1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
use alloy::network::Network;
use alloy::primitives::Address;
use alloy::providers::Provider;
use alloy::rpc::types::Filter;
use alloy::rpc::types::Log;
use alloy::sol;
use alloy::transports::Transport;
use alloy_sol_types::SolEvent;
use anyhow::Result;
use futures::stream;
use futures::stream::StreamExt;
use indicatif::ProgressBar;
use rand::Rng;
use std::collections::BTreeMap;
use std::collections::HashMap;
use std::path::Path;
use std::sync::Arc;
use std::time::Duration;
use tokio::sync::Semaphore;

use crate::pools::process_sync_data;
use crate::pools::process_tick_data;
use crate::pools::PoolFetcher;
use crate::util::create_progress_bar;
use crate::Chain;
use crate::Pool;
use crate::PoolInfo;
use crate::PoolType;

/// The number of blocks to query in one call to get_logs
const STEP_SIZE: u64 = 10_000;
const MAX_RETRIES: u32 = 5;
const INITIAL_BACKOFF: u64 = 1000; // 1 second

sol!(
    #[derive(Debug)]
    #[sol(rpc)]
    contract AerodromeSync {
        event Sync(uint256 reserve0, uint256 reserve1);
    }
);

sol!(
    #[derive(Debug)]
    #[sol(rpc)]
    contract PancakeSwap {
        event Swap(
            address indexed sender,
            address indexed recipient,
            int256 amount0,
            int256 amount1,
            uint160 sqrtPriceX96,
            uint128 liquidity,
            int24 tick,
            uint128 protocolFeesToken0,
            uint128 protocolFeesToken1
        );
    }
);


sol!(
    #[derive(Debug)]
    #[sol(rpc)]
    contract DataEvents {
        event Sync(uint112 reserve0, uint112 reserve1);
        event Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick);
        event Burn(address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1);
        event Mint(address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1);
    }
);

pub struct Rpc;
impl Rpc {
    pub async fn fetch_pool_addrs<P, T, N>(
        start_block: u64,
        end_block: u64,
        provider: Arc<P>,
        fetcher: Arc<dyn PoolFetcher>,
        chain: Chain,
        requests_per_second: u64,
    ) -> Option<Vec<Address>>
    where
        P: Provider<T, N> + 'static,
        T: Transport + Clone + 'static,
        N: Network,
    {
        let block_difference = end_block.saturating_sub(start_block);

        if block_difference > 0 {
            let (total_steps, step_size) = if block_difference < STEP_SIZE {
                (1, block_difference)
            } else {
                (
                    ((block_difference as f64) / (STEP_SIZE as f64)).ceil() as u64,
                    STEP_SIZE,
                )
            };

            let info = format!("{} address sync", fetcher.pool_type());
            let progress_bar = create_progress_bar(total_steps, info);

            let block_ranges: Vec<_> = (start_block..=end_block)
                .step_by(step_size as usize)
                .map(|from_block| {
                    let to_block = (from_block + step_size - 1).min(end_block);
                    (from_block, to_block)
                })
                .collect();

            let results = stream::iter(block_ranges)
                .map(|(from_block, to_block)| {
                    let provider = provider.clone();
                    let fetcher = fetcher.clone();
                    let progress_bar = progress_bar.clone();

                    async move {
                        let mut retry_count = 0;
                        let mut backoff = INITIAL_BACKOFF;

                        loop {
                            let filter = Filter::new()
                                .address(fetcher.factory_address(chain))
                                .event(fetcher.pair_created_signature())
                                .from_block(from_block)
                                .to_block(to_block);

                            match provider.get_logs(&filter).await {
                                Ok(logs) => {
                                    let addresses: Vec<Address> = logs
                                        .iter()
                                        .map(|log| fetcher.log_to_address(&log.inner))
                                        .collect();

                                    progress_bar.inc(1);
                                    drop(provider);
                                    return addresses;
                                }
                                Err(e) => {
                                    if retry_count >= MAX_RETRIES {
                                        eprintln!(
                                            "Max retries reached for blocks {}-{}: {:?}",
                                            from_block, to_block, e
                                        );
                                        drop(provider);
                                        return Vec::new();
                                    }

                                    let jitter = rand::thread_rng().gen_range(0..=100);
                                    let sleep_duration = Duration::from_millis(backoff + jitter);
                                    tokio::time::sleep(sleep_duration).await;

                                    retry_count += 1;
                                    backoff *= 2; // Exponential backoff
                                }
                            }
                        }
                    }
                })
                .buffer_unordered(requests_per_second as usize)
                .collect::<Vec<Vec<Address>>>()
                .await;

            drop(provider);
            let all_addresses: Vec<Address> = results.into_iter().flatten().collect();
            Some(all_addresses)
        } else {
            Some(vec![])
        }
    }

    pub async fn populate_pools<P, T, N>(
        pool_addrs: Vec<Address>,
        provider: Arc<P>,
        pool: PoolType,
        requests_per_second: u64,
    ) -> Vec<Pool>
    where
        P: Provider<T, N> + 'static,
        T: Transport + Clone + 'static,
        N: Network,
    {
        let total_tasks = (pool_addrs.len() + 39) / 40; // Ceiling division by 40
        let info = format!("{} data sync", pool);
        let progress_bar = create_progress_bar(total_tasks as u64, info);

        let rate_limiter = Arc::new(Semaphore::new(100 as usize));

        // Map all the addresses into chunks the contract can handle
        let addr_chunks: Vec<Vec<Address>> =
            pool_addrs.chunks(40).map(|chunk| chunk.to_vec()).collect();

        let results = stream::iter(addr_chunks)
            .map(|chunk| {
                let provider = provider.clone();
                let progress_bar = progress_bar.clone();
                let pool = pool.clone();
                let rate_limiter = rate_limiter.clone();

                async move {
                    let mut retry_count = 0;
                    let mut backoff = INITIAL_BACKOFF;
                    let _permit = rate_limiter.acquire().await.unwrap();

                    loop {
                        match pool
                            .build_pools_from_addrs(provider.clone(), chunk.clone())
                            .await
                        {
                            populated_pools if !populated_pools.is_empty() => {
                                progress_bar.inc(1);
                                return populated_pools;
                            }
                            _ => {
                                if retry_count >= MAX_RETRIES {
                                    eprintln!("Max retries reached for chunk");
                                    return Vec::new();
                                }

                                let jitter = rand::thread_rng().gen_range(0..=100);
                                let sleep_duration = Duration::from_millis(backoff + jitter);
                                tokio::time::sleep(sleep_duration).await;

                                retry_count += 1;
                                backoff *= 2; // Exponential backoff
                            }
                        }
                    }
                }
            })
            .buffer_unordered(requests_per_second as usize * 2) // Allow some buffering for smoother operation
            .collect::<Vec<Vec<Pool>>>()
            .await;

        let populated_pools: Vec<Pool> = results.into_iter().flatten().collect();
        populated_pools
    }

    pub async fn populate_liquidity<P, T, N>(
        start_block: u64,
        end_block: u64,
        pools: &mut Vec<Pool>,
        provider: Arc<P>,
        pool_type: PoolType,
    ) -> Result<()>
    where
        P: Provider<T, N> + Sync + 'static,
        T: Transport + Sync + Clone,
        N: Network,
    {
        if pools.len() == 0 {
            return Ok(());
        }
        // get the block difference
        let block_difference = end_block.saturating_sub(start_block);
        let address_to_index: HashMap<Address, usize> = pools
            .iter()
            .enumerate()
            .map(|(i, pool)| (pool.address(), i))
            .collect();

        if block_difference > 0 {
            // create the progress bar

            let mut new_logs: Vec<Log> = Vec::new();
            if pool_type.is_v3() {
                // fetch all mint/burn/swap logs
                new_logs.extend(
                    Rpc::fetch_tick_logs(start_block, end_block, provider.clone(), pool_type)
                        .await
                        .unwrap(),
                );
                if start_block > 10_000_000 {
                    // make sure we dont fetch swap events after initial sync
                    new_logs.extend(
                        Rpc::fetch_swap_logs(start_block, end_block, provider.clone(), pool_type)
                            .await
                            .unwrap(),
                    );
                }
            } else {
                // fetch all sync logs
                if start_block > 10_000_000 {
                    new_logs.extend(
                        Rpc::fetch_sync_logs(start_block, end_block, provider.clone(), pool_type)
                            .await
                            .unwrap(),
                    );
                }
            }

            // order all of the logs by block number
            let mut ordered_logs: BTreeMap<u64, Vec<Log>> = BTreeMap::new();
            for log in new_logs {
                if let Some(block_number) = log.block_number {
                    if let Some(log_group) = ordered_logs.get_mut(&block_number) {
                        log_group.push(log);
                    } else {
                        ordered_logs.insert(block_number, vec![log]);
                    }
                }
            }

            // process all of the logs
            for (_, log_group) in ordered_logs {
                for log in log_group {
                    let address = log.address();
                    if let Some(&index) = address_to_index.get(&address) {
                        if let Some(pool) = pools.get_mut(index) {
                            // Note: removed & before index
                            if pool_type.is_v3() {
                                process_tick_data(pool.get_v3_mut().unwrap(), log, pool_type);
                            } else {
                                process_sync_data(pool.get_v2_mut().unwrap(), log, pool_type);
                            }
                        }
                    }
                }
            }
        }

        Ok(())
    }

    pub async fn fetch_tick_logs<P, T, N>(
        start_block: u64,
        end_block: u64,
        provider: Arc<P>,
        pool_type: PoolType,
    ) -> Result<Vec<Log>>
    where
        P: Provider<T, N> + 'static,
        T: Transport + Clone + 'static,
        N: Network,
    {
        let mint_burn_range = Rpc::get_block_range(5000, start_block, end_block);
        let info = format!("{} tick sync", pool_type);
        let progress_bar = create_progress_bar(mint_burn_range.len() as u64, info);
        let logs = stream::iter(mint_burn_range)
            .map(|(from_block, to_block)| {
                let provider = provider.clone();
                let pb = progress_bar.clone();
                async move {
                    let filter = Filter::new()
                        .event_signature(vec![
                            DataEvents::Burn::SIGNATURE_HASH,
                            DataEvents::Mint::SIGNATURE_HASH,
                        ])
                        .from_block(from_block)
                        .to_block(to_block);
                    let logs = provider.get_logs(&filter).await.unwrap();
                    pb.inc(1);
                    drop(provider);
                    logs
                }
            })
            .buffer_unordered(100) // Allow some buffering for smoother operation
            .collect::<Vec<Vec<Log>>>()
            .await;
        let new_logs: Vec<Log> = logs.into_iter().flatten().collect();
        Ok(new_logs)
    }

    pub async fn fetch_swap_logs<P, T, N>(
        start_block: u64,
        end_block: u64,
        provider: Arc<P>,
        pool_type: PoolType
    ) -> Result<Vec<Log>>
    where
        P: Provider<T, N> + 'static,
        T: Transport + Clone + 'static,
        N: Network,
    {
        let swap_range = Rpc::get_block_range(500, start_block, end_block);
        let info = format!("{} swap sync", pool_type);
        let progress_bar = create_progress_bar(swap_range.len() as u64, info);
        let logs = stream::iter(swap_range)
            .map(|(from_block, to_block)| {
                let provider = provider.clone();
                let pb = progress_bar.clone();
                async move {
                    let filter = Filter::new()
                        .event_signature(vec![
                            PancakeSwap::Swap::SIGNATURE_HASH,
                            DataEvents::Swap::SIGNATURE_HASH
                        ])
                        .from_block(from_block)
                        .to_block(to_block);
                    let logs = provider.get_logs(&filter).await.unwrap();
                    pb.inc(1);
                    drop(provider);
                    logs
                }
            })
            .buffer_unordered(100) // Allow some buffering for smoother operation
            .collect::<Vec<Vec<Log>>>()
            .await;
        let new_logs: Vec<Log> = logs.into_iter().flatten().collect();
        Ok(new_logs)
    }

    pub async fn fetch_sync_logs<P, T, N>(
        start_block: u64,
        end_block: u64,
        provider: Arc<P>,
        pool_type: PoolType
    ) -> Result<Vec<Log>>
    where
        P: Provider<T, N> + 'static,
        T: Transport + Clone + 'static,
        N: Network,
    {
        let sync_range = Rpc::get_block_range(200, start_block, end_block);
        let info = format!("{} sync sync", pool_type);
        let progress_bar = create_progress_bar(sync_range.len() as u64, info);
        let logs = stream::iter(sync_range)
            .map(|(from_block, to_block)| {
                let provider = provider.clone();
                let progress_bar = progress_bar.clone();
                async move {
                    let filter = Filter::new()
                        .event_signature(vec![
                            AerodromeSync::Sync::SIGNATURE_HASH,
                            DataEvents::Sync::SIGNATURE_HASH
                        ])
                        .from_block(from_block)
                        .to_block(to_block);
                    let logs = provider.get_logs(&filter).await.unwrap();
                    drop(provider);
                    progress_bar.inc(1);
                    logs
                }
            })
            .buffer_unordered(1000) // Allow some buffering for smoother operation
            .collect::<Vec<Vec<Log>>>()
            .await;
        let new_logs: Vec<Log> = logs.into_iter().flatten().collect();
        Ok(new_logs)
    }

    pub fn get_block_range(step_size: u64, start_block: u64, end_block: u64) -> Vec<(u64, u64)> {
        let block_difference = end_block.saturating_sub(start_block);
        let (total_steps, step_size) = if block_difference < step_size {
            (1, block_difference)
        } else {
            (
                ((block_difference as f64) / (step_size as f64)).ceil() as u64,
                step_size,
            )
        };
        let block_ranges: Vec<(u64, u64)> = (start_block..=end_block)
            .step_by(step_size as usize)
            .map(|from_block| {
                let to_block = (from_block + step_size - 1).min(end_block);
                (from_block, to_block)
            })
            .collect();
        block_ranges
    }
}