polars_rows_iter/iter_from_column/
iter_from_column_binary.rsuse crate::*;
use polars::prelude::*;
impl<'a> IterFromColumn<'a> for &'a [u8] {
type RawInner = &'a [u8];
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a [u8]>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<&'a [u8]>, column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
polars_value.ok_or_else(|| <&[u8] as IterFromColumn<'a>>::unexpected_null_value_error(column_name))
}
}
impl<'a> IterFromColumn<'a> for Option<&'a [u8]> {
type RawInner = &'a [u8];
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a [u8]>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<&'a [u8]>, _column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
Ok(polars_value)
}
}
fn create_iter<'a>(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a [u8]>> + 'a>> {
let column_name = column.name().as_str();
let iter: Box<dyn Iterator<Item = Option<&[u8]>>> = match column.dtype() {
DataType::Binary => Box::new(column.binary()?.iter()),
DataType::BinaryOffset => Box::new(column.binary_offset()?.iter()),
dtype => {
return Err(
polars_err!(SchemaMismatch: "Cannot get &[u8] from column '{column_name}' with dtype : {dtype}"),
)
}
};
Ok(iter)
}
#[cfg(test)]
mod tests {
const ROW_COUNT: usize = 64;
use super::*;
use itertools::{izip, Itertools};
use rand::{rngs::StdRng, SeedableRng};
use shared_test_helpers::*;
#[test]
fn binary_test() {
let mut rng = StdRng::seed_from_u64(0);
let height = ROW_COUNT;
let dtype = DataType::Binary;
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let col_values = col.clone();
let col_values = col_values.binary().unwrap().iter().map(|v| v.unwrap()).collect_vec();
let col_opt_values = col_opt.clone();
let col_opt_values = col_opt_values.binary().unwrap().iter().collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.iter();
let col_opt_iter = col_opt_values.iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(&col, &col_opt)| TestRow { col, col_opt })
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow<'a> {
col: &'a [u8],
col_opt: Option<&'a [u8]>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
#[test]
fn binary_offset_test() {
let mut rng = StdRng::seed_from_u64(0);
let height = ROW_COUNT;
let dtype = DataType::BinaryOffset;
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let col_values = col.clone();
let col_values = col_values
.binary_offset()
.unwrap()
.iter()
.map(|v| v.unwrap())
.collect_vec();
let col_opt_values = col_opt.clone();
let col_opt_values = col_opt_values.binary_offset().unwrap().iter().collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.iter();
let col_opt_iter = col_opt_values.iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(&col, &col_opt)| TestRow { col, col_opt })
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow<'a> {
col: &'a [u8],
col_opt: Option<&'a [u8]>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
}