polars_rows_iter/iter_from_column/
iter_from_column_string.rsuse super::iter_from_column_str::create_iter;
use super::*;
use iter_from_column_trait::IterFromColumn;
use polars::prelude::*;
impl<'a> IterFromColumn<'a> for String {
type RawInner = &'a str;
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<&'a str>, column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
Ok(polars_value
.ok_or_else(|| <&'a str as IterFromColumn<'a>>::unexpected_null_value_error(column_name))?
.to_string())
}
}
impl<'a> IterFromColumn<'a> for Option<String> {
type RawInner = &'a str;
fn create_iter(column: &'a Column) -> PolarsResult<Box<dyn Iterator<Item = Option<&'a str>> + 'a>> {
create_iter(column)
}
#[inline]
fn get_value(polars_value: Option<&'a str>, _column_name: &str, _dtype: &DataType) -> PolarsResult<Self>
where
Self: Sized,
{
Ok(polars_value.map(|s| s.to_string()))
}
}
#[cfg(test)]
mod tests {
use crate::*;
use itertools::{izip, Itertools};
use polars::prelude::*;
use rand::{rngs::StdRng, SeedableRng};
use shared_test_helpers::*;
const ROW_COUNT: usize = 64;
#[test]
fn str_test() {
let mut rng = StdRng::seed_from_u64(0);
let height = ROW_COUNT;
let dtype = DataType::String;
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let col_values = col.str().unwrap().iter().map(|v| v.unwrap().to_owned()).collect_vec();
let col_opt_values = col_opt
.str()
.unwrap()
.iter()
.map(|v| v.map(|s| s.to_owned()))
.collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.into_iter();
let col_opt_iter = col_opt_values.into_iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(col, col_opt)| TestRow { col, col_opt })
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow {
col: String,
col_opt: Option<String>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
#[cfg(feature = "dtype-categorical")]
#[test]
fn cat_test() {
let mut rng = StdRng::seed_from_u64(0);
let height = ROW_COUNT;
let dtype = DataType::Categorical(None, CategoricalOrdering::Physical);
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let col_values = col
.categorical()
.unwrap()
.iter_str()
.map(|v| v.unwrap().to_owned())
.collect_vec();
let col_opt_values = col_opt
.categorical()
.unwrap()
.iter_str()
.map(|v| v.map(|s| s.to_owned()))
.collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.into_iter();
let col_opt_iter = col_opt_values.into_iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(col, col_opt)| TestRow { col, col_opt })
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow {
col: String,
col_opt: Option<String>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
#[cfg(feature = "dtype-categorical")]
#[test]
fn enum_test() {
let mut rng = StdRng::seed_from_u64(0);
let height = ROW_COUNT;
let enum_value_series = Series::new("enum".into(), &["A", "B", "C", "D", "E"]);
let categories = enum_value_series.str().unwrap().downcast_iter().next().unwrap().clone();
let dtype = create_enum_dtype(categories);
let col = create_column("col", dtype.clone(), false, height, &mut rng);
let col_opt = create_column("col_opt", dtype, true, height, &mut rng);
let col_values = col
.categorical()
.unwrap()
.iter_str()
.map(|v| v.unwrap().to_owned())
.collect_vec();
let col_opt_values = col_opt
.categorical()
.unwrap()
.iter_str()
.map(|v| v.map(|s| s.to_owned()))
.collect_vec();
let df = DataFrame::new(vec![col, col_opt]).unwrap();
let col_iter = col_values.into_iter();
let col_opt_iter = col_opt_values.into_iter();
let expected_rows = izip!(col_iter, col_opt_iter)
.map(|(col, col_opt)| TestRow { col, col_opt })
.collect_vec();
#[derive(Debug, FromDataFrameRow, PartialEq)]
struct TestRow {
col: String,
col_opt: Option<String>,
}
let rows = df.rows_iter::<TestRow>().unwrap().map(|v| v.unwrap()).collect_vec();
assert_eq!(rows, expected_rows)
}
}