1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
use crate::poly::Polynomial;
use rayon::join;
use zkstd::common::{FftField, Vec};

// fft structure
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Fft<F: FftField> {
    // polynomial degree 2^k
    n: usize,
    // generator of order 2^{k - 1} multiplicative group used as twiddle factors
    twiddle_factors: Vec<F>,
    // multiplicative group generator inverse
    inv_twiddle_factors: Vec<F>,
    // coset domain
    cosets: Vec<F>,
    // inverse coset domain
    inv_cosets: Vec<F>,
    // n inverse for inverse discrete fourier transform
    n_inv: F,
    // bit reverse index
    bit_reverse: Vec<(usize, usize)>,
    pub elements: Vec<F>,
}

// SBP-M1 review: use safe math operations

impl<F: FftField> Fft<F> {
    pub fn new(k: usize) -> Self {
        let n = 1 << k;
        let half_n = n / 2;
        let offset = 64 - k;

        // precompute twiddle factors
        let g = (0..F::S - k).fold(F::ROOT_OF_UNITY, |acc, _| acc.square());
        let twiddle_factors = (0..half_n)
            .scan(F::one(), |w, _| {
                let tw = *w;
                *w *= g;
                Some(tw)
            })
            .collect::<Vec<_>>();

        // precompute inverse twiddle factors
        let g_inv = g.invert().unwrap();
        let inv_twiddle_factors = (0..half_n)
            .scan(F::one(), |w, _| {
                let tw = *w;
                *w *= g_inv;
                Some(tw)
            })
            .collect::<Vec<_>>();

        // precompute cosets
        let mul_g = F::MULTIPLICATIVE_GENERATOR;
        let cosets = (0..half_n)
            .scan(F::one(), |w, _| {
                let tw = *w;
                *w *= mul_g;
                Some(tw)
            })
            .collect::<Vec<_>>();

        // precompute inverse cosets
        let mul_g_inv = mul_g.invert().unwrap();
        let inv_cosets = (0..n)
            .scan(F::one(), |w, _| {
                let tw = *w;
                *w *= mul_g_inv;
                Some(tw)
            })
            .collect::<Vec<_>>();

        let elements = (0..n)
            .scan(F::one(), |w, _| {
                let tw = *w;
                *w *= g;
                Some(tw)
            })
            .collect::<Vec<_>>();

        let bit_reverse = (0..n as u64)
            .filter_map(|i| {
                let r = i.reverse_bits() >> offset;
                (i < r).then_some((i as usize, r as usize))
            })
            .collect::<Vec<_>>();

        Fft {
            n,
            twiddle_factors,
            inv_twiddle_factors,
            cosets,
            inv_cosets,
            n_inv: F::from(n as u64).invert().unwrap(),
            bit_reverse,
            elements,
        }
    }

    /// polynomial degree
    pub fn size(&self) -> usize {
        self.n
    }

    /// nth unity of root
    pub fn generator(&self) -> F {
        self.twiddle_factors[1]
    }

    /// perform discrete fourier transform
    pub fn dft(&self, coeffs: &mut Polynomial<F>) {
        self.prepare_fft(coeffs);
        classic_fft_arithmetic(&mut coeffs.0, self.n, 1, &self.twiddle_factors)
    }

    /// perform classic inverse discrete fourier transform
    pub fn idft(&self, coeffs: &mut Polynomial<F>) {
        self.prepare_fft(coeffs);
        classic_fft_arithmetic(&mut coeffs.0, self.n, 1, &self.inv_twiddle_factors);
        coeffs.0.iter_mut().for_each(|coeff| *coeff *= self.n_inv)
    }

    /// perform discrete fourier transform on coset
    pub fn coset_dft(&self, coeffs: &mut Polynomial<F>) {
        coeffs
            .0
            .iter_mut()
            .zip(self.cosets.iter())
            .for_each(|(coeff, coset)| *coeff *= *coset);
        self.dft(coeffs)
    }

    /// perform discrete fourier transform on coset
    pub fn coset_idft(&self, coeffs: &mut Polynomial<F>) {
        self.idft(coeffs);
        coeffs
            .0
            .iter_mut()
            .zip(self.inv_cosets.iter())
            .for_each(|(coeff, inv_coset)| *coeff *= *inv_coset)
    }

    /// resize polynomial and bit reverse swap
    fn prepare_fft(&self, coeffs: &mut Polynomial<F>) {
        coeffs.0.resize(self.n, F::zero());
        self.bit_reverse
            .iter()
            .for_each(|(i, ri)| coeffs.0.swap(*ri, *i));
    }

    /// polynomial multiplication
    pub fn poly_mul(&self, mut rhs: Polynomial<F>, mut lhs: Polynomial<F>) -> Polynomial<F> {
        self.dft(&mut rhs);
        self.dft(&mut lhs);
        let mut mul_poly = Polynomial::new(
            rhs.0
                .iter()
                .zip(lhs.0.iter())
                .map(|(a, b)| *a * *b)
                .collect(),
        );
        self.idft(&mut mul_poly);
        mul_poly
    }
}

// classic fft using divide and conquer algorithm
fn classic_fft_arithmetic<F: FftField>(
    coeffs: &mut [F],
    n: usize,
    twiddle_chunk: usize,
    twiddles: &[F],
) {
    if n == 2 {
        let t = coeffs[1];
        coeffs[1] = coeffs[0];
        coeffs[0] += t;
        coeffs[1] -= t;
    } else {
        let (left, right) = coeffs.split_at_mut(n / 2);
        join(
            || classic_fft_arithmetic(left, n / 2, twiddle_chunk * 2, twiddles),
            || classic_fft_arithmetic(right, n / 2, twiddle_chunk * 2, twiddles),
        );
        butterfly_arithmetic(left, right, twiddle_chunk, twiddles)
    }
}

// butterfly arithmetic polynomial evaluation
fn butterfly_arithmetic<F: FftField>(
    left: &mut [F],
    right: &mut [F],
    twiddle_chunk: usize,
    twiddles: &[F],
) {
    // case when twiddle factor is one
    let t = right[0];
    right[0] = left[0];
    left[0] += t;
    right[0] -= t;

    left.iter_mut()
        .zip(right.iter_mut())
        .enumerate()
        .skip(1)
        .for_each(|(i, (a, b))| {
            let mut t = *b;
            t *= twiddles[i * twiddle_chunk];
            *b = *a;
            *a += t;
            *b -= t;
        });
}

#[cfg(test)]
mod tests {
    use crate::poly::Polynomial;

    use super::Fft;
    use bls_12_381::Fr;
    use rand_core::OsRng;
    use zkstd::behave::{Group, PrimeField};
    use zkstd::common::Vec;

    fn arb_poly(k: u32) -> Vec<Fr> {
        (0..(1 << k))
            .map(|_| Fr::random(OsRng))
            .collect::<Vec<Fr>>()
    }

    fn naive_multiply<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
        assert_eq!(a.len(), b.len());
        let mut c = vec![F::zero(); a.len() + b.len()];
        a.iter().enumerate().for_each(|(i_a, coeff_a)| {
            b.iter().enumerate().for_each(|(i_b, coeff_b)| {
                c[i_a + i_b] += *coeff_a * *coeff_b;
            })
        });
        c
    }

    fn point_mutiply<F: PrimeField>(a: Polynomial<F>, b: Polynomial<F>) -> Polynomial<F> {
        assert_eq!(a.0.len(), b.0.len());
        Polynomial(
            a.0.iter()
                .zip(b.0.iter())
                .map(|(coeff_a, coeff_b)| *coeff_a * *coeff_b)
                .collect::<Vec<F>>(),
        )
    }

    #[test]
    fn fft_transformation_test() {
        let coeffs = arb_poly(10);
        let mut poly_a = Polynomial(coeffs);
        let poly_b = poly_a.clone();
        let classic_fft = Fft::new(10);

        classic_fft.dft(&mut poly_a);
        classic_fft.idft(&mut poly_a);

        assert_eq!(poly_a, poly_b)
    }

    #[test]
    fn fft_multiplication_test() {
        let coeffs_a = arb_poly(4);
        let coeffs_b = arb_poly(4);
        let fft = Fft::new(5);
        let poly_c = coeffs_a.clone();
        let poly_d = coeffs_b.clone();
        let mut poly_a = Polynomial(coeffs_a);
        let mut poly_b = Polynomial(coeffs_b);
        let poly_g = poly_a.clone();
        let poly_h = poly_b.clone();

        let poly_e = Polynomial(naive_multiply(poly_c, poly_d));

        fft.dft(&mut poly_a);
        fft.dft(&mut poly_b);
        let mut poly_f = point_mutiply(poly_a, poly_b);
        fft.idft(&mut poly_f);

        let poly_i = fft.poly_mul(poly_g, poly_h);

        assert_eq!(poly_e, poly_f);
        assert_eq!(poly_e, poly_i)
    }
}