buffer may not yet be fully flushed. The
770 /// [`CommonState::wants_write`] function can be used to check if the output buffer is empty.
771 pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
772 self.sendable_tls.write_to(wr)
773 }
774}
775
776impl<'a, Data> From<&'a mut ConnectionCommon<Data>> for Context<'a, Data> {
777 fn from(conn: &'a mut ConnectionCommon<Data>) -> Self {
778 Self {
779 common: &mut conn.core.common_state,
780 data: &mut conn.core.data,
781 sendable_plaintext: Some(&mut conn.sendable_plaintext),
782 }
783 }
784}
785
786impl<T> Deref for ConnectionCommon<T> {
787 type Target = CommonState;
788
789 fn deref(&self) -> &Self::Target {
790 &self.core.common_state
791 }
792}
793
794impl<T> DerefMut for ConnectionCommon<T> {
795 fn deref_mut(&mut self) -> &mut Self::Target {
796 &mut self.core.common_state
797 }
798}
799
800impl<Data> From<ConnectionCore<Data>> for ConnectionCommon<Data> {
801 fn from(core: ConnectionCore<Data>) -> Self {
802 Self {
803 core,
804 deframer_buffer: DeframerVecBuffer::default(),
805 sendable_plaintext: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
806 }
807 }
808}
809
810/// Interface shared by unbuffered client and server connections.
811pub struct UnbufferedConnectionCommon<Data> {
812 pub(crate) core: ConnectionCore<Data>,
813 wants_write: bool,
814}
815
816impl<Data> From<ConnectionCore<Data>> for UnbufferedConnectionCommon<Data> {
817 fn from(core: ConnectionCore<Data>) -> Self {
818 Self {
819 core,
820 wants_write: false,
821 }
822 }
823}
824
825impl<T> Deref for UnbufferedConnectionCommon<T> {
826 type Target = CommonState;
827
828 fn deref(&self) -> &Self::Target {
829 &self.core.common_state
830 }
831}
832
833pub(crate) struct ConnectionCore<Data> {
834 pub(crate) state: Result<Box<dyn State<Data>>, Error>,
835 pub(crate) data: Data,
836 pub(crate) common_state: CommonState,
837 pub(crate) hs_deframer: HandshakeDeframer,
838
839 /// We limit consecutive empty fragments to avoid a route for the peer to send
840 /// us significant but fruitless traffic.
841 seen_consecutive_empty_fragments: u8,
842}
843
844impl<Data> ConnectionCore<Data> {
845 pub(crate) fn new(state: Box<dyn State<Data>>, data: Data, common_state: CommonState) -> Self {
846 Self {
847 state: Ok(state),
848 data,
849 common_state,
850 hs_deframer: HandshakeDeframer::default(),
851 seen_consecutive_empty_fragments: 0,
852 }
853 }
854
855 pub(crate) fn process_new_packets(
856 &mut self,
857 deframer_buffer: &mut DeframerVecBuffer,
858 sendable_plaintext: &mut ChunkVecBuffer,
859 ) -> Result<IoState, Error> {
860 let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
861 Ok(state) => state,
862 Err(e) => {
863 self.state = Err(e.clone());
864 return Err(e);
865 }
866 };
867
868 let mut buffer_progress = self.hs_deframer.progress();
869
870 loop {
871 let res = self.deframe(
872 Some(&*state),
873 deframer_buffer.filled_mut(),
874 &mut buffer_progress,
875 );
876
877 let opt_msg = match res {
878 Ok(opt_msg) => opt_msg,
879 Err(e) => {
880 self.state = Err(e.clone());
881 deframer_buffer.discard(buffer_progress.take_discard());
882 return Err(e);
883 }
884 };
885
886 let Some(msg) = opt_msg else {
887 break;
888 };
889
890 match self.process_msg(msg, state, Some(sendable_plaintext)) {
891 Ok(new) => state = new,
892 Err(e) => {
893 self.state = Err(e.clone());
894 deframer_buffer.discard(buffer_progress.take_discard());
895 return Err(e);
896 }
897 }
898
899 if self
900 .common_state
901 .has_received_close_notify
902 {
903 // "Any data received after a closure alert has been received MUST be ignored."
904 // -- <https://datatracker.ietf.org/doc/html/rfc8446#section-6.1>
905 // This is data that has already been accepted in `read_tls`.
906 buffer_progress.add_discard(deframer_buffer.filled().len());
907 break;
908 }
909
910 deframer_buffer.discard(buffer_progress.take_discard());
911 }
912
913 deframer_buffer.discard(buffer_progress.take_discard());
914 self.state = Ok(state);
915 Ok(self.common_state.current_io_state())
916 }
917
918 /// Pull a message out of the deframer and send any messages that need to be sent as a result.
919 fn deframe<'b>(
920 &mut self,
921 state: Option<&dyn State<Data>>,
922 buffer: &'b mut [u8],
923 buffer_progress: &mut BufferProgress,
924 ) -> Result<Option<InboundPlainMessage<'b>>, Error> {
925 // before processing any more of `buffer`, return any extant messages from `hs_deframer`
926 if self.hs_deframer.has_message_ready() {
927 Ok(self.take_handshake_message(buffer, buffer_progress))
928 } else {
929 self.process_more_input(state, buffer, buffer_progress)
930 }
931 }
932
933 fn take_handshake_message<'b>(
934 &mut self,
935 buffer: &'b mut [u8],
936 buffer_progress: &mut BufferProgress,
937 ) -> Option<InboundPlainMessage<'b>> {
938 self.hs_deframer
939 .iter(buffer)
940 .next()
941 .map(|(message, discard)| {
942 buffer_progress.add_discard(discard);
943 message
944 })
945 }
946
947 fn process_more_input<'b>(
948 &mut self,
949 state: Option<&dyn State<Data>>,
950 buffer: &'b mut [u8],
951 buffer_progress: &mut BufferProgress,
952 ) -> Result<Option<InboundPlainMessage<'b>>, Error> {
953 let version_is_tls13 = matches!(
954 self.common_state.negotiated_version,
955 Some(ProtocolVersion::TLSv1_3)
956 );
957
958 let locator = Locator::new(buffer);
959
960 loop {
961 let mut iter = DeframerIter::new(&mut buffer[buffer_progress.processed()..]);
962
963 let (message, processed) = loop {
964 let message = match iter.next().transpose() {
965 Ok(Some(message)) => message,
966 Ok(None) => return Ok(None),
967 Err(err) => return Err(self.handle_deframe_error(err, state)),
968 };
969
970 let allowed_plaintext = match message.typ {
971 // CCS messages are always plaintext.
972 ContentType::ChangeCipherSpec => true,
973 // Alerts are allowed to be plaintext if-and-only-if:
974 // * The negotiated protocol version is TLS 1.3. - In TLS 1.2 it is unambiguous when
975 // keying changes based on the CCS message. Only TLS 1.3 requires these heuristics.
976 // * We have not yet decrypted any messages from the peer - if we have we don't
977 // expect any plaintext.
978 // * The payload size is indicative of a plaintext alert message.
979 ContentType::Alert
980 if version_is_tls13
981 && !self
982 .common_state
983 .record_layer
984 .has_decrypted()
985 && message.payload.len() <= 2 =>
986 {
987 true
988 }
989 // In other circumstances, we expect all messages to be encrypted.
990 _ => false,
991 };
992
993 if allowed_plaintext && !self.hs_deframer.is_active() {
994 break (message.into_plain_message(), iter.bytes_consumed());
995 }
996
997 let message = match self
998 .common_state
999 .record_layer
1000 .decrypt_incoming(message)
1001 {
1002 // failed decryption during trial decryption is not allowed to be
1003 // interleaved with partial handshake data.
1004 Ok(None) if !self.hs_deframer.is_aligned() => {
1005 return Err(
1006 PeerMisbehaved::RejectedEarlyDataInterleavedWithHandshakeMessage.into(),
1007 )
1008 }
1009
1010 // failed decryption during trial decryption.
1011 Ok(None) => continue,
1012
1013 Ok(Some(message)) => message,
1014
1015 Err(err) => return Err(self.handle_deframe_error(err, state)),
1016 };
1017
1018 let Decrypted {
1019 want_close_before_decrypt,
1020 plaintext,
1021 } = message;
1022
1023 if want_close_before_decrypt {
1024 self.common_state.send_close_notify();
1025 }
1026
1027 break (plaintext, iter.bytes_consumed());
1028 };
1029
1030 if !self.hs_deframer.is_aligned() && message.typ != ContentType::Handshake {
1031 // "Handshake messages MUST NOT be interleaved with other record
1032 // types. That is, if a handshake message is split over two or more
1033 // records, there MUST NOT be any other records between them."
1034 // https://www.rfc-editor.org/rfc/rfc8446#section-5.1
1035 return Err(PeerMisbehaved::MessageInterleavedWithHandshakeMessage.into());
1036 }
1037
1038 match message.payload.len() {
1039 0 => {
1040 if self.seen_consecutive_empty_fragments
1041 == ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX
1042 {
1043 return Err(PeerMisbehaved::TooManyEmptyFragments.into());
1044 }
1045 self.seen_consecutive_empty_fragments += 1;
1046 }
1047 _ => {
1048 self.seen_consecutive_empty_fragments = 0;
1049 }
1050 };
1051
1052 buffer_progress.add_processed(processed);
1053
1054 // do an end-run around the borrow checker, converting `message` (containing
1055 // a borrowed slice) to an unborrowed one (containing a `Range` into the
1056 // same buffer). the reborrow happens inside the branch that returns the
1057 // message.
1058 //
1059 // is fixed by -Zpolonius
1060 // https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md#problem-case-3-conditional-control-flow-across-functions
1061 let unborrowed = InboundUnborrowedMessage::unborrow(&locator, message);
1062
1063 if unborrowed.typ != ContentType::Handshake {
1064 let message = unborrowed.reborrow(&Delocator::new(buffer));
1065 buffer_progress.add_discard(processed);
1066 return Ok(Some(message));
1067 }
1068
1069 let message = unborrowed.reborrow(&Delocator::new(buffer));
1070 self.hs_deframer
1071 .input_message(message, &locator, buffer_progress.processed());
1072 self.hs_deframer.coalesce(buffer)?;
1073
1074 self.common_state.aligned_handshake = self.hs_deframer.is_aligned();
1075
1076 if self.hs_deframer.has_message_ready() {
1077 // trial decryption finishes with the first handshake message after it started.
1078 self.common_state
1079 .record_layer
1080 .finish_trial_decryption();
1081
1082 return Ok(self.take_handshake_message(buffer, buffer_progress));
1083 }
1084 }
1085 }
1086
1087 fn handle_deframe_error(&mut self, error: Error, state: Option<&dyn State<Data>>) -> Error {
1088 match error {
1089 error @ Error::InvalidMessage(_) => {
1090 if self.common_state.is_quic() {
1091 self.common_state.quic.alert = Some(AlertDescription::DecodeError);
1092 error
1093 } else {
1094 self.common_state
1095 .send_fatal_alert(AlertDescription::DecodeError, error)
1096 }
1097 }
1098 Error::PeerSentOversizedRecord => self
1099 .common_state
1100 .send_fatal_alert(AlertDescription::RecordOverflow, error),
1101 Error::DecryptError => {
1102 if let Some(state) = state {
1103 state.handle_decrypt_error();
1104 }
1105 self.common_state
1106 .send_fatal_alert(AlertDescription::BadRecordMac, error)
1107 }
1108
1109 error => error,
1110 }
1111 }
1112
1113 fn process_msg(
1114 &mut self,
1115 msg: InboundPlainMessage<'_>,
1116 state: Box<dyn State<Data>>,
1117 sendable_plaintext: Option<&mut ChunkVecBuffer>,
1118 ) -> Result<Box<dyn State<Data>>, Error> {
1119 // Drop CCS messages during handshake in TLS1.3
1120 if msg.typ == ContentType::ChangeCipherSpec
1121 && !self
1122 .common_state
1123 .may_receive_application_data
1124 && self.common_state.is_tls13()
1125 {
1126 if !msg.is_valid_ccs() {
1127 // "An implementation which receives any other change_cipher_spec value or
1128 // which receives a protected change_cipher_spec record MUST abort the
1129 // handshake with an "unexpected_message" alert."
1130 return Err(self.common_state.send_fatal_alert(
1131 AlertDescription::UnexpectedMessage,
1132 PeerMisbehaved::IllegalMiddleboxChangeCipherSpec,
1133 ));
1134 }
1135
1136 self.common_state
1137 .received_tls13_change_cipher_spec()?;
1138 trace!("Dropping CCS");
1139 return Ok(state);
1140 }
1141
1142 // Now we can fully parse the message payload.
1143 let msg = match Message::try_from(msg) {
1144 Ok(msg) => msg,
1145 Err(err) => {
1146 return Err(self
1147 .common_state
1148 .send_fatal_alert(AlertDescription::DecodeError, err));
1149 }
1150 };
1151
1152 // For alerts, we have separate logic.
1153 if let MessagePayload::Alert(alert) = &msg.payload {
1154 self.common_state.process_alert(alert)?;
1155 return Ok(state);
1156 }
1157
1158 self.common_state
1159 .process_main_protocol(msg, state, &mut self.data, sendable_plaintext)
1160 }
1161
1162 pub(crate) fn export_keying_material<T: AsMut<[u8]>>(
1163 &self,
1164 mut output: T,
1165 label: &[u8],
1166 context: Option<&[u8]>,
1167 ) -> Result<T, Error> {
1168 if output.as_mut().is_empty() {
1169 return Err(Error::General(
1170 "export_keying_material with zero-length output".into(),
1171 ));
1172 }
1173
1174 match self.state.as_ref() {
1175 Ok(st) => st
1176 .export_keying_material(output.as_mut(), label, context)
1177 .map(|_| output),
1178 Err(e) => Err(e.clone()),
1179 }
1180 }
1181
1182 /// Trigger a `refresh_traffic_keys` if required by `CommonState`.
1183 fn maybe_refresh_traffic_keys(&mut self) {
1184 if mem::take(
1185 &mut self
1186 .common_state
1187 .refresh_traffic_keys_pending,
1188 ) {
1189 let _ = self.refresh_traffic_keys();
1190 }
1191 }
1192
1193 fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
1194 match &mut self.state {
1195 Ok(st) => st.send_key_update_request(&mut self.common_state),
1196 Err(e) => Err(e.clone()),
1197 }
1198 }
1199}
1200
1201/// Data specific to the peer's side (client or server).
1202pub trait SideData: Debug {}
1203
1204/// An InboundPlainMessage which does not borrow its payload, but
1205/// references a range that can later be borrowed.
1206struct InboundUnborrowedMessage {
1207 typ: ContentType,
1208 version: ProtocolVersion,
1209 bounds: Range<usize>,
1210}
1211
1212impl InboundUnborrowedMessage {
1213 fn unborrow(locator: &Locator, msg: InboundPlainMessage<'_>) -> Self {
1214 Self {
1215 typ: msg.typ,
1216 version: msg.version,
1217 bounds: locator.locate(msg.payload),
1218 }
1219 }
1220
1221 fn reborrow<'b>(self, delocator: &Delocator<'b>) -> InboundPlainMessage<'b> {
1222 InboundPlainMessage {
1223 typ: self.typ,
1224 version: self.version,
1225 payload: delocator.slice_from_range(&self.bounds),
1226 }
1227 }
1228}
1229
1230/// cf. BoringSSL's `kMaxEmptyRecords`
1231/// <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls_record.cc#L124-L128>
1232const ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX: u8 = 32;