1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
use std::ops::Div;

use polars_core::export::regex;
use polars_core::prelude::*;
use polars_error::to_compute_err;
use polars_lazy::prelude::*;
use polars_plan::prelude::LiteralValue::Null;
use rand::distributions::Alphanumeric;
use rand::{thread_rng, Rng};
#[cfg(feature = "dtype-decimal")]
use sqlparser::ast::ExactNumberInfo;
use sqlparser::ast::{
    ArrayAgg, ArrayElemTypeDef, BinaryOperator as SQLBinaryOperator, BinaryOperator, CastFormat,
    DataType as SQLDataType, DateTimeField, Expr as SQLExpr, Function as SQLFunction, Ident,
    JoinConstraint, OrderByExpr, Query as Subquery, SelectItem, TimezoneInfo, TrimWhereField,
    UnaryOperator, Value as SQLValue,
};
use sqlparser::dialect::GenericDialect;
use sqlparser::parser::{Parser, ParserOptions};

use crate::functions::SQLFunctionVisitor;
use crate::SQLContext;

pub(crate) fn map_sql_polars_datatype(data_type: &SQLDataType) -> PolarsResult<DataType> {
    Ok(match data_type {
        SQLDataType::Array(ArrayElemTypeDef::AngleBracket(inner_type))
        | SQLDataType::Array(ArrayElemTypeDef::SquareBracket(inner_type)) => {
            DataType::List(Box::new(map_sql_polars_datatype(inner_type)?))
        },
        #[cfg(feature = "dtype-decimal")]
        SQLDataType::Dec(info) | SQLDataType::Decimal(info) | SQLDataType::Numeric(info) => {
            match *info {
                ExactNumberInfo::PrecisionAndScale(p, s) => {
                    DataType::Decimal(Some(p as usize), Some(s as usize))
                },
                ExactNumberInfo::Precision(p) => DataType::Decimal(Some(p as usize), Some(0)),
                ExactNumberInfo::None => DataType::Decimal(Some(38), Some(9)),
            }
        },
        SQLDataType::BigInt(_) => DataType::Int64,
        SQLDataType::Boolean => DataType::Boolean,
        SQLDataType::Bytea
        | SQLDataType::Bytes(_)
        | SQLDataType::Binary(_)
        | SQLDataType::Blob(_)
        | SQLDataType::Varbinary(_) => DataType::Binary,
        SQLDataType::Char(_)
        | SQLDataType::CharVarying(_)
        | SQLDataType::Character(_)
        | SQLDataType::CharacterVarying(_)
        | SQLDataType::Clob(_)
        | SQLDataType::String(_)
        | SQLDataType::Text
        | SQLDataType::Uuid
        | SQLDataType::Varchar(_) => DataType::String,
        SQLDataType::Date => DataType::Date,
        SQLDataType::Double | SQLDataType::DoublePrecision => DataType::Float64,
        SQLDataType::Float(_) => DataType::Float32,
        SQLDataType::Int(_) | SQLDataType::Integer(_) => DataType::Int32,
        SQLDataType::Int2(_) => DataType::Int16,
        SQLDataType::Int4(_) => DataType::Int32,
        SQLDataType::Int8(_) => DataType::Int64,
        SQLDataType::Interval => DataType::Duration(TimeUnit::Microseconds),
        SQLDataType::Real => DataType::Float32,
        SQLDataType::SmallInt(_) => DataType::Int16,
        SQLDataType::Time(_, tz) => match tz {
            TimezoneInfo::None => DataType::Time,
            _ => {
                polars_bail!(ComputeError: "`time` with timezone is not supported; found tz={}", tz)
            },
        },
        SQLDataType::Timestamp(prec, tz) => {
            let tu = match prec {
                None => TimeUnit::Microseconds,
                Some(3) => TimeUnit::Milliseconds,
                Some(6) => TimeUnit::Microseconds,
                Some(9) => TimeUnit::Nanoseconds,
                Some(n) => {
                    polars_bail!(ComputeError: "unsupported `timestamp` precision; expected 3, 6 or 9, found prec={}", n)
                },
            };
            match tz {
                TimezoneInfo::None => DataType::Datetime(tu, None),
                _ => {
                    polars_bail!(ComputeError: "`timestamp` with timezone is not (yet) supported; found tz={}", tz)
                },
            }
        },
        SQLDataType::TinyInt(_) => DataType::Int8,
        SQLDataType::UnsignedBigInt(_) => DataType::UInt64,
        SQLDataType::UnsignedInt(_) | SQLDataType::UnsignedInteger(_) => DataType::UInt32,
        SQLDataType::UnsignedInt2(_) => DataType::UInt16,
        SQLDataType::UnsignedInt4(_) => DataType::UInt32,
        SQLDataType::UnsignedInt8(_) => DataType::UInt64,
        SQLDataType::UnsignedSmallInt(_) => DataType::UInt16,
        SQLDataType::UnsignedTinyInt(_) => DataType::UInt8,

        _ => polars_bail!(ComputeError: "SQL datatype {:?} is not yet supported", data_type),
    })
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Copy, PartialEq, Debug, Eq, Hash)]
pub enum SubqueryRestriction {
    // SingleValue,
    SingleColumn,
    // SingleRow,
    // Any
}

/// Recursively walks a SQL Expr to create a polars Expr
pub(crate) struct SQLExprVisitor<'a> {
    ctx: &'a mut SQLContext,
}

impl SQLExprVisitor<'_> {
    fn visit_expr(&mut self, expr: &SQLExpr) -> PolarsResult<Expr> {
        match expr {
            SQLExpr::AllOp {
                left,
                compare_op,
                right,
            } => self.visit_all(left, compare_op, right),
            SQLExpr::AnyOp {
                left,
                compare_op,
                right,
            } => self.visit_any(left, compare_op, right),
            SQLExpr::ArrayAgg(expr) => self.visit_arr_agg(expr),
            SQLExpr::Between {
                expr,
                negated,
                low,
                high,
            } => self.visit_between(expr, *negated, low, high),
            SQLExpr::BinaryOp { left, op, right } => self.visit_binary_op(left, op, right),
            SQLExpr::Cast {
                expr,
                data_type,
                format,
            } => self.visit_cast(expr, data_type, format),
            SQLExpr::Ceil { expr, .. } => Ok(self.visit_expr(expr)?.ceil()),
            SQLExpr::CompoundIdentifier(idents) => self.visit_compound_identifier(idents),
            SQLExpr::Extract { field, expr } => parse_extract(self.visit_expr(expr)?, field),
            SQLExpr::Floor { expr, .. } => Ok(self.visit_expr(expr)?.floor()),
            SQLExpr::Function(function) => self.visit_function(function),
            SQLExpr::Identifier(ident) => self.visit_identifier(ident),
            SQLExpr::InList {
                expr,
                list,
                negated,
            } => self.visit_in_list(expr, list, *negated),
            SQLExpr::InSubquery {
                expr,
                subquery,
                negated,
            } => self.visit_in_subquery(expr, subquery, *negated),
            SQLExpr::IsDistinctFrom(e1, e2) => {
                Ok(self.visit_expr(e1)?.neq_missing(self.visit_expr(e2)?))
            },
            SQLExpr::IsFalse(expr) => Ok(self.visit_expr(expr)?.eq(lit(false))),
            SQLExpr::IsNotDistinctFrom(e1, e2) => {
                Ok(self.visit_expr(e1)?.eq_missing(self.visit_expr(e2)?))
            },
            SQLExpr::IsNotFalse(expr) => Ok(self.visit_expr(expr)?.eq(lit(false)).not()),
            SQLExpr::IsNotNull(expr) => Ok(self.visit_expr(expr)?.is_not_null()),
            SQLExpr::IsNotTrue(expr) => Ok(self.visit_expr(expr)?.eq(lit(true)).not()),
            SQLExpr::IsNull(expr) => Ok(self.visit_expr(expr)?.is_null()),
            SQLExpr::IsTrue(expr) => Ok(self.visit_expr(expr)?.eq(lit(true))),
            SQLExpr::Like {
                negated,
                expr,
                pattern,
                escape_char,
            } => self.visit_like(*negated, expr, pattern, escape_char, false),
            SQLExpr::ILike {
                negated,
                expr,
                pattern,
                escape_char,
            } => self.visit_like(*negated, expr, pattern, escape_char, true),
            SQLExpr::Nested(expr) => self.visit_expr(expr),
            SQLExpr::Position { expr, r#in } => Ok(
                // note: SQL is 1-indexed, not 0-indexed
                (self
                    .visit_expr(r#in)?
                    .str()
                    .find(self.visit_expr(expr)?, true)
                    + lit(1u32))
                .fill_null(0u32),
            ),
            SQLExpr::RLike {
                // note: parses both RLIKE and REGEXP
                negated,
                expr,
                pattern,
                regexp: _,
            } => {
                let matches = self
                    .visit_expr(expr)?
                    .str()
                    .contains(self.visit_expr(pattern)?, true);
                Ok(if *negated { matches.not() } else { matches })
            },
            SQLExpr::Subquery(_) => polars_bail!(InvalidOperation: "Unexpected SQL Subquery"),
            SQLExpr::Trim {
                expr,
                trim_where,
                trim_what,
                trim_characters,
            } => self.visit_trim(expr, trim_where, trim_what, trim_characters),
            SQLExpr::UnaryOp { op, expr } => self.visit_unary_op(op, expr),
            SQLExpr::Value(value) => self.visit_literal(value),
            e @ SQLExpr::Case { .. } => self.visit_case_when_then(e),
            other => {
                polars_bail!(InvalidOperation: "SQL expression {:?} is not yet supported", other)
            },
        }
    }

    fn visit_subquery(
        &mut self,
        subquery: &Subquery,
        restriction: SubqueryRestriction,
    ) -> PolarsResult<Expr> {
        if subquery.with.is_some() {
            polars_bail!(InvalidOperation: "SQL subquery cannot be given CTEs");
        }

        let mut lf = self.ctx.execute_query_no_ctes(subquery)?;
        let schema = lf.schema()?;

        if restriction == SubqueryRestriction::SingleColumn {
            if schema.len() != 1 {
                polars_bail!(InvalidOperation: "SQL subquery will return more than one column");
            }
            let rand_string: String = thread_rng()
                .sample_iter(&Alphanumeric)
                .take(16)
                .map(char::from)
                .collect();

            let schema_entry = schema.get_at_index(0);
            if let Some((old_name, _)) = schema_entry {
                let new_name = String::from(old_name.as_str()) + rand_string.as_str();
                lf = lf.rename([old_name.to_string()], [new_name.clone()]);
                return Ok(Expr::SubPlan(
                    SpecialEq::new(Arc::new(lf.logical_plan)),
                    vec![new_name],
                ));
            }
        };

        polars_bail!(InvalidOperation: "SQL subquery type not supported");
    }

    /// Visit a single SQL identifier.
    ///
    /// e.g. column
    fn visit_identifier(&self, ident: &Ident) -> PolarsResult<Expr> {
        Ok(col(&ident.value))
    }

    /// Visit a compound SQL identifier
    ///
    /// e.g. df.column or "df"."column"
    fn visit_compound_identifier(&self, idents: &[Ident]) -> PolarsResult<Expr> {
        match idents {
            [tbl_name, column_name] => {
                let lf = self
                    .ctx
                    .get_table_from_current_scope(&tbl_name.value)
                    .ok_or_else(|| {
                        polars_err!(
                            ComputeError: "no table or alias named '{}' found",
                            tbl_name
                        )
                    })?;

                let schema = lf.schema()?;
                if let Some((_, name, _)) = schema.get_full(&column_name.value) {
                    Ok(col(name))
                } else {
                    polars_bail!(
                        ColumnNotFound: "no column named '{}' found in table '{}'",
                        column_name,
                        tbl_name
                    )
                }
            },
            _ => polars_bail!(
                ComputeError: "invalid identifier {:?}",
                idents
            ),
        }
    }

    fn visit_like(
        &mut self,
        negated: bool,
        expr: &SQLExpr,
        pattern: &SQLExpr,
        escape_char: &Option<char>,
        case_insensitive: bool,
    ) -> PolarsResult<Expr> {
        if escape_char.is_some() {
            polars_bail!(InvalidOperation: "ESCAPE char for LIKE/ILIKE is not yet supported; found '{}'", escape_char.unwrap());
        }
        let pat = match self.visit_expr(pattern) {
            Ok(Expr::Literal(LiteralValue::String(s))) => s,
            _ => {
                polars_bail!(InvalidOperation: "LIKE/ILIKE pattern must be a string literal; found {}", pattern)
            },
        };
        if pat.is_empty() || (!case_insensitive && pat.chars().all(|c| !matches!(c, '%' | '_'))) {
            // empty string or other exact literal match (eg: no wildcard chars)
            let op = if negated {
                BinaryOperator::NotEq
            } else {
                BinaryOperator::Eq
            };
            self.visit_binary_op(expr, &op, pattern)
        } else {
            // create regex from pattern containing SQL wildcard chars ('%' => '.*', '_' => '.')
            let mut rx = regex::escape(pat.as_str())
                .replace('%', ".*")
                .replace('_', ".");

            rx = format!("^{}{}$", if case_insensitive { "(?i)" } else { "" }, rx);

            let expr = self.visit_expr(expr)?;
            let matches = expr.str().contains(lit(rx), true);
            Ok(if negated { matches.not() } else { matches })
        }
    }

    /// Visit a SQL binary operator.
    ///
    /// e.g. column + 1 or column1 / column2
    fn visit_binary_op(
        &mut self,
        left: &SQLExpr,
        op: &BinaryOperator,
        right: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let left = self.visit_expr(left)?;
        let right = self.visit_expr(right)?;
        Ok(match op {
            SQLBinaryOperator::And => left.and(right),
            SQLBinaryOperator::Divide => left / right,
            SQLBinaryOperator::DuckIntegerDivide => left.floor_div(right).cast(DataType::Int64),
            SQLBinaryOperator::Eq => left.eq(right),
            SQLBinaryOperator::Gt => left.gt(right),
            SQLBinaryOperator::GtEq => left.gt_eq(right),
            SQLBinaryOperator::Lt => left.lt(right),
            SQLBinaryOperator::LtEq => left.lt_eq(right),
            SQLBinaryOperator::Minus => left - right,
            SQLBinaryOperator::Modulo => left % right,
            SQLBinaryOperator::Multiply => left * right,
            SQLBinaryOperator::NotEq => left.eq(right).not(),
            SQLBinaryOperator::Or => left.or(right),
            SQLBinaryOperator::Plus => left + right,
            SQLBinaryOperator::Spaceship => left.eq_missing(right),
            SQLBinaryOperator::StringConcat => {
                left.cast(DataType::String) + right.cast(DataType::String)
            },
            SQLBinaryOperator::Xor => left.xor(right),
            // ----
            // Regular expression operators
            // ----
            SQLBinaryOperator::PGRegexMatch => match right {
                Expr::Literal(LiteralValue::String(_)) => left.str().contains(right, true),
                _ => polars_bail!(ComputeError: "invalid pattern for '~' operator: {:?}", right),
            },
            SQLBinaryOperator::PGRegexNotMatch => match right {
                Expr::Literal(LiteralValue::String(_)) => left.str().contains(right, true).not(),
                _ => polars_bail!(ComputeError: "invalid pattern for '!~' operator: {:?}", right),
            },
            SQLBinaryOperator::PGRegexIMatch => match right {
                Expr::Literal(LiteralValue::String(pat)) => {
                    left.str().contains(lit(format!("(?i){}", pat)), true)
                },
                _ => polars_bail!(ComputeError: "invalid pattern for '~*' operator: {:?}", right),
            },
            SQLBinaryOperator::PGRegexNotIMatch => match right {
                Expr::Literal(LiteralValue::String(pat)) => {
                    left.str().contains(lit(format!("(?i){}", pat)), true).not()
                },
                _ => polars_bail!(ComputeError: "invalid pattern for '!~*' operator: {:?}", right),
            },
            other => polars_bail!(ComputeError: "SQL operator {:?} is not yet supported", other),
        })
    }

    /// Visit a SQL unary operator.
    ///
    /// e.g. +column or -column
    fn visit_unary_op(&mut self, op: &UnaryOperator, expr: &SQLExpr) -> PolarsResult<Expr> {
        let expr = self.visit_expr(expr)?;
        Ok(match (op, expr.clone()) {
            // simplify the parse tree by special-casing common unary +/- ops
            (UnaryOperator::Plus, Expr::Literal(LiteralValue::Int64(n))) => lit(n),
            (UnaryOperator::Plus, Expr::Literal(LiteralValue::Float64(n))) => lit(n),
            (UnaryOperator::Minus, Expr::Literal(LiteralValue::Int64(n))) => lit(-n),
            (UnaryOperator::Minus, Expr::Literal(LiteralValue::Float64(n))) => lit(-n),
            // general case
            (UnaryOperator::Plus, _) => lit(0) + expr,
            (UnaryOperator::Minus, _) => lit(0) - expr,
            (UnaryOperator::Not, _) => expr.not(),
            other => polars_bail!(InvalidOperation: "unary operator {:?} is not supported", other),
        })
    }

    /// Visit a SQL function.
    ///
    /// e.g. SUM(column) or COUNT(*)
    ///
    /// See [SQLFunctionVisitor] for more details
    fn visit_function(&mut self, function: &SQLFunction) -> PolarsResult<Expr> {
        let mut visitor = SQLFunctionVisitor {
            func: function,
            ctx: self.ctx,
        };
        visitor.visit_function()
    }

    /// Visit a SQL `ALL` expression.
    ///
    /// e.g. `a > ALL(y)`
    fn visit_all(
        &mut self,
        left: &SQLExpr,
        compare_op: &BinaryOperator,
        right: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let left = self.visit_expr(left)?;
        let right = self.visit_expr(right)?;

        match compare_op {
            BinaryOperator::Gt => Ok(left.gt(right.max())),
            BinaryOperator::Lt => Ok(left.lt(right.min())),
            BinaryOperator::GtEq => Ok(left.gt_eq(right.max())),
            BinaryOperator::LtEq => Ok(left.lt_eq(right.min())),
            BinaryOperator::Eq => polars_bail!(ComputeError: "ALL cannot be used with ="),
            BinaryOperator::NotEq => polars_bail!(ComputeError: "ALL cannot be used with !="),
            _ => polars_bail!(ComputeError: "invalid comparison operator"),
        }
    }

    /// Visit a SQL `ANY` expression.
    ///
    /// e.g. `a != ANY(y)`
    fn visit_any(
        &mut self,
        left: &SQLExpr,
        compare_op: &BinaryOperator,
        right: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let left = self.visit_expr(left)?;
        let right = self.visit_expr(right)?;

        match compare_op {
            BinaryOperator::Gt => Ok(left.gt(right.min())),
            BinaryOperator::Lt => Ok(left.lt(right.max())),
            BinaryOperator::GtEq => Ok(left.gt_eq(right.min())),
            BinaryOperator::LtEq => Ok(left.lt_eq(right.max())),
            BinaryOperator::Eq => Ok(left.is_in(right)),
            BinaryOperator::NotEq => Ok(left.is_in(right).not()),
            _ => polars_bail!(ComputeError: "invalid comparison operator"),
        }
    }

    /// Visit a SQL `CAST` expression.
    ///
    /// e.g. `CAST(column AS INT)` or `column::INT`
    fn visit_cast(
        &mut self,
        expr: &SQLExpr,
        data_type: &SQLDataType,
        format: &Option<CastFormat>,
    ) -> PolarsResult<Expr> {
        if format.is_some() {
            return Err(polars_err!(ComputeError: "unsupported use of FORMAT in CAST expression"));
        }
        let expr = self.visit_expr(expr)?;

        #[cfg(feature = "json")]
        if data_type == &SQLDataType::JSON {
            return Ok(expr.str().json_decode(None, None));
        }
        let polars_type = map_sql_polars_datatype(data_type)?;
        Ok(expr.cast(polars_type))
    }

    /// Visit a SQL literal.
    ///
    /// e.g. 1, 'foo', 1.0, NULL
    ///
    /// See [SQLValue] and [LiteralValue] for more details
    fn visit_literal(&self, value: &SQLValue) -> PolarsResult<Expr> {
        Ok(match value {
            SQLValue::Boolean(b) => lit(*b),
            SQLValue::DoubleQuotedString(s) => lit(s.clone()),
            #[cfg(feature = "binary_encoding")]
            SQLValue::HexStringLiteral(x) => {
                if x.len() % 2 != 0 {
                    polars_bail!(ComputeError: "hex string literal must have an even number of digits; found '{}'", x)
                };
                lit(hex::decode(x.clone()).unwrap())
            },
            SQLValue::Null => Expr::Literal(LiteralValue::Null),
            SQLValue::Number(s, _) => {
                // Check for existence of decimal separator dot
                if s.contains('.') {
                    s.parse::<f64>().map(lit).map_err(|_| ())
                } else {
                    s.parse::<i64>().map(lit).map_err(|_| ())
                }
                .map_err(|_| polars_err!(ComputeError: "cannot parse literal: {:?}", s))?
            },
            SQLValue::SingleQuotedByteStringLiteral(b) => {
                // note: for PostgreSQL this syntax represents a BIT string literal (eg: b'10101') not a BYTE
                // string literal (see https://www.postgresql.org/docs/current/datatype-bit.html), but sqlparser
                // patterned the token name after BigQuery (where b'str' really IS a byte string)
                if !b.chars().all(|c| c == '0' || c == '1') {
                    polars_bail!(ComputeError: "bit string literal should contain only 0s and 1s; found '{}'", b)
                }
                let n_bits = b.len();
                let s = b.as_str();
                lit(match n_bits {
                    0 => b"".to_vec(),
                    1..=8 => u8::from_str_radix(s, 2).unwrap().to_be_bytes().to_vec(),
                    9..=16 => u16::from_str_radix(s, 2).unwrap().to_be_bytes().to_vec(),
                    17..=32 => u32::from_str_radix(s, 2).unwrap().to_be_bytes().to_vec(),
                    33..=64 => u64::from_str_radix(s, 2).unwrap().to_be_bytes().to_vec(),
                    _ => {
                        polars_bail!(ComputeError: "cannot parse bit string literal with len > 64 (len={:?})", n_bits)
                    },
                })
            },
            SQLValue::SingleQuotedString(s) => lit(s.clone()),
            other => polars_bail!(ComputeError: "SQL value {:?} is not yet supported", other),
        })
    }

    /// Visit a SQL literal (like [visit_literal]), but return AnyValue instead of Expr.
    fn visit_any_value(
        &self,
        value: &SQLValue,
        op: Option<&UnaryOperator>,
    ) -> PolarsResult<AnyValue> {
        Ok(match value {
            SQLValue::Boolean(b) => AnyValue::Boolean(*b),
            SQLValue::Null => AnyValue::Null,
            SQLValue::Number(s, _) => {
                let negate = match op {
                    Some(UnaryOperator::Minus) => true,
                    // no op should be taken as plus.
                    Some(UnaryOperator::Plus) | None => false,
                    Some(op) => {
                        polars_bail!(ComputeError: "Unary op {:?} not supported for numeric SQL value", op)
                    },
                };
                // Check for existence of decimal separator dot
                if s.contains('.') {
                    s.parse::<f64>()
                        .map(|n: f64| AnyValue::Float64(if negate { -n } else { n }))
                        .map_err(|_| ())
                } else {
                    s.parse::<i64>()
                        .map(|n: i64| AnyValue::Int64(if negate { -n } else { n }))
                        .map_err(|_| ())
                }
                .map_err(|_| polars_err!(ComputeError: "cannot parse literal: {s:?}"))?
            },
            SQLValue::SingleQuotedString(s)
            | SQLValue::NationalStringLiteral(s)
            | SQLValue::HexStringLiteral(s)
            | SQLValue::DoubleQuotedString(s) => AnyValue::StringOwned(s.into()),
            other => polars_bail!(ComputeError: "SQL value {:?} is not yet supported", other),
        })
    }

    /// Visit a SQL `BETWEEN` expression.
    /// See [sqlparser::ast::Expr::Between] for more details
    fn visit_between(
        &mut self,
        expr: &SQLExpr,
        negated: bool,
        low: &SQLExpr,
        high: &SQLExpr,
    ) -> PolarsResult<Expr> {
        let expr = self.visit_expr(expr)?;
        let low = self.visit_expr(low)?;
        let high = self.visit_expr(high)?;

        if negated {
            Ok(expr.clone().lt(low).or(expr.gt(high)))
        } else {
            Ok(expr.clone().gt_eq(low).and(expr.lt_eq(high)))
        }
    }

    /// Visit a SQL `TRIM` function.
    /// See [sqlparser::ast::Expr::Trim] for more details
    fn visit_trim(
        &mut self,
        expr: &SQLExpr,
        trim_where: &Option<TrimWhereField>,
        trim_what: &Option<Box<SQLExpr>>,
        trim_characters: &Option<Vec<SQLExpr>>,
    ) -> PolarsResult<Expr> {
        if trim_characters.is_some() {
            // TODO: allow compact snowflake/bigquery syntax?
            return Err(polars_err!(ComputeError: "unsupported TRIM syntax"));
        };
        let expr = self.visit_expr(expr)?;
        let trim_what = trim_what.as_ref().map(|e| self.visit_expr(e)).transpose()?;
        let trim_what = match trim_what {
            Some(Expr::Literal(LiteralValue::String(val))) => Some(val),
            None => None,
            _ => return self.err(&expr),
        };
        Ok(match (trim_where, trim_what) {
            (None | Some(TrimWhereField::Both), None) => expr.str().strip_chars(lit(Null)),
            (None | Some(TrimWhereField::Both), Some(val)) => expr.str().strip_chars(lit(val)),
            (Some(TrimWhereField::Leading), None) => expr.str().strip_chars_start(lit(Null)),
            (Some(TrimWhereField::Leading), Some(val)) => expr.str().strip_chars_start(lit(val)),
            (Some(TrimWhereField::Trailing), None) => expr.str().strip_chars_end(lit(Null)),
            (Some(TrimWhereField::Trailing), Some(val)) => expr.str().strip_chars_end(lit(val)),
        })
    }

    /// Visit a SQL `ARRAY_AGG` expression.
    fn visit_arr_agg(&mut self, expr: &ArrayAgg) -> PolarsResult<Expr> {
        let mut base = self.visit_expr(&expr.expr)?;
        if let Some(order_by) = expr.order_by.as_ref() {
            let (order_by, descending) = self.visit_order_by(order_by)?;
            base = base.sort_by(
                order_by,
                SortMultipleOptions::default().with_order_descendings(descending),
            );
        }
        if let Some(limit) = &expr.limit {
            let limit = match self.visit_expr(limit)? {
                Expr::Literal(LiteralValue::Int64(n)) => n as usize,
                _ => polars_bail!(ComputeError: "limit in ARRAY_AGG must be a positive integer"),
            };
            base = base.head(Some(limit));
        }
        if expr.distinct {
            base = base.unique_stable();
        }
        polars_ensure!(
            !expr.within_group,
            ComputeError: "ARRAY_AGG WITHIN GROUP is not yet supported"
        );
        Ok(base.implode())
    }

    /// Visit a SQL `IN` expression
    fn visit_in_list(
        &mut self,
        expr: &SQLExpr,
        list: &[SQLExpr],
        negated: bool,
    ) -> PolarsResult<Expr> {
        let expr = self.visit_expr(expr)?;
        let list = list
            .iter()
            .map(|e| {
                if let SQLExpr::Value(v) = e {
                    let av = self.visit_any_value(v, None)?;
                    Ok(av)
                } else if let SQLExpr::UnaryOp {op, expr} = e {
                    match expr.as_ref() {
                        SQLExpr::Value(v) => {
                            let av = self.visit_any_value(v, Some(op))?;
                            Ok(av)
                        },
                        _ => Err(polars_err!(ComputeError: "SQL expression {:?} is not yet supported", e))
                    }
                }else{
                    Err(polars_err!(ComputeError: "SQL expression {:?} is not yet supported", e))
                }
            })
            .collect::<PolarsResult<Vec<_>>>()?;
        let s = Series::from_any_values("", &list, true)?;

        if negated {
            Ok(expr.is_in(lit(s)).not())
        } else {
            Ok(expr.is_in(lit(s)))
        }
    }

    /// Visit a SQL subquery inside and `IN` expression.
    fn visit_in_subquery(
        &mut self,
        expr: &SQLExpr,
        subquery: &Subquery,
        negated: bool,
    ) -> PolarsResult<Expr> {
        let subquery_result = self.visit_subquery(subquery, SubqueryRestriction::SingleColumn)?;
        let expr = self.visit_expr(expr)?;
        if negated {
            Ok(expr.is_in(subquery_result).not())
        } else {
            Ok(expr.is_in(subquery_result))
        }
    }

    /// Visit a SQL `ORDER BY` expression.
    fn visit_order_by(&mut self, order_by: &[OrderByExpr]) -> PolarsResult<(Vec<Expr>, Vec<bool>)> {
        let mut expr = Vec::with_capacity(order_by.len());
        let mut descending = Vec::with_capacity(order_by.len());
        for order_by_expr in order_by {
            let e = self.visit_expr(&order_by_expr.expr)?;
            expr.push(e);
            let desc = order_by_expr.asc.unwrap_or(false);
            descending.push(desc);
        }

        Ok((expr, descending))
    }

    /// Visit `CASE` control flow expression.
    fn visit_case_when_then(&mut self, expr: &SQLExpr) -> PolarsResult<Expr> {
        if let SQLExpr::Case {
            operand,
            conditions,
            results,
            else_result,
        } = expr
        {
            polars_ensure!(
                conditions.len() == results.len(),
                ComputeError: "WHEN and THEN expressions must have the same length"
            );
            polars_ensure!(
                !conditions.is_empty(),
                ComputeError: "WHEN and THEN expressions must have at least one element"
            );

            let mut when_thens = conditions.iter().zip(results.iter());
            let first = when_thens.next();
            if first.is_none() {
                polars_bail!(ComputeError: "WHEN and THEN expressions must have at least one element");
            }
            let else_res = match else_result {
                Some(else_res) => self.visit_expr(else_res)?,
                None => polars_bail!(ComputeError: "ELSE expression is required"),
            };
            if let Some(operand_expr) = operand {
                let first_operand_expr = self.visit_expr(operand_expr)?;

                let first = first.unwrap();
                let first_cond = first_operand_expr.eq(self.visit_expr(first.0)?);
                let first_then = self.visit_expr(first.1)?;
                let expr = when(first_cond).then(first_then);
                let next = when_thens.next();

                let mut when_then = if let Some((cond, res)) = next {
                    let second_operand_expr = self.visit_expr(operand_expr)?;
                    let cond = second_operand_expr.eq(self.visit_expr(cond)?);
                    let res = self.visit_expr(res)?;
                    expr.when(cond).then(res)
                } else {
                    return Ok(expr.otherwise(else_res));
                };
                for (cond, res) in when_thens {
                    let new_operand_expr = self.visit_expr(operand_expr)?;
                    let cond = new_operand_expr.eq(self.visit_expr(cond)?);
                    let res = self.visit_expr(res)?;
                    when_then = when_then.when(cond).then(res);
                }
                return Ok(when_then.otherwise(else_res));
            }

            let first = first.unwrap();
            let first_cond = self.visit_expr(first.0)?;
            let first_then = self.visit_expr(first.1)?;
            let expr = when(first_cond).then(first_then);
            let next = when_thens.next();

            let mut when_then = if let Some((cond, res)) = next {
                let cond = self.visit_expr(cond)?;
                let res = self.visit_expr(res)?;
                expr.when(cond).then(res)
            } else {
                return Ok(expr.otherwise(else_res));
            };
            for (cond, res) in when_thens {
                let cond = self.visit_expr(cond)?;
                let res = self.visit_expr(res)?;
                when_then = when_then.when(cond).then(res);
            }
            Ok(when_then.otherwise(else_res))
        } else {
            unreachable!()
        }
    }

    fn err(&self, expr: &Expr) -> PolarsResult<Expr> {
        polars_bail!(ComputeError: "SQL expression {:?} is not yet supported", expr);
    }
}

pub(super) fn process_join(
    left_tbl: LazyFrame,
    right_tbl: LazyFrame,
    constraint: &JoinConstraint,
    tbl_name: &str,
    join_tbl_name: &str,
    join_type: JoinType,
) -> PolarsResult<LazyFrame> {
    let (left_on, right_on) = process_join_constraint(constraint, tbl_name, join_tbl_name)?;

    Ok(left_tbl
        .join_builder()
        .with(right_tbl)
        .left_on(left_on)
        .right_on(right_on)
        .how(join_type)
        .finish())
}

fn collect_compound_identifiers(
    left: &[Ident],
    right: &[Ident],
    left_name: &str,
    right_name: &str,
) -> PolarsResult<(Vec<Expr>, Vec<Expr>)> {
    if left.len() == 2 && right.len() == 2 {
        let (tbl_a, col_a) = (&left[0].value, &left[1].value);
        let (tbl_b, col_b) = (&right[0].value, &right[1].value);

        if left_name == tbl_a && right_name == tbl_b {
            Ok((vec![col(col_a)], vec![col(col_b)]))
        } else if left_name == tbl_b && right_name == tbl_a {
            Ok((vec![col(col_b)], vec![col(col_a)]))
        } else {
            polars_bail!(InvalidOperation: "collect_compound_identifiers: left_name={:?}, right_name={:?}, tbl_a={:?}, tbl_b={:?}", left_name, right_name, tbl_a, tbl_b);
        }
    } else {
        polars_bail!(InvalidOperation: "collect_compound_identifiers: Expected left.len() == 2 && right.len() == 2, but found left.len() == {:?}, right.len() == {:?}", left.len(), right.len());
    }
}

fn process_join_on(
    expression: &sqlparser::ast::Expr,
    left_name: &str,
    right_name: &str,
) -> PolarsResult<(Vec<Expr>, Vec<Expr>)> {
    if let SQLExpr::BinaryOp { left, op, right } = expression {
        match *op {
            BinaryOperator::Eq => {
                if let (SQLExpr::CompoundIdentifier(left), SQLExpr::CompoundIdentifier(right)) =
                    (left.as_ref(), right.as_ref())
                {
                    collect_compound_identifiers(left, right, left_name, right_name)
                } else {
                    polars_bail!(InvalidOperation: "SQL join clauses support '=' constraints on identifiers; found lhs={:?}, rhs={:?}", left, right);
                }
            },
            BinaryOperator::And => {
                let (mut left_i, mut right_i) = process_join_on(left, left_name, right_name)?;
                let (mut left_j, mut right_j) = process_join_on(right, left_name, right_name)?;
                left_i.append(&mut left_j);
                right_i.append(&mut right_j);
                Ok((left_i, right_i))
            },
            _ => {
                polars_bail!(InvalidOperation: "SQL join clauses support '=' constraints combined with 'AND'; found op = '{:?}'", op);
            },
        }
    } else if let SQLExpr::Nested(expr) = expression {
        process_join_on(expr, left_name, right_name)
    } else {
        polars_bail!(InvalidOperation: "SQL join clauses support '=' constraints combined with 'AND'; found expression = {:?}", expression);
    }
}

pub(super) fn process_join_constraint(
    constraint: &JoinConstraint,
    left_name: &str,
    right_name: &str,
) -> PolarsResult<(Vec<Expr>, Vec<Expr>)> {
    if let JoinConstraint::On(SQLExpr::BinaryOp { left, op, right }) = constraint {
        if op == &BinaryOperator::And {
            let (mut left_on, mut right_on) = process_join_on(left, left_name, right_name)?;
            let (left_on_2, right_on_2) = process_join_on(right, left_name, right_name)?;
            left_on.extend(left_on_2);
            right_on.extend(right_on_2);
            return Ok((left_on, right_on));
        }
        if op != &BinaryOperator::Eq {
            polars_bail!(InvalidOperation:
                "SQL interface (currently) only supports basic equi-join \
                 constraints; found '{:?}' op in\n{:?}", op, constraint)
        }
        match (left.as_ref(), right.as_ref()) {
            (SQLExpr::CompoundIdentifier(left), SQLExpr::CompoundIdentifier(right)) => {
                return collect_compound_identifiers(left, right, left_name, right_name);
            },
            (SQLExpr::Identifier(left), SQLExpr::Identifier(right)) => {
                return Ok((vec![col(&left.value)], vec![col(&right.value)]))
            },
            _ => {},
        }
    }
    if let JoinConstraint::Using(idents) = constraint {
        if !idents.is_empty() {
            let using: Vec<Expr> = idents.iter().map(|id| col(&id.value)).collect();
            return Ok((using.clone(), using.clone()));
        }
    }
    polars_bail!(InvalidOperation: "unsupported SQL join constraint:\n{:?}", constraint);
}

/// parse a SQL expression to a polars expression
/// # Example
/// ```rust
/// # use polars_sql::{SQLContext, sql_expr};
/// # use polars_core::prelude::*;
/// # use polars_lazy::prelude::*;
/// # fn main() {
///
/// let mut ctx = SQLContext::new();
/// let df = df! {
///    "a" =>  [1, 2, 3],
/// }
/// .unwrap();
/// let expr = sql_expr("MAX(a)").unwrap();
/// df.lazy().select(vec![expr]).collect().unwrap();
/// # }
/// ```
pub fn sql_expr<S: AsRef<str>>(s: S) -> PolarsResult<Expr> {
    let mut ctx = SQLContext::new();

    let mut parser = Parser::new(&GenericDialect);
    parser = parser.with_options(ParserOptions {
        trailing_commas: true,
        ..Default::default()
    });

    let mut ast = parser.try_with_sql(s.as_ref()).map_err(to_compute_err)?;
    let expr = ast.parse_select_item().map_err(to_compute_err)?;

    Ok(match &expr {
        SelectItem::ExprWithAlias { expr, alias } => {
            let expr = parse_sql_expr(expr, &mut ctx)?;
            expr.alias(&alias.value)
        },
        SelectItem::UnnamedExpr(expr) => parse_sql_expr(expr, &mut ctx)?,
        _ => polars_bail!(InvalidOperation: "Unable to parse '{}' as Expr", s.as_ref()),
    })
}

pub(crate) fn parse_sql_expr(expr: &SQLExpr, ctx: &mut SQLContext) -> PolarsResult<Expr> {
    let mut visitor = SQLExprVisitor { ctx };
    visitor.visit_expr(expr)
}

fn parse_extract(expr: Expr, field: &DateTimeField) -> PolarsResult<Expr> {
    Ok(match field {
        DateTimeField::Millennium => expr.dt().millennium(),
        DateTimeField::Century => expr.dt().century(),
        DateTimeField::Decade => expr.dt().year() / lit(10i32),
        DateTimeField::Isoyear => expr.dt().iso_year(),
        DateTimeField::Year => expr.dt().year(),
        DateTimeField::Quarter => expr.dt().quarter(),
        DateTimeField::Month => expr.dt().month(),
        DateTimeField::Week => expr.dt().week(),
        DateTimeField::IsoWeek => expr.dt().week(),
        DateTimeField::DayOfYear | DateTimeField::Doy => expr.dt().ordinal_day(),
        DateTimeField::DayOfWeek | DateTimeField::Dow => {
            let w = expr.dt().weekday();
            when(w.clone().eq(lit(7i8))).then(lit(0i8)).otherwise(w)
        },
        DateTimeField::Isodow => expr.dt().weekday(),
        DateTimeField::Day => expr.dt().day(),
        DateTimeField::Hour => expr.dt().hour(),
        DateTimeField::Minute => expr.dt().minute(),
        DateTimeField::Second => expr.dt().second(),
        DateTimeField::Millisecond | DateTimeField::Milliseconds => {
            (expr.clone().dt().second() * lit(1_000))
                + expr.dt().nanosecond().div(lit(1_000_000f64))
        },
        DateTimeField::Microsecond | DateTimeField::Microseconds => {
            (expr.clone().dt().second() * lit(1_000_000))
                + expr.dt().nanosecond().div(lit(1_000f64))
        },
        DateTimeField::Nanosecond | DateTimeField::Nanoseconds => {
            (expr.clone().dt().second() * lit(1_000_000_000f64)) + expr.dt().nanosecond()
        },
        DateTimeField::Time => expr.dt().time(),
        #[cfg(feature = "timezones")]
        DateTimeField::Timezone => expr.dt().base_utc_offset().dt().total_seconds(),
        DateTimeField::Epoch => {
            expr.clone()
                .dt()
                .timestamp(TimeUnit::Nanoseconds)
                .div(lit(1_000_000_000i64))
                + expr.dt().nanosecond().div(lit(1_000_000_000f64))
        },
        _ => {
            polars_bail!(ComputeError: "EXTRACT function does not support {}", field)
        },
    })
}

pub(crate) fn parse_date_part(expr: Expr, part: &str) -> PolarsResult<Expr> {
    let part = part.to_ascii_lowercase();
    parse_extract(
        expr,
        match part.as_str() {
            "millennium" => &DateTimeField::Millennium,
            "century" => &DateTimeField::Century,
            "decade" => &DateTimeField::Decade,
            "isoyear" => &DateTimeField::Isoyear,
            "year" => &DateTimeField::Year,
            "quarter" => &DateTimeField::Quarter,
            "month" => &DateTimeField::Month,
            "dayofyear" | "doy" => &DateTimeField::DayOfYear,
            "dayofweek" | "dow" => &DateTimeField::DayOfWeek,
            "isoweek" | "week" => &DateTimeField::IsoWeek,
            "isodow" => &DateTimeField::Isodow,
            "day" => &DateTimeField::Day,
            "hour" => &DateTimeField::Hour,
            "minute" => &DateTimeField::Minute,
            "second" => &DateTimeField::Second,
            "millisecond" | "milliseconds" => &DateTimeField::Millisecond,
            "microsecond" | "microseconds" => &DateTimeField::Microsecond,
            "nanosecond" | "nanoseconds" => &DateTimeField::Nanosecond,
            #[cfg(feature = "timezones")]
            "timezone" => &DateTimeField::Timezone,
            "time" => &DateTimeField::Time,
            "epoch" => &DateTimeField::Epoch,
            _ => {
                polars_bail!(ComputeError: "DATE_PART function does not support '{}'", part)
            },
        },
    )
}